python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Modulus Dataset constructors for discrete type data """ from pathlib import Path from typing import Union, Dict, List import numpy as np import h5py from modulus.sym.utils.io.vtk import grid_to_vtk from modulus.sym.dataset.dataset import Dataset, _DictDatasetMixin class _DictGridDatasetMixin(_DictDatasetMixin): "Special mixin class for dealing with dictionaries as input" def save_dataset(self, filename): named_lambda_weighting = { "lambda_" + key: value for key, value in self.lambda_weighting.items() } save_var = {**self.invar, **self.outvar, **named_lambda_weighting} grid_to_vtk(filename, save_var) # Structured grid output in future class DictGridDataset(_DictGridDatasetMixin, Dataset): """Default map-style grid dataset Parameters ---------- invar : Dict[str, np.array] Dictionary of numpy arrays as input. Input arrays should be of form [B, cin, xdim, ...] outvar : Dict[str, np.array] Dictionary of numpy arrays as target outputs. Target arrays should be of form [B, cin, xdim, ...] lambda_weighting : Dict[str, np.array], optional The weighting of the each example, by default None """ auto_collation = True def __init__( self, invar: Dict[str, np.array], outvar: Dict[str, np.array], lambda_weighting: Dict[str, np.array] = None, ): super().__init__(invar=invar, outvar=outvar, lambda_weighting=lambda_weighting) def __getitem__(self, idx): invar = _DictDatasetMixin._idx_var(self.invar, idx) outvar = _DictDatasetMixin._idx_var(self.outvar, idx) lambda_weighting = _DictDatasetMixin._idx_var(self.lambda_weighting, idx) return (invar, outvar, lambda_weighting) def __len__(self): return self.length class HDF5GridDataset(Dataset): """lazy-loading HDF5 map-style grid dataset""" def __init__( self, filename: Union[str, Path], invar_keys: List[str], outvar_keys: List[str], n_examples: int = None, ): self._invar_keys = invar_keys self._outvar_keys = outvar_keys self.path = Path(filename) # check path assert self.path.is_file(), f"Could not find file {self.path}" assert self.path.suffix in [ ".h5", ".hdf5", ], f"File type should be HDF5, got {self.path.suffix}" # check dataset/ get length with h5py.File(self.path, "r") as f: # check keys exist for k in invar_keys + outvar_keys: if not k in f.keys(): raise KeyError(f"Variable {k} not found in HDF5 file") length = len(f[k]) if n_examples is not None: assert ( n_examples <= length ), "error, n_examples greater than length of file data" length = min(n_examples, length) self.length = length def __getitem__(self, idx): invar = Dataset._to_tensor_dict( {k: self.f[k][idx, ...] for k in self.invar_keys} ) outvar = Dataset._to_tensor_dict( {k: self.f[k][idx, ...] for k in self.outvar_keys} ) lambda_weighting = Dataset._to_tensor_dict( {k: np.ones_like(v) for k, v in outvar.items()} ) return invar, outvar, lambda_weighting def __len__(self): return self.length def worker_init_fn(self, iworker): super().worker_init_fn(iworker) # open file on worker thread # note each torch DataLoader worker process should open file individually when reading # do not share open file descriptors across separate workers! # note files are closed when worker process is destroyed so no need to explicitly close self.f = h5py.File(self.path, "r") @property def invar_keys(self): return list(self._invar_keys) @property def outvar_keys(self): return list(self._outvar_keys)
modulus-sym-main
modulus/sym/dataset/discrete.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .dataset import Dataset, IterableDataset from .continuous import ( DictPointwiseDataset, ListIntegralDataset, ContinuousPointwiseIterableDataset, ContinuousIntegralIterableDataset, DictImportanceSampledPointwiseIterableDataset, DictVariationalDataset, DictInferencePointwiseDataset, ) from .discrete import DictGridDataset, HDF5GridDataset
modulus-sym-main
modulus/sym/dataset/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Dataset classes """ from typing import Dict import numpy as np import torch.utils.data from modulus.sym.constants import tf_dt from modulus.sym.distributed import DistributedManager class _BaseDataset: "Defines common requirements across map- and iterable- style datasets" def worker_init_fn(self, iworker): "Called by each worker in torch dataloader when it initialises" # get the distributed manager object manager = DistributedManager() worker_rank = manager.group_rank("data_parallel") if manager.distributed else 0 worker_size = manager.group_size("data_parallel") if manager.distributed else 1 # set different numpy seed per worker # set seed so first worker id's seed matches single-process case np.random.seed(seed=(worker_rank + iworker * worker_size)) @property def invar_keys(self): "Return list of invar keys" raise NotImplementedError("subclass must implement this") @property def outvar_keys(self): "Return list of outvar keys" raise NotImplementedError("subclass must implement this") def save_dataset(self, filename): "Save dataset to file" raise NotImplementedError("subclass must implement this") @staticmethod def _to_tensor_dict(var_dict, device=None): # convert to torch tensor_dict = { key: torch.as_tensor(value, dtype=tf_dt, device=device) for key, value in var_dict.items() } return tensor_dict class Dataset(_BaseDataset, torch.utils.data.Dataset): "For defining map-style datasets, can be subclassed by user" auto_collation = False def __getitem__(self, idx): """Must return a single example tuple e.g. (invar, outvar, lambda_weighting) if Dataset.auto_collation is False, or a batched example tuple if Dataset.auto_collation is True. For the latter case idx is a batch of indices.""" raise NotImplementedError("subclass must implement this") def __len__(self): raise NotImplementedError("subclass must implement this") class IterableDataset(_BaseDataset, torch.utils.data.IterableDataset): "For defining iterable-style datasets, can be subclassed by user" def __iter__(self): "Must yield batched example tuple e.g. (invar, outvar, lambda_weighting)" raise NotImplementedError("subclass must implement this") class _DictDatasetMixin: "Special mixin class for dealing with dictionary-based datasets" def __init__( self, invar: Dict[str, np.array], outvar: Dict[str, np.array], lambda_weighting: Dict[str, np.array] = None, ): # get default lambda weighting if lambda_weighting is None: lambda_weighting = {key: np.ones_like(x) for key, x in outvar.items()} # convert dataset arrays to tensors self.invar = Dataset._to_tensor_dict(invar) self.outvar = Dataset._to_tensor_dict(outvar) self.lambda_weighting = Dataset._to_tensor_dict(lambda_weighting) # get length self.length = len(next(iter(self.invar.values()))) @property def invar_keys(self): return list(self.invar.keys()) @property def outvar_keys(self): return list(self.outvar.keys()) @staticmethod def _idx_var(var, idx): # index, idx can be an int or an array idx_var = {} for key, value in var.items(): idx_var[key] = value[idx] return idx_var
modulus-sym-main
modulus/sym/dataset/dataset.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Modulus Dataset constructors for continuous type data """ from typing import Dict, List, Callable import numpy as np from modulus.sym.utils.io.vtk import var_to_polyvtk from .dataset import Dataset, IterableDataset, _DictDatasetMixin class _DictPointwiseDatasetMixin(_DictDatasetMixin): "Special mixin class for dealing with dictionaries as input" def save_dataset(self, filename): named_lambda_weighting = { "lambda_" + key: value for key, value in self.lambda_weighting.items() } save_var = {**self.invar, **self.outvar, **named_lambda_weighting} var_to_polyvtk(filename, save_var) class DictPointwiseDataset(_DictPointwiseDatasetMixin, Dataset): """A map-style dataset for a finite set of pointwise training examples.""" auto_collation = True def __init__( self, invar: Dict[str, np.array], outvar: Dict[str, np.array], lambda_weighting: Dict[str, np.array] = None, ): super().__init__(invar=invar, outvar=outvar, lambda_weighting=lambda_weighting) def __getitem__(self, idx): invar = _DictDatasetMixin._idx_var(self.invar, idx) outvar = _DictDatasetMixin._idx_var(self.outvar, idx) lambda_weighting = _DictDatasetMixin._idx_var(self.lambda_weighting, idx) return (invar, outvar, lambda_weighting) def __len__(self): return self.length class DictInferencePointwiseDataset(Dataset): """ A map-style dataset for inferencing the model, only contains inputs """ auto_collation = True def __init__( self, invar: Dict[str, np.array], output_names: List[str], # Just names of output vars ): self.invar = Dataset._to_tensor_dict(invar) self.output_names = output_names self.length = len(next(iter(invar.values()))) def __getitem__(self, idx): invar = _DictDatasetMixin._idx_var(self.invar, idx) return (invar,) def __len__(self): return self.length @property def invar_keys(self): return list(self.invar.keys()) @property def outvar_keys(self): return list(self.output_names) class ContinuousPointwiseIterableDataset(IterableDataset): """ An infinitely iterable dataset for a continuous set of pointwise training examples. This will resample training examples (create new ones) every iteration. """ def __init__( self, invar_fn: Callable, outvar_fn: Callable, lambda_weighting_fn: Callable = None, ): self.invar_fn = invar_fn self.outvar_fn = outvar_fn self.lambda_weighting_fn = lambda_weighting_fn if lambda_weighting_fn is None: lambda_weighting_fn = lambda _, outvar: { key: np.ones_like(x) for key, x in outvar.items() } def iterable_function(): while True: invar = Dataset._to_tensor_dict(self.invar_fn()) outvar = Dataset._to_tensor_dict(self.outvar_fn(invar)) lambda_weighting = Dataset._to_tensor_dict( self.lambda_weighting_fn(invar, outvar) ) yield (invar, outvar, lambda_weighting) self.iterable_function = iterable_function def __iter__(self): yield from self.iterable_function() @property def invar_keys(self): invar = self.invar_fn() return list(invar.keys()) @property def outvar_keys(self): invar = self.invar_fn() outvar = self.outvar_fn(invar) return list(outvar.keys()) def save_dataset(self, filename): # Cannot save continuous data-set pass class DictImportanceSampledPointwiseIterableDataset( _DictPointwiseDatasetMixin, IterableDataset ): """ An infinitely iterable dataset that applies importance sampling for faster more accurate monte carlo integration """ def __init__( self, invar: Dict[str, np.array], outvar: Dict[str, np.array], batch_size: int, importance_measure: Callable, lambda_weighting: Dict[str, np.array] = None, shuffle: bool = True, resample_freq: int = 1000, ): super().__init__(invar=invar, outvar=outvar, lambda_weighting=lambda_weighting) self.batch_size = min(batch_size, self.length) self.shuffle = shuffle self.resample_freq = resample_freq self.importance_measure = importance_measure def iterable_function(): # TODO: re-write idx calculation using pytorch sampling - to improve performance counter = 0 while True: # resample all points when needed if counter % self.resample_freq == 0: list_importance = [] list_invar = { key: np.split(value, value.shape[0] // self.batch_size) for key, value in self.invar.items() } for i in range(len(next(iter(list_invar.values())))): importance = self.importance_measure( {key: value[i] for key, value in list_invar.items()} ) list_importance.append(importance) importance = np.concatenate(list_importance, axis=0) prob = importance / np.sum(self.invar["area"].numpy() * importance) # sample points from probability distribution and store idx idx = np.array([]) while True: r = np.random.uniform(0, np.max(prob), size=self.batch_size) try_idx = np.random.choice(self.length, self.batch_size) if_sample = np.less(r, prob[try_idx, :][:, 0]) idx = np.concatenate([idx, try_idx[if_sample]]) if idx.shape[0] >= batch_size: idx = idx[:batch_size] break idx = idx.astype(np.int64) # gather invar, outvar, and lambda weighting invar = _DictDatasetMixin._idx_var(self.invar, idx) outvar = _DictDatasetMixin._idx_var(self.outvar, idx) lambda_weighting = _DictDatasetMixin._idx_var( self.lambda_weighting, idx ) # set area value from importance sampling invar["area"] = 1.0 / (prob[idx] * batch_size) # return and count up counter += 1 yield (invar, outvar, lambda_weighting) self.iterable_function = iterable_function def __iter__(self): yield from self.iterable_function() class ListIntegralDataset(_DictDatasetMixin, Dataset): """ A map-style dataset for a finite set of integral training examples. """ auto_collation = True def __init__( self, list_invar: List[Dict[str, np.array]], list_outvar: List[Dict[str, np.array]], list_lambda_weighting: List[Dict[str, np.array]] = None, ): if list_lambda_weighting is None: list_lambda_weighting = [] for outvar in list_outvar: list_lambda_weighting.append( {key: np.ones_like(x) for key, x in outvar.items()} ) invar = _stack_list_numpy_dict(list_invar) outvar = _stack_list_numpy_dict(list_outvar) lambda_weighting = _stack_list_numpy_dict(list_lambda_weighting) super().__init__(invar=invar, outvar=outvar, lambda_weighting=lambda_weighting) def __getitem__(self, idx): invar = _DictDatasetMixin._idx_var(self.invar, idx) outvar = _DictDatasetMixin._idx_var(self.outvar, idx) lambda_weighting = _DictDatasetMixin._idx_var(self.lambda_weighting, idx) return (invar, outvar, lambda_weighting) def __len__(self): return self.length def save_dataset(self, filename): for idx in range(self.length): var_to_polyvtk( filename + "_" + str(idx).zfill(5), _DictDatasetMixin._idx_var(self.invar, idx), ) class ContinuousIntegralIterableDataset(IterableDataset): """ An infinitely iterable dataset for a continuous set of integral training examples. This will resample training examples (create new ones) every iteration. """ def __init__( self, invar_fn: Callable, outvar_fn: Callable, batch_size: int, lambda_weighting_fn: Callable = None, param_ranges_fn: Callable = None, ): self.invar_fn = invar_fn self.outvar_fn = outvar_fn self.lambda_weighting_fn = lambda_weighting_fn if lambda_weighting_fn is None: lambda_weighting_fn = lambda _, outvar: { key: np.ones_like(x) for key, x in outvar.items() } if param_ranges_fn is None: param_ranges_fn = lambda: {} # Potentially unsafe? self.param_ranges_fn = param_ranges_fn self.batch_size = batch_size # TODO: re-write iterable function so that for loop not needed - to improve performance def iterable_function(): while True: list_invar = [] list_outvar = [] list_lambda_weighting = [] for _ in range(self.batch_size): param_range = self.param_ranges_fn() list_invar.append(self.invar_fn(param_range)) if ( not param_range ): # TODO this can be removed after a np_lambdify rewrite param_range = {"_": next(iter(list_invar[-1].values()))[0:1]} list_outvar.append(self.outvar_fn(param_range)) list_lambda_weighting.append( self.lambda_weighting_fn(param_range, list_outvar[-1]) ) invar = Dataset._to_tensor_dict(_stack_list_numpy_dict(list_invar)) outvar = Dataset._to_tensor_dict(_stack_list_numpy_dict(list_outvar)) lambda_weighting = Dataset._to_tensor_dict( _stack_list_numpy_dict(list_lambda_weighting) ) yield (invar, outvar, lambda_weighting) self.iterable_function = iterable_function def __iter__(self): yield from self.iterable_function() @property def invar_keys(self): param_range = self.param_ranges_fn() invar = self.invar_fn(param_range) return list(invar.keys()) @property def outvar_keys(self): param_range = self.param_ranges_fn() invar = self.invar_fn(param_range) outvar = self.outvar_fn(invar) return list(outvar.keys()) def save_dataset(self, filename): # Cannot save continuous data-set pass class DictVariationalDataset(Dataset): """ A map-style dataset for a finite set of variational training examples. """ auto_collation = True def __init__( self, invar: Dict[str, np.array], outvar_names: List[str], # Just names of output vars ): self.invar = Dataset._to_tensor_dict(invar) self.outvar_names = outvar_names self.length = len(next(iter(invar.values()))) def __getitem__(self, idx): invar = _DictDatasetMixin._idx_var(self.invar, idx) return invar def __len__(self): return self.length @property def invar_keys(self): return list(self.invar.keys()) @property def outvar_keys(self): return list(self.outvar_names) def save_dataset(self, filename): for i, invar in self.invar.items(): var_to_polyvtk(invar, filename + "_" + str(i)) def _stack_list_numpy_dict(list_var): var = {} for key in list_var[0].keys(): var[key] = np.stack([v[key] for v in list_var], axis=0) return var
modulus-sym-main
modulus/sym/dataset/continuous.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Dict from modulus.sym import quantity from modulus.sym.node import Node class NonDimensionalizer: """ Used for Non-dimensionalizion and normalization of physical quantities Parameters ---------- length_scale : quantity length scale. Defaults to quantity(1.0, "m"). time_scale : quantity time scale. Defaults to quantity(1.0, "s"). mass_scale : quantity mass scale. Defaults to quantity(1.0, "kg"). temperature_scale : quantity temperature scale. Defaults to quantity(1.0, "K"). current_scale : quantity current scale. Defaults to quantity(1.0, "A"). substance_scale : quantity substance scale. Defaults to quantity(1.0, "mol"). luminosity_scale : quantity luminosity scale. Defaults to quantity(1.0, "cd"). """ def __init__( self, length_scale=quantity(1.0, "m"), time_scale=quantity(1.0, "s"), mass_scale=quantity(1.0, "kg"), temperature_scale=quantity(1.0, "K"), current_scale=quantity(1.0, "A"), substance_scale=quantity(1.0, "mol"), luminosity_scale=quantity(1.0, "cd"), ): self._print_scale(length_scale, "length") self._print_scale(time_scale, "time") self._print_scale(mass_scale, "mass") self._print_scale(temperature_scale, "temperature") self._print_scale(current_scale, "current") self._print_scale(substance_scale, "substance") self._print_scale(luminosity_scale, "luminosity") self.scale_dict = { "[length]": length_scale.to_base_units(), "[time]": time_scale.to_base_units(), "[mass]": mass_scale.to_base_units(), "[temperature]": temperature_scale.to_base_units(), "[current]": current_scale.to_base_units(), "[substance]": substance_scale.to_base_units(), "[luminosity]": luminosity_scale.to_base_units(), } def ndim(self, qty, return_unit=False): """ Non-dimensionalize and normalize physical quantities Parameters ---------- qty : quantity Physical quantity return_unit : bool If True, returns the non-dimensionalized and normalized value in for of a quantity with a "dimensionless" unit. If False, only returns the non-dimensionalized and normalized value """ qty.ito_base_units() for key, value in dict(qty.dimensionality).items(): qty /= self.scale_dict[key] ** value if dict(qty.dimensionality): raise RuntimeError("Error in non-dimensionalization") if return_unit: return qty else: return qty.magnitude def dim(self, invar, unit, return_unit=False): """ Scales back a non-dimensionalized quantity or value to a quantity with a desired unit Parameters ---------- invar : Any(quantity, float) Non-dimensionalized value or quantity unit: The target physical unit for the value or quantity return_unit : bool If True, returns the scaled value in for of a quantity with a unit. If False, only returns the scaled value """ try: if dict(invar.dimensionality): raise RuntimeError("Error in dimensionalization") except: pass try: qty = quantity(invar, "") except: qty = invar dummy_qty = quantity(1, unit) dummy_qty.ito_base_units() for key, value in dict(dummy_qty.dimensionality).items(): qty *= self.scale_dict[key] ** value qty.ito(unit) if return_unit: return qty else: return qty.magnitude def _print_scale(self, scale, name): """ Print scales only if the default values are changed """ if scale.magnitude != 1.0: print(f"{name} scale is {scale}") class Scaler: """ generates a Modulus Node for scaling back non-dimensionalized and normalized quantities Parameters ---------- invar : List[str] List of non-dimensionalized variable names to be scaled back outvar : List[str] List of names for the scaled variables. outvar_unit : List[str] List of unots for the scaled variables. non_dimensionalizer = NonDimensionalizer Modulus non-dimensionalizer object """ def __init__(self, invar, outvar, outvar_unit, non_dimensionalizer): self.invar = invar self.outvar = outvar self.outvar_unit = outvar_unit self.non_dimensionalizer = non_dimensionalizer def make_node(self): """ generates a Modulus Node """ return [ Node( inputs=self.invar, outputs=self.outvar, evaluate=_Scale( self.invar, self.outvar, self.outvar_unit, self.non_dimensionalizer ), ) ] class _Scale(torch.nn.Module): """ Scales back non-dimensionalized and normalized quantities Parameters ---------- invar : List[str] List of non-dimensionalized variable names to be scaled back outvar : List[str] List of names for the scaled variables. outvar_unit : List[str] List of unots for the scaled variables. non_dimensionalizer = NonDimensionalizer Modulus non-dimensionalizer object """ def __init__(self, invar, outvar, outvar_unit, non_dimensionalizer): super().__init__() self.invar = invar self.outvar = outvar self.outvar_unit = outvar_unit self.non_dimensionalizer = non_dimensionalizer def forward(self, invar: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: outvar = {} for i, key in enumerate(self.invar): outvar[self.outvar[i]] = self.non_dimensionalizer.dim( invar[key], self.outvar_unit[i] ) return outvar
modulus-sym-main
modulus/sym/eq/non_dim.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
modulus-sym-main
modulus/sym/eq/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ base class for PDEs """ from sympy import ( Symbol, Function, init_printing, pprint, latex, preview, Matrix, Eq, Basic, ) from typing import Dict, Tuple, List, Union from modulus.sym.node import Node from modulus.sym.constants import diff_str from modulus.sym.key import Key class PDE(object): """base class for all partial differential equations""" name = "PDE" def __init__(self): super().__init__() self.equations = Variables() def pprint(self, print_latex=False): """ Print differential equation. Parameters ---------- print_latex : bool If True print the equations in Latex. Else, just print as text. """ init_printing(use_latex=True) for key, value in self.equations.items(): print(str(key) + ": " + str(value)) if print_latex: preview( Matrix( [ Eq(Function(name, real=True), eq) for name, eq in self.equations.items() ] ), mat_str="cases", mat_delim="", ) def subs(self, x, y): for name, eq in self.equations.items(): self.equations[name] = eq.subs(x, y).doit() def make_nodes( self, create_instances: int = 1, freeze_terms: Dict[str, List[int]] = {}, detach_names: List[str] = [], ): """ Make a list of nodes from PDE. Parameters ---------- create_instances : int This will create various instances of the same equations freeze_terms : Dict[str, List[int]] This will freeze the terms in appropiate equation detach_names : List[str] This will detach the inputs of the resulting node. Returns ------- nodes : List[Node] Makes a separate node for every equation. """ nodes = [] if create_instances == 1: if bool(freeze_terms): print( "Freezing of terms is not supported when create_instance = 1. No terms will be frozen!" ) freeze_terms = {} # override with an empty dict for name, eq in self.equations.items(): nodes.append(Node.from_sympy(eq, str(name), freeze_terms, detach_names)) else: # look for empty lists in freeze_terms dict for k in list(freeze_terms): if not freeze_terms[k]: freeze_terms.pop(k) for i in range(create_instances): for name, eq in self.equations.items(): if str(name) + "_" + str(i) in freeze_terms.keys(): nodes.append( Node.from_sympy( eq, str(name) + "_" + str(i), freeze_terms[str(name) + "_" + str(i)], detach_names, ) ) else: # set the freeze terms to an empty list print( "No freeze terms found for instance: " + str(name) + "_" + str(i) + ", setting to empty" ) nodes.append( Node.from_sympy( eq, str(name) + "_" + str(i), [], detach_names, ) ) return nodes
modulus-sym-main
modulus/sym/eq/pde.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import torch import numpy as np import logging from torch.autograd import Function from modulus.sym.constants import diff from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.eq.mfd import FirstDeriv, SecondDeriv, ThirdDeriv, ForthDeriv from typing import Dict, List, Set, Optional, Union, Callable Tensor = torch.Tensor logger = logging.getLogger(__name__) # ==== Autodiff ==== @torch.jit.script def gradient(y: torch.Tensor, x: List[torch.Tensor]) -> List[torch.Tensor]: """ TorchScript function to compute the gradient of a tensor wrt multople inputs """ grad_outputs: List[Optional[torch.Tensor]] = [torch.ones_like(y, device=y.device)] grad = torch.autograd.grad( [ y, ], x, grad_outputs=grad_outputs, create_graph=True, allow_unused=True, ) if grad is None: grad = [torch.zeros_like(xx) for xx in x] assert grad is not None grad = [g if g is not None else torch.zeros_like(x[i]) for i, g in enumerate(grad)] return grad class Derivative(torch.nn.Module): """ Module to compute derivatives using backward automatic differentiation """ def __init__(self, bwd_derivative_dict: Dict[Key, List[Key]]): """ Constructor of the Derivative class. Parameters ---------- inputs : List[Key] A list of keys of the available variables to compute the required variables This list should contain both the variables that need to be differentiated and the variables to differentiate with respect to. derivatives : List[Key] A list of keys of the required derivatives """ super().__init__() self.gradient_dict: Dict[str, Dict[str, int]] = { str(k): {str(w): w.size for w in v} for k, v in bwd_derivative_dict.items() } self.gradient_names: Dict[str, List[str]] = { k: [diff(k, der) for der in v.keys()] for k, v in self.gradient_dict.items() } self.nvtx_str: str = f"Auto-Diff Node: {list(self.gradient_dict.keys())}" @staticmethod def prepare_input( input_variables: Dict[str, torch.Tensor], mask: List[str] ) -> List[torch.Tensor]: return [input_variables[x] for x in mask] @staticmethod def dict_output( output_tensors: List[torch.Tensor], sizes: List[str], var_name: str ) -> Dict[str, torch.Tensor]: return {diff(var_name, name): output_tensors[i] for i, name in enumerate(sizes)} def forward(self, input_var: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: output_var = {} for var_name, grad_sizes in self.gradient_dict.items(): var = input_var[var_name] grad_var = self.prepare_input(input_var, grad_sizes.keys()) grad = gradient(var, grad_var) grad_dict = { name: grad[i] for i, name in enumerate(self.gradient_names[var_name]) } output_var.update(grad_dict) return output_var @classmethod def make_node(cls, inputs: List[Key], derivatives: List[Key], name=None, jit=True): derivatives = [d for d in derivatives if d not in inputs] bwd_derivative_dict = _derivative_dict(inputs, derivatives, forward=False) output_derivatives = [] for key, value in bwd_derivative_dict.items(): output_derivatives += [ Key(key.name, key.size, key.derivatives + [x]) for x in value ] evaluate = cls(bwd_derivative_dict) nvtx_str = evaluate.nvtx_str if jit: evaluate = torch.jit.script(evaluate) derivative_node = Node( inputs, output_derivatives, evaluate, name=(nvtx_str if name is None else str(name)), ) return derivative_node def _derivative_dict(var, derivatives, forward=False): needed = derivatives while True: # break apart diff to see if first order needed break_loop = True for n in needed: l_n = Key(n.name, n.size, n.derivatives[:-1]) if (len(n.derivatives) > 1) and l_n not in needed and l_n not in var: needed.append(l_n) break_loop = False if break_loop: break current = var diff_dict = {} for c, n in itertools.product(current, needed): c_under_n = Key(n.name, n.size, n.derivatives[0 : len(c.derivatives)]) if (c == c_under_n) and (len(n.derivatives) == len(c.derivatives) + 1): if forward: if n.derivatives[len(c.derivatives)] not in diff_dict: diff_dict[n.derivatives[len(c.derivatives)]] = set() diff_dict[n.derivatives[len(c.derivatives)]].add(c) else: if c not in diff_dict: diff_dict[c] = set() diff_dict[c].add(n.derivatives[len(c.derivatives)]) diff_dict = {key: list(value) for key, value in diff_dict.items()} return diff_dict # ==== Meshless finite derivs ==== class MeshlessFiniteDerivative(torch.nn.Module): """ Module to compute derivatives using meshless finite difference Parameters ---------- model : torch.nn.Module Forward torch module for calculating stencil values derivatives : List[Key] List of derivative keys to calculate dx : Union[float, Callable] Spatial discretization of all axis, can be function with parameter `count` which is the number of forward passes for dynamically adjusting dx order : int, optional Order of derivative, by default 2 max_batch_size : Union[int, None], optional Max batch size of stencil calucations, by default uses batch size of inputs double_cast : bool, optional Cast fields to double precision to calculate derivatives, by default True jit : bool, optional Use torch script for finite deriv calcs, by default True """ def __init__( self, model: torch.nn.Module, derivatives: List[Key], dx: Union[float, Callable], order: int = 2, max_batch_size: Union[int, None] = None, double_cast: bool = True, input_keys: Union[List[Key], None] = None, ): super().__init__() self.model = model self._dx = dx self.double_cast = double_cast self.max_batch_size = max_batch_size self.input_keys = input_keys self.count = 0 self.derivatives = {1: [], 2: [], 3: [], 4: []} for key in derivatives: try: self.derivatives[len(key.derivatives)].append(key) except: raise NotImplementedError( f"{len(key.derivatives)}th derivatives not supported" ) self.first_deriv = FirstDeriv(self.derivatives[1], self.dx, order=order) self.second_deriv = SecondDeriv(self.derivatives[2], self.dx, order=order) self.third_deriv = ThirdDeriv(self.derivatives[3], self.dx, order=order) self.forth_deriv = ForthDeriv(self.derivatives[4], self.dx, order=order) @torch.jit.ignore() def forward(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: self.count += 1 dx = self.dx self.first_deriv.dx = dx self.second_deriv.dx = dx self.third_deriv.dx = dx self.forth_deriv.dx = dx torch.cuda.nvtx.range_push(f"Calculating meshless finite derivatives") # Assemble global stencil global_stencil = [] for deriv in [ self.first_deriv, self.second_deriv, self.third_deriv, self.forth_deriv, ]: stencil_list = deriv.stencil # Remove centered stencil points if already in input dictionary for i, point in enumerate(stencil_list): if point.split("::")[1] == str(0) and point.split("::")[0] in inputs: stencil_list.pop(i) global_stencil.extend(stencil_list) global_stencil = list(set(global_stencil)) # Number of stencil points to fit into a forward pass input_batch_size = next(iter(inputs.values())).size(0) if self.max_batch_size is None: num_batch = 1 else: num_batch = max([self.max_batch_size, input_batch_size]) // input_batch_size # Stencil forward passes index = 0 finite_diff_inputs = inputs.copy() while index < len(global_stencil): torch.cuda.nvtx.range_push(f"Running stencil forward pass") # Batch up stencil inputs stencil_batch = [global_stencil[index]] index += 1 for j in range(1, min([len(global_stencil) - (index - 1), num_batch])): stencil_batch.append(global_stencil[index]) index += 1 model_inputs = self._get_stencil_input(inputs, stencil_batch) # Model forward outputs = self.model(model_inputs) # Dissassemble batched inputs for key, value in outputs.items(): outputs[key] = torch.split(value.view(-1, len(stencil_batch)), 1, dim=1) for i, stencil_str in enumerate(stencil_batch): for key, value in outputs.items(): finite_diff_inputs[f"{key}>>{stencil_str}"] = value[i] torch.cuda.nvtx.range_pop() # Calc finite diff grads torch.cuda.nvtx.range_push(f"Calc finite difference") if self.double_cast: # Cast tensors to doubles for finite diff calc for key, value in finite_diff_inputs.items(): finite_diff_inputs[key] = value.double() outputs_first = self.first_deriv(finite_diff_inputs) outputs_second = self.second_deriv(finite_diff_inputs) outputs_third = self.third_deriv(finite_diff_inputs) outputs_forth = self.forth_deriv(finite_diff_inputs) outputs = inputs if self.double_cast: dtype = torch.get_default_dtype() for key, value in outputs_first.items(): outputs_first[key] = value.type(dtype) for key, value in outputs_second.items(): outputs_second[key] = value.type(dtype) for key, value in outputs_third.items(): outputs_third[key] = value.type(dtype) for key, value in outputs_forth.items(): outputs_forth[key] = value.type(dtype) outputs = { **inputs, **outputs_first, **outputs_second, **outputs_third, **outputs_forth, } torch.cuda.nvtx.range_pop() torch.cuda.nvtx.range_pop() return outputs @property def dx(self): if hasattr(self._dx, "__call__"): return self._dx(self.count) else: return self._dx def _get_stencil_input( self, inputs: Dict[str, Tensor], stencil_strs: List[str] ) -> Dict[str, Tensor]: """Creates a copy of the inputs tensor and adjusts its values based on the stencil str. Parameters ---------- inputs : Dict[str, Tensor] Input tensor dictionary stencil_strs : List[str] batch list of stencil string from derivative class Returns ------- Dict[str, Tensor] Modified input tensor dictionary Example ------- A stencil string `x::1` will modify inputs['x'] = inputs['x'] + dx A stencil string `y::-1,z::1` will modify inputs['y'] = inputs['y'] - dx, inputs['z'] = inputs['z'] + dx """ if self.input_keys is None: outputs = inputs.copy() else: outputs = {str(key): inputs[str(key)].clone() for key in self.input_keys} for key, value in outputs.items(): outputs[key] = value.repeat(1, len(stencil_strs)) for i, stencil_str in enumerate(stencil_strs): # Loop through points for point in stencil_str.split("&&"): var_name = point.split("::")[0] spacing = int(point.split("::")[1]) outputs[var_name][:, i] = outputs[var_name][:, i] + spacing * self.dx for key, value in outputs.items(): outputs[key] = value.view(-1, 1) return outputs @classmethod def make_node( cls, node_model: Union[Node, torch.nn.Module], derivatives: List[Key], dx: Union[float, Callable], order: int = 2, max_batch_size: Union[int, None] = None, name: str = None, double_cast: bool = True, input_keys: Union[List[Key], List[str], None] = None, ): """Makes a meshless finite derivative node. Parameters ---------- node_model : Union[Node, torch.nn.Module] Node or torch.nn.Module for computing FD stencil values. Part of the inputs to this model should consist of the independent variables and output the functional value derivatives : List[Key] List of derivatives to be computed dx : Union[float, Callable] Spatial discretization for finite diff calcs, can be function order : int, optional Order of accuracy of finite diff calcs, by default 2 max_batch_size : Union[int, None], optional Maximum batch size to used with the stenicl foward passes, by default None name : str, optional Name of node, by default None double_cast : bool, optional Cast tensors to double precision for derivatives, by default True input_keys : Union[List[Key], List[str], None], optional List of input keys to be used for input of forward model. Should be used if node_model is not a :obj:`Node`, by default None """ # We have two sets of input keys: # input_keys: which are the list of inputs to the model for stencil points # mfd_input_keys: input keys for the MFD node if input_keys is None: input_keys = [] mfd_input_keys = [] else: input_keys = [str(key) for key in input_keys] mfd_input_keys = [str(key) for key in input_keys] for derivative in derivatives: mfd_input_keys.append(derivative.name) for dstr in derivative.derivatives: mfd_input_keys.append(dstr.name) input_keys.append(dstr.name) if isinstance(node_model, Node): model = node_model.evaluate input_keys = input_keys + [str(key) for key in node_model.inputs] else: model = node_model # Remove duplicate keys mfd_input_keys = Key.convert_list(list(set(mfd_input_keys))) input_keys = Key.convert_list(list(set(input_keys))) evaluate = cls( model, derivatives, dx=dx, order=order, max_batch_size=max_batch_size, double_cast=double_cast, input_keys=input_keys, ) derivative_node = Node( mfd_input_keys, derivatives, evaluate, name=( "Meshless-Finite-Derivative Node" + "" if name is None else f": {name}" ), ) return derivative_node
modulus-sym-main
modulus/sym/eq/derivatives.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Maxwell's equation """ from sympy import Symbol, Function, Number import numpy as np from modulus.sym.eq.pde import PDE from modulus.sym.node import Node # helper functions computing curl def _curl(v): x, y, z = Symbol("x"), Symbol("y"), Symbol("z") dim = len(v) if dim == 3: vx, vy, vz = v return [ vz.diff(y) - vy.diff(z), vx.diff(z) - vz.diff(x), vy.diff(x) - vx.diff(y), ] elif dim == 2: vx, vy = v return [vy.diff(x) - vx.diff(y)] elif dim == 1: return [v[0].diff(y), -v[0].diff(x)] else: raise Exception("Input dimension for Curl operator must be 1, 2 or 3!") # helper functions computing cross product def _cross(a, b): x, y, z = Symbol("x"), Symbol("y"), Symbol("z") dim = len(a) if dim == 3: a1, a2, a3 = a b1, b2, b3 = b return [a2 * b3 - a3 * b2, a3 * b1 - a1 * b3, a1 * b2 - a2 * b1] elif dim == 2: a1, a2 = a b1, b2 = b return [a1 * b2 - a2 * b1] else: raise Exception("Input dimension for cross product must be 2 or 3!") class MaxwellFreqReal(PDE): """ Frequency domain Maxwell's equation Parameters ========== ux : str Ex uy : str Ey uz : str Ez k : float, Sympy Symbol/Expr, str Wave number. If `k` is a str then it is converted to Sympy Function of form 'k(x,y,z,t)'. If 'k' is a Sympy Symbol or Expression then this is substituted into the equation. mixed_form: bool If True, use the mixed formulation of the diffusion equations. """ name = "MaxwellFreqReal" def __init__(self, ux="ux", uy="uy", uz="uz", k=1.0, mixed_form=False): # set params self.ux = ux self.uy = uy self.uz = uz self.mixed_form = mixed_form if self.mixed_form: raise NotImplementedError( "Maxwell's equation is not implemented in mixed form" ) # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} # wave speed coefficient if isinstance(k, str): k = Function(k)(*input_variables) elif isinstance(k, (float, int)): k = Number(k) # E field assert isinstance(ux, str), "uz needs to be string" ux = Function(ux)(*input_variables) assert isinstance(uy, str), "uy needs to be string" uy = Function(uy)(*input_variables) assert isinstance(uz, str), "uz needs to be string" uz = Function(uz)(*input_variables) # compute del X (del X E) c2ux, c2uy, c2uz = _curl(_curl([ux, uy, uz])) # set equations self.equations = {} self.equations["Maxwell_Freq_real_x"] = c2ux - k**2 * ux self.equations["Maxwell_Freq_real_y"] = c2uy - k**2 * uy self.equations["Maxwell_Freq_real_z"] = c2uz - k**2 * uz class SommerfeldBC(PDE): """ Frequency domain ABC, Sommerfeld radiation condition Only for real part Equation: 'n x _curl(E) = 0' Parameters ========== ux : str Ex uy : str Ey uz : str Ez """ name = "SommerfeldBC" def __init__(self, ux="ux", uy="uy", uz="uz"): # set params self.ux = ux self.uy = uy self.uz = uz # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x = Symbol("normal_x") normal_y = Symbol("normal_y") normal_z = Symbol("normal_z") # make input variables, t is wave number input_variables = {"x": x, "y": y, "z": z} # E field assert isinstance(ux, str), "uz needs to be string" ux = Function(ux)(*input_variables) assert isinstance(uy, str), "uy needs to be string" uy = Function(uy)(*input_variables) assert isinstance(uz, str), "uz needs to be string" uz = Function(uz)(*input_variables) # compute cross product of curl for sommerfeld bc n = [normal_x, normal_y, normal_z] u = [ux, uy, uz] bcs = _cross(n, _curl(u)) # set equations self.equations = {} self.equations["SommerfeldBC_real_x"] = bcs[0] self.equations["SommerfeldBC_real_y"] = bcs[1] self.equations["SommerfeldBC_real_z"] = bcs[2] class PEC(PDE): """ Perfect Electric Conduct BC for Parameters ========== ux : str Ex uy : str Ey uz : str Ez dim : int Dimension of the equations (2, or 3). Default is 3. """ name = "PEC_3D" def __init__(self, ux="ux", uy="uy", uz="uz", dim=3): # set params self.ux = ux self.uy = uy self.uz = uz self.dim = dim # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x = Symbol("normal_x") normal_y = Symbol("normal_y") normal_z = Symbol("normal_z") # make input variables, t is wave number input_variables = {"x": x, "y": y, "z": z} # E field assert isinstance(ux, str), "uz needs to be string" ux = Function(ux)(*input_variables) assert isinstance(uy, str), "uy needs to be string" uy = Function(uy)(*input_variables) if self.dim == 3: assert isinstance(uz, str), "uz needs to be string" uz = Function(uz)(*input_variables) # compute cross of electric field if self.dim == 2: n = [normal_x, normal_y] u = [ux, uy] elif self.dim == 3: n = [normal_x, normal_y, normal_z] u = [ux, uy, uz] else: raise ValueError("'dim' needs to be 2 or 3") bcs = _cross(n, u) # set equations self.equations = {} self.equations["PEC_x"] = bcs[0] if self.dim == 3: self.equations["PEC_y"] = bcs[1] self.equations["PEC_z"] = bcs[2]
modulus-sym-main
modulus/sym/eq/pdes/electromagnetic.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Diffusion equation """ from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class Diffusion(PDE): """ Diffusion equation Parameters ========== T : str The dependent variable. D : float, Sympy Symbol/Expr, str Diffusivity. If `D` is a str then it is converted to Sympy Function of form 'D(x,y,z,t)'. If 'D' is a Sympy Symbol or Expression then this is substituted into the equation. Q : float, Sympy Symbol/Expr, str The source term. If `Q` is a str then it is converted to Sympy Function of form 'Q(x,y,z,t)'. If 'Q' is a Sympy Symbol or Expression then this is substituted into the equation. Default is 0. dim : int Dimension of the diffusion equation (1, 2, or 3). Default is 3. time : bool If time-dependent equations or not. Default is True. mixed_form: bool If True, use the mixed formulation of the diffusion equations. Examples ======== >>> diff = Diffusion(D=0.1, Q=1, dim=2) >>> diff.pprint() diffusion_T: T__t - 0.1*T__x__x - 0.1*T__y__y - 1 >>> diff = Diffusion(T='u', D='D', Q='Q', dim=3, time=False) >>> diff.pprint() diffusion_u: -D*u__x__x - D*u__y__y - D*u__z__z - Q - D__x*u__x - D__y*u__y - D__z*u__z """ name = "Diffusion" def __init__(self, T="T", D="D", Q=0, dim=3, time=True, mixed_form=False): # set params self.T = T self.dim = dim self.time = time self.mixed_form = mixed_form # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # Temperature assert type(T) == str, "T needs to be string" T = Function(T)(*input_variables) # Diffusivity if type(D) is str: D = Function(D)(*input_variables) elif type(D) in [float, int]: D = Number(D) # Source if type(Q) is str: Q = Function(Q)(*input_variables) elif type(Q) in [float, int]: Q = Number(Q) # set equations self.equations = {} if not self.mixed_form: self.equations["diffusion_" + self.T] = ( T.diff(t) - (D * T.diff(x)).diff(x) - (D * T.diff(y)).diff(y) - (D * T.diff(z)).diff(z) - Q ) elif self.mixed_form: T_x = Function("T_x")(*input_variables) T_y = Function("T_y")(*input_variables) if self.dim == 3: T_z = Function("T_z")(*input_variables) else: T_z = Number(0) self.equations["diffusion_" + self.T] = ( T.diff(t) - (D * T_x).diff(x) - (D * T_y).diff(y) - (D * T_z).diff(z) - Q ) self.equations["compatibility_T_x"] = T.diff(x) - T_x self.equations["compatibility_T_y"] = T.diff(y) - T_y self.equations["compatibility_T_z"] = T.diff(z) - T_z self.equations["compatibility_T_xy"] = T_x.diff(y) - T_y.diff(x) self.equations["compatibility_T_xz"] = T_x.diff(z) - T_z.diff(x) self.equations["compatibility_T_yz"] = T_y.diff(z) - T_z.diff(y) if self.dim == 2: self.equations.pop("compatibility_T_z") self.equations.pop("compatibility_T_xz") self.equations.pop("compatibility_T_yz") class DiffusionInterface(PDE): """ Matches the boundary conditions at an interface Parameters ========== T_1, T_2 : str Dependent variables to match the boundary conditions at the interface. D_1, D_2 : float Diffusivity at the interface. dim : int Dimension of the equations (1, 2, or 3). Default is 3. time : bool If time-dependent equations or not. Default is True. Example ======== >>> diff = DiffusionInterface('theta_s', 'theta_f', 0.1, 0.05, dim=2) >>> diff.pprint() diffusion_interface_dirichlet_theta_s_theta_f: -theta_f + theta_s diffusion_interface_neumann_theta_s_theta_f: -0.05*normal_x*theta_f__x + 0.1*normal_x*theta_s__x - 0.05*normal_y*theta_f__y + 0.1*normal_y*theta_s__y """ name = "DiffusionInterface" def __init__(self, T_1, T_2, D_1, D_2, dim=3, time=True): # set params self.T_1 = T_1 self.T_2 = T_2 self.D_1 = D_1 self.D_2 = D_2 self.dim = dim self.time = time # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x, normal_y, normal_z = ( Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z"), ) # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # variables to match the boundary conditions (example Temperature) T_1 = Function(T_1)(*input_variables) T_2 = Function(T_2)(*input_variables) # set equations self.equations = {} self.equations["diffusion_interface_dirichlet_" + self.T_1 + "_" + self.T_2] = ( T_1 - T_2 ) flux_1 = self.D_1 * ( normal_x * T_1.diff(x) + normal_y * T_1.diff(y) + normal_z * T_1.diff(z) ) flux_2 = self.D_2 * ( normal_x * T_2.diff(x) + normal_y * T_2.diff(y) + normal_z * T_2.diff(z) ) self.equations["diffusion_interface_neumann_" + self.T_1 + "_" + self.T_2] = ( flux_1 - flux_2 )
modulus-sym-main
modulus/sym/eq/pdes/diffusion.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Energy equation Reference: https://www.comsol.com/multiphysics/heat-transfer-conservation-of-energy http://dl.icdst.org/pdfs/files1/2fe68e957cdf09a4862088ed279f00b0.pdf http://farside.ph.utexas.edu/teaching/336L/Fluidhtml/node14.html#e4.67 """ from sympy import Symbol, Function, Number from sympy import * from modulus.sym.eq.pde import PDE from ..constants import diff class EnergyFluid(PDE): # TODO clean function simlar to others """ Energy equation Supports compressible flow. For Ideal gases only (uses the assumption that beta*T = 1). No heat/energy source added. Parameters ========== cp : str The specific heat. kappa : str The conductivity. rho : Sympy Symbol/Expr, str The density. If `rho` is a str then it is converted to Sympy Function of form 'rho(x,y,z,t)'. If 'rho' is a Sympy Symbol or Expression then this is substituted into the equation. nu : Sympy Symbol/Expr, str The kinematic viscosity. If `nu` is a str then it is converted to Sympy Function of form 'nu(x,y,z,t)'. If 'nu' is a Sympy Symbol or Expression then this is substituted into the equation. visc_heating : bool If viscous heating is applied or not. Default is False. dim : int Dimension of the energy equation (2 or 3). Default is 3. time : bool If time-dependent equations or not. Default is False. mixed_form: bool If True, use the mixed formulation of the diffusion equations. Examples ======== >>> ene = EnergyFluid(nu=0.1, rho='rho', cp=2.0, kappa=5, dim=2, time=False, visc_heating=False) >>> ene.pprint() temperauture_fluid: 2.0*(u(x, y)*Derivative(T(x, y), x) + v(x, y)*Derivative(T(x, y), y))*rho(x, y) - u(x, y)*Derivative(p(x, y), x) - v(x, y)*Derivative(p(x, y), y) - 5*Derivative(T(x, y), (x, 2)) - 5*Derivative(T(x, y), (y, 2)) """ def __init__( self, cp="cp", kappa="kappa", rho="rho", nu="nu", visc_heating=False, dim=3, time=False, mixed_form=False, ): # set params self.dim = dim self.time = time self.nu = nu self.rho = rho self.visc_heating = visc_heating self.mixed_form = mixed_form # specific heat self.cp = cp # conductivity self.kappa = kappa # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # time t = Symbol("t") # velocity componets u = Function("u")(x, y, z, t) v = Function("v")(x, y, z, t) w = Function("w")(x, y, z, t) # Density rho = Function("rho")(x, y, z, t) # kinematic viscosity nu = Function("nu")(x, y, z, y) # pressure p = Function("p")(x, y, z, t) # Temperature T = Function("T")(x, y, z, t) # viscous heat dissipation vel = [u, v, w] coord = [x, y, z] visc_h = 0 * x if visc_heating == True: for i, j in zip(range(0, 3), range(0, 3)): visc_h = visc_h + ( vel[i].diff(coord[j]) * vel[i].diff(coord[j]) + vel[i].diff(coord[j]) * vel[j].diff(coord[i]) - 2 / 3 * vel[i].diff(coord[i]) * vel[j].diff(coord[j]) ) visc_h = nu * rho * visc_h # pressure work p_work = ( 0 * x if type(self.rho) == float else (p.diff(t) + u * (p.diff(x)) + v * (p.diff(y)) + w * (p.diff(z))) ) # set equations self.equations = {} if not self.mixed_form: self.equations["temperauture_fluid"] = ( rho * cp * (T.diff(t) + u * (T.diff(x)) + v * (T.diff(y)) + w * (T.diff(z))) - kappa * (T.diff(x)).diff(x) - kappa * (T.diff(y)).diff(y) - kappa * (T.diff(z)).diff(z) - p_work - visc_h ) elif self.mixed_form: T_x = Function("T_x")(x, y, z, t) T_y = Function("T_y")(x, y, z, t) if self.dim == 3: T_z = Function("T_z")(x, y, z, t) else: T_z = Number(0) self.equations["temperauture_fluid"] = ( rho * cp * (T.diff(t) + u * (T.diff(x)) + v * (T.diff(y)) + w * (T.diff(z))) - kappa * (T_x).diff(x) - kappa * (T_y).diff(y) - kappa * (T_z).diff(z) - p_work - visc_h ) self.equations["compatibility_T_x"] = T.diff(x) - T_x self.equations["compatibility_T_y"] = T.diff(y) - T_y self.equations["compatibility_T_z"] = T.diff(z) - T_z self.equations["compatibility_T_xy"] = T_x.diff(y) - T_y.diff(x) self.equations["compatibility_T_xz"] = T_x.diff(z) - T_z.diff(x) self.equations["compatibility_T_yz"] = T_y.diff(z) - T_z.diff(y) if self.dim == 2: self.equations.pop("compatibility_T_z") self.equations.pop("compatibility_T_xz") self.equations.pop("compatibility_T_yz") input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") self.subs(u, Function("u")(*input_variables)) self.subs(v, Function("v")(*input_variables)) self.subs(w, Function("w")(*input_variables)) self.subs(T, Function("T")(*input_variables)) self.subs(p, Function("p")(*input_variables)) self.subs(nu, Function("nu")(*input_variables)) self.subs(rho, Function("rho")(*input_variables)) if type(self.rho) == float: self.subs(Function("rho")(*input_variables), self.rho) if type(self.nu) == float: self.subs(Function("nu")(*input_variables), self.nu) if self.mixed_form: self.subs(T_x, Function("T_x")(*input_variables)) self.subs(T_y, Function("T_y")(*input_variables)) if self.dim == 3: self.subs(T_z, Function("T_z")(*input_variables))
modulus-sym-main
modulus/sym/eq/pdes/energy_equation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Equations related to Navier Stokes Equations """ from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class NavierStokes(PDE): """ Compressible Navier Stokes equations Reference: https://turbmodels.larc.nasa.gov/implementrans.html Parameters ========== nu : float, Sympy Symbol/Expr, str The kinematic viscosity. If `nu` is a str then it is converted to Sympy Function of form `nu(x,y,z,t)`. If `nu` is a Sympy Symbol or Expression then this is substituted into the equation. This allows for variable viscosity. rho : float, Sympy Symbol/Expr, str The density of the fluid. If `rho` is a str then it is converted to Sympy Function of form 'rho(x,y,z,t)'. If 'rho' is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressible Navier Stokes. Default is 1. dim : int Dimension of the Navier Stokes (2 or 3). Default is 3. time : bool If time-dependent equations or not. Default is True. mixed_form: bool If True, use the mixed formulation of the Navier-Stokes equations. Examples ======== >>> ns = NavierStokes(nu=0.01, rho=1, dim=2) >>> ns.pprint() continuity: u__x + v__y momentum_x: u*u__x + v*u__y + p__x + u__t - 0.01*u__x__x - 0.01*u__y__y momentum_y: u*v__x + v*v__y + p__y + v__t - 0.01*v__x__x - 0.01*v__y__y >>> ns = NavierStokes(nu='nu', rho=1, dim=2, time=False) >>> ns.pprint() continuity: u__x + v__y momentum_x: -nu*u__x__x - nu*u__y__y + u*u__x + v*u__y - 2*nu__x*u__x - nu__y*u__y - nu__y*v__x + p__x momentum_y: -nu*v__x__x - nu*v__y__y + u*v__x + v*v__y - nu__x*u__y - nu__x*v__x - 2*nu__y*v__y + p__y """ name = "NavierStokes" def __init__(self, nu, rho=1, dim=3, time=True, mixed_form=False): # set params self.dim = dim self.time = time self.mixed_form = mixed_form # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) if self.dim == 3: w = Function("w")(*input_variables) else: w = Number(0) # pressure p = Function("p")(*input_variables) # kinematic viscosity if isinstance(nu, str): nu = Function(nu)(*input_variables) elif isinstance(nu, (float, int)): nu = Number(nu) # density if isinstance(rho, str): rho = Function(rho)(*input_variables) elif isinstance(rho, (float, int)): rho = Number(rho) # dynamic viscosity mu = rho * nu # set equations self.equations = {} self.equations["continuity"] = ( rho.diff(t) + (rho * u).diff(x) + (rho * v).diff(y) + (rho * w).diff(z) ) if not self.mixed_form: curl = Number(0) if rho.diff(x) == 0 else u.diff(x) + v.diff(y) + w.diff(z) self.equations["momentum_x"] = ( (rho * u).diff(t) + ( u * ((rho * u).diff(x)) + v * ((rho * u).diff(y)) + w * ((rho * u).diff(z)) + rho * u * (curl) ) + p.diff(x) - (-2 / 3 * mu * (curl)).diff(x) - (mu * u.diff(x)).diff(x) - (mu * u.diff(y)).diff(y) - (mu * u.diff(z)).diff(z) - (mu * (curl).diff(x)) - mu.diff(x) * u.diff(x) - mu.diff(y) * v.diff(x) - mu.diff(z) * w.diff(x) ) self.equations["momentum_y"] = ( (rho * v).diff(t) + ( u * ((rho * v).diff(x)) + v * ((rho * v).diff(y)) + w * ((rho * v).diff(z)) + rho * v * (curl) ) + p.diff(y) - (-2 / 3 * mu * (curl)).diff(y) - (mu * v.diff(x)).diff(x) - (mu * v.diff(y)).diff(y) - (mu * v.diff(z)).diff(z) - (mu * (curl).diff(y)) - mu.diff(x) * u.diff(y) - mu.diff(y) * v.diff(y) - mu.diff(z) * w.diff(y) ) self.equations["momentum_z"] = ( (rho * w).diff(t) + ( u * ((rho * w).diff(x)) + v * ((rho * w).diff(y)) + w * ((rho * w).diff(z)) + rho * w * (curl) ) + p.diff(z) - (-2 / 3 * mu * (curl)).diff(z) - (mu * w.diff(x)).diff(x) - (mu * w.diff(y)).diff(y) - (mu * w.diff(z)).diff(z) - (mu * (curl).diff(z)) - mu.diff(x) * u.diff(z) - mu.diff(y) * v.diff(z) - mu.diff(z) * w.diff(z) ) if self.dim == 2: self.equations.pop("momentum_z") elif self.mixed_form: u_x = Function("u_x")(*input_variables) u_y = Function("u_y")(*input_variables) u_z = Function("u_z")(*input_variables) v_x = Function("v_x")(*input_variables) v_y = Function("v_y")(*input_variables) v_z = Function("v_z")(*input_variables) if self.dim == 3: w_x = Function("w_x")(*input_variables) w_y = Function("w_y")(*input_variables) w_z = Function("w_z")(*input_variables) else: w_x = Number(0) w_y = Number(0) w_z = Number(0) u_z = Number(0) v_z = Number(0) curl = Number(0) if rho.diff(x) == 0 else u_x + v_y + w_z self.equations["momentum_x"] = ( (rho * u).diff(t) + ( u * ((rho * u.diff(x))) + v * ((rho * u.diff(y))) + w * ((rho * u.diff(z))) + rho * u * (curl) ) + p.diff(x) - (-2 / 3 * mu * (curl)).diff(x) - (mu * u_x).diff(x) - (mu * u_y).diff(y) - (mu * u_z).diff(z) - (mu * (curl).diff(x)) - mu.diff(x) * u.diff(x) - mu.diff(y) * v.diff(x) - mu.diff(z) * w.diff(x) ) self.equations["momentum_y"] = ( (rho * v).diff(t) + ( u * ((rho * v.diff(x))) + v * ((rho * v.diff(y))) + w * ((rho * v.diff(z))) + rho * v * (curl) ) + p.diff(y) - (-2 / 3 * mu * (curl)).diff(y) - (mu * v_x).diff(x) - (mu * v_y).diff(y) - (mu * v_z).diff(z) - (mu * (curl).diff(y)) - mu.diff(x) * u.diff(y) - mu.diff(y) * v.diff(y) - mu.diff(z) * w.diff(y) ) self.equations["momentum_z"] = ( (rho * w).diff(t) + ( u * ((rho * w.diff(x))) + v * ((rho * w.diff(y))) + w * ((rho * w.diff(z))) + rho * w * (curl) ) + p.diff(z) - (-2 / 3 * mu * (curl)).diff(z) - (mu * w_x).diff(x) - (mu * w_y).diff(y) - (mu * w_z).diff(z) - (mu * (curl).diff(z)) - mu.diff(x) * u.diff(z) - mu.diff(y) * v.diff(z) - mu.diff(z) * w.diff(z) ) self.equations["compatibility_u_x"] = u.diff(x) - u_x self.equations["compatibility_u_y"] = u.diff(y) - u_y self.equations["compatibility_u_z"] = u.diff(z) - u_z self.equations["compatibility_v_x"] = v.diff(x) - v_x self.equations["compatibility_v_y"] = v.diff(y) - v_y self.equations["compatibility_v_z"] = v.diff(z) - v_z self.equations["compatibility_w_x"] = w.diff(x) - w_x self.equations["compatibility_w_y"] = w.diff(y) - w_y self.equations["compatibility_w_z"] = w.diff(z) - w_z self.equations["compatibility_u_xy"] = u_x.diff(y) - u_y.diff(x) self.equations["compatibility_u_xz"] = u_x.diff(z) - u_z.diff(x) self.equations["compatibility_u_yz"] = u_y.diff(z) - u_z.diff(y) self.equations["compatibility_v_xy"] = v_x.diff(y) - v_y.diff(x) self.equations["compatibility_v_xz"] = v_x.diff(z) - v_z.diff(x) self.equations["compatibility_v_yz"] = v_y.diff(z) - v_z.diff(y) self.equations["compatibility_w_xy"] = w_x.diff(y) - w_y.diff(x) self.equations["compatibility_w_xz"] = w_x.diff(z) - w_z.diff(x) self.equations["compatibility_w_yz"] = w_y.diff(z) - w_z.diff(y) if self.dim == 2: self.equations.pop("momentum_z") self.equations.pop("compatibility_u_z") self.equations.pop("compatibility_v_z") self.equations.pop("compatibility_w_x") self.equations.pop("compatibility_w_y") self.equations.pop("compatibility_w_z") self.equations.pop("compatibility_u_xz") self.equations.pop("compatibility_u_yz") self.equations.pop("compatibility_v_xz") self.equations.pop("compatibility_v_yz") self.equations.pop("compatibility_w_xy") self.equations.pop("compatibility_w_xz") self.equations.pop("compatibility_w_yz") class GradNormal(PDE): """ Implementation of the gradient boundary condition Parameters ========== T : str The dependent variable. dim : int Dimension of the equations (1, 2, or 3). Default is 3. time : bool If time-dependent equations or not. Default is True. Examples ======== >>> gn = ns = GradNormal(T='T') >>> gn.pprint() normal_gradient_T: normal_x*T__x + normal_y*T__y + normal_z*T__z """ name = "GradNormal" def __init__(self, T, dim=3, time=True): self.T = T self.dim = dim self.time = time # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x = Symbol("normal_x") normal_y = Symbol("normal_y") normal_z = Symbol("normal_z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # variables to set the gradients (example Temperature) T = Function(T)(*input_variables) # set equations self.equations = {} self.equations["normal_gradient_" + self.T] = ( normal_x * T.diff(x) + normal_y * T.diff(y) + normal_z * T.diff(z) ) class Curl(PDE): """ del cross vector operator Parameters ========== vector : tuple of 3 Sympy Exprs, floats, ints or strings This will be the vector to take the curl of. curl_name : tuple of 3 strings These will be the output names of the curl operations. Examples ======== >>> c = Curl((0,0,'phi'), ('u','v','w')) >>> c.pprint() u: phi__y v: -phi__x w: 0 """ name = "Curl" def __init__(self, vector, curl_name=["u", "v", "w"]): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} # vector v_0 = vector[0] v_1 = vector[1] v_2 = vector[2] # make funtions if type(v_0) is str: v_0 = Function(v_0)(*input_variables) elif type(v_0) in [float, int]: v_0 = Number(v_0) if type(v_1) is str: v_1 = Function(v_1)(*input_variables) elif type(v_1) in [float, int]: v_1 = Number(v_1) if type(v_2) is str: v_2 = Function(v_2)(*input_variables) elif type(v_2) in [float, int]: v_2 = Number(v_2) # curl curl_0 = v_2.diff(y) - v_1.diff(z) curl_1 = v_0.diff(z) - v_2.diff(x) curl_2 = v_1.diff(x) - v_0.diff(y) # set equations self.equations = {} self.equations[curl_name[0]] = curl_0 self.equations[curl_name[1]] = curl_1 self.equations[curl_name[2]] = curl_2 class CompressibleIntegralContinuity(PDE): """ Compressible Integral Continuity Parameters ========== rho : float, Sympy Symbol/Expr, str The density of the fluid. If `rho` is a str then it is converted to Sympy Function of form 'rho(x,y,z,t)'. If 'rho' is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressibility. Default is 1. dim : int Dimension of the equations (1, 2, or 3). Default is 3. """ name = "CompressibleIntegralContinuity" def __init__(self, rho=1, vec=["u", "v", "w"]): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} self.dim = len(vec) if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") # normal normal = [Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z")] # density if isinstance(rho, str): rho = Function(rho)(*input_variables) elif isinstance(rho, (float, int)): rho = Number(rho) # make input variables self.equations = {} self.equations["integral_continuity"] = 0 for v, n in zip(vec, normal): self.equations["integral_continuity"] += Symbol(v) * n * rho class FluxContinuity(PDE): """ Flux Continuity for arbitrary variable. Includes advective and diffusive flux Parameters ========== T : str The dependent variable. rho : float, Sympy Symbol/Expr, str The density of the fluid. If `rho` is a str then it is converted to Sympy Function of form 'rho(x,y,z,t)'. If 'rho' is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressibility. Default is 1. dim : int Dimension of the equations (1, 2, or 3). Default is 3. """ name = "FluxContinuity" def __init__(self, T="T", D="D", rho=1, vec=["u", "v", "w"]): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} self.dim = len(vec) if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") # normal normal = [Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z")] # density if isinstance(rho, str): rho = Function(rho)(*input_variables) elif isinstance(rho, (float, int)): rho = Number(rho) # diffusion coefficient if isinstance(D, str): D = Function(D)(*input_variables) elif isinstance(D, (float, int)): D = Number(D) # variables to set the flux (example Temperature) T = Function(T)(*input_variables) gradient = [T.diff(x), T.diff(y), T.diff(z)] # make input variables self.equations = {} self.equations[str(T) + "_flux"] = 0 for v, n, g in zip(vec, normal, gradient): self.equations[str(T) + "_flux"] += ( Symbol(v) * n * rho * T - rho * D * n * g )
modulus-sym-main
modulus/sym/eq/pdes/navier_stokes.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Equations related to linear elasticity """ from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class LinearElasticity(PDE): """ Linear elasticity equations. Use either (E, nu) or (lambda_, mu) to define the material properties. Parameters ========== E : float, Sympy Symbol/Expr, str The Young's modulus nu : float, Sympy Symbol/Expr, str The Poisson's ratio lambda_: float, Sympy Symbol/Expr, str Lamé's first parameter mu: float, Sympy Symbol/Expr, str Lamé's second parameter (shear modulus) rho: float, Sympy Symbol/Expr, str Mass density. dim : int Dimension of the linear elasticity (2 or 3). Default is 3. Example ======== >>> elasticity_equations = LinearElasticity(E=10, nu=0.3, dim=2) >>> elasticity_equations.pprint() navier_x: -13.4615384615385*u__x__x - 3.84615384615385*u__y__y - 9.61538461538461*v__x__y navier_y: -3.84615384615385*v__x__x - 13.4615384615385*v__y__y - 9.61538461538461*u__x__y stress_disp_xx: -sigma_xx + 13.4615384615385*u__x + 5.76923076923077*v__y stress_disp_yy: -sigma_yy + 5.76923076923077*u__x + 13.4615384615385*v__y stress_disp_xy: -sigma_xy + 3.84615384615385*u__y + 3.84615384615385*v__x equilibrium_x: -sigma_xx__x - sigma_xy__y equilibrium_y: -sigma_xy__x - sigma_yy__y traction_x: normal_x*sigma_xx + normal_y*sigma_xy traction_y: normal_x*sigma_xy + normal_y*sigma_yy """ name = "LinearElasticity" def __init__( self, E=None, nu=None, lambda_=None, mu=None, rho=1, dim=3, time=False ): # set params self.dim = dim self.time = time # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x, normal_y, normal_z = ( Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z"), ) # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # displacement componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) sigma_xx = Function("sigma_xx")(*input_variables) sigma_yy = Function("sigma_yy")(*input_variables) sigma_xy = Function("sigma_xy")(*input_variables) if self.dim == 3: w = Function("w")(*input_variables) sigma_zz = Function("sigma_zz")(*input_variables) sigma_xz = Function("sigma_xz")(*input_variables) sigma_yz = Function("sigma_yz")(*input_variables) else: w = Number(0) sigma_zz = Number(0) sigma_xz = Number(0) sigma_yz = Number(0) # material properties if lambda_ is None: if isinstance(nu, str): nu = Function(nu)(*input_variables) elif isinstance(nu, (float, int)): nu = Number(nu) if isinstance(E, str): E = Function(E)(*input_variables) elif isinstance(E, (float, int)): E = Number(E) lambda_ = nu * E / ((1 + nu) * (1 - 2 * nu)) mu = E / (2 * (1 + nu)) else: if isinstance(lambda_, str): lambda_ = Function(lambda_)(*input_variables) elif isinstance(lambda_, (float, int)): lambda_ = Number(lambda_) if isinstance(mu, str): mu = Function(mu)(*input_variables) elif isinstance(mu, (float, int)): mu = Number(mu) if isinstance(rho, str): rho = Function(rho)(*input_variables) elif isinstance(rho, (float, int)): rho = Number(rho) # set equations self.equations = {} # Stress equations self.equations["stress_disp_xx"] = ( lambda_ * (u.diff(x) + v.diff(y) + w.diff(z)) + 2 * mu * u.diff(x) - sigma_xx ) self.equations["stress_disp_yy"] = ( lambda_ * (u.diff(x) + v.diff(y) + w.diff(z)) + 2 * mu * v.diff(y) - sigma_yy ) self.equations["stress_disp_zz"] = ( lambda_ * (u.diff(x) + v.diff(y) + w.diff(z)) + 2 * mu * w.diff(z) - sigma_zz ) self.equations["stress_disp_xy"] = mu * (u.diff(y) + v.diff(x)) - sigma_xy self.equations["stress_disp_xz"] = mu * (u.diff(z) + w.diff(x)) - sigma_xz self.equations["stress_disp_yz"] = mu * (v.diff(z) + w.diff(y)) - sigma_yz # Equations of equilibrium self.equations["equilibrium_x"] = rho * ((u.diff(t)).diff(t)) - ( sigma_xx.diff(x) + sigma_xy.diff(y) + sigma_xz.diff(z) ) self.equations["equilibrium_y"] = rho * ((v.diff(t)).diff(t)) - ( sigma_xy.diff(x) + sigma_yy.diff(y) + sigma_yz.diff(z) ) self.equations["equilibrium_z"] = rho * ((w.diff(t)).diff(t)) - ( sigma_xz.diff(x) + sigma_yz.diff(y) + sigma_zz.diff(z) ) # Traction equations self.equations["traction_x"] = ( normal_x * sigma_xx + normal_y * sigma_xy + normal_z * sigma_xz ) self.equations["traction_y"] = ( normal_x * sigma_xy + normal_y * sigma_yy + normal_z * sigma_yz ) self.equations["traction_z"] = ( normal_x * sigma_xz + normal_y * sigma_yz + normal_z * sigma_zz ) # Navier equations self.equations["navier_x"] = ( rho * ((u.diff(t)).diff(t)) - (lambda_ + mu) * (u.diff(x) + v.diff(y) + w.diff(z)).diff(x) - mu * ((u.diff(x)).diff(x) + (u.diff(y)).diff(y) + (u.diff(z)).diff(z)) ) self.equations["navier_y"] = ( rho * ((v.diff(t)).diff(t)) - (lambda_ + mu) * (u.diff(x) + v.diff(y) + w.diff(z)).diff(y) - mu * ((v.diff(x)).diff(x) + (v.diff(y)).diff(y) + (v.diff(z)).diff(z)) ) self.equations["navier_z"] = ( rho * ((w.diff(t)).diff(t)) - (lambda_ + mu) * (u.diff(x) + v.diff(y) + w.diff(z)).diff(z) - mu * ((w.diff(x)).diff(x) + (w.diff(y)).diff(y) + (w.diff(z)).diff(z)) ) if self.dim == 2: self.equations.pop("navier_z") self.equations.pop("stress_disp_zz") self.equations.pop("stress_disp_xz") self.equations.pop("stress_disp_yz") self.equations.pop("equilibrium_z") self.equations.pop("traction_z") class LinearElasticityPlaneStress(PDE): """ Linear elasticity plane stress equations. Use either (E, nu) or (lambda_, mu) to define the material properties. Parameters ========== E : float, Sympy Symbol/Expr, str The Young's modulus nu : float, Sympy Symbol/Expr, str The Poisson's ratio lambda_: float, Sympy Symbol/Expr, str Lamé's first parameter. mu: float, Sympy Symbol/Expr, str Lamé's second parameter (shear modulus) rho: float, Sympy Symbol/Expr, str Mass density. Example ======== >>> plane_stress_equations = LinearElasticityPlaneStress(E=10, nu=0.3) >>> plane_stress_equations.pprint() stress_disp_xx: -sigma_xx + 10.989010989011*u__x + 3.2967032967033*v__y stress_disp_yy: -sigma_yy + 3.2967032967033*u__x + 10.989010989011*v__y stress_disp_xy: -sigma_xy + 3.84615384615385*u__y + 3.84615384615385*v__x equilibrium_x: -sigma_xx__x - sigma_xy__y equilibrium_y: -sigma_xy__x - sigma_yy__y traction_x: normal_x*sigma_xx + normal_y*sigma_xy traction_y: normal_x*sigma_xy + normal_y*sigma_yy """ name = "LinearElasticityPlaneStress" def __init__(self, E=None, nu=None, lambda_=None, mu=None, rho=1, time=False): # set params self.time = time # coordinates x, y = Symbol("x"), Symbol("y") normal_x, normal_y = Symbol("normal_x"), Symbol("normal_y") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "t": t} if not self.time: input_variables.pop("t") # displacement componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) sigma_xx = Function("sigma_xx")(*input_variables) sigma_yy = Function("sigma_yy")(*input_variables) sigma_xy = Function("sigma_xy")(*input_variables) # material properties if lambda_ is None: if isinstance(nu, str): nu = Function(nu)(*input_variables) elif isinstance(nu, (float, int)): nu = Number(nu) if isinstance(E, str): E = Function(E)(*input_variables) elif isinstance(E, (float, int)): E = Number(E) lambda_ = nu * E / ((1 + nu) * (1 - 2 * nu)) mu = E / (2 * (1 + nu)) else: if isinstance(lambda_, str): lambda_ = Function(lambda_)(*input_variables) elif isinstance(lambda_, (float, int)): lambda_ = Number(lambda_) if isinstance(mu, str): mu = Function(mu)(*input_variables) elif isinstance(mu, (float, int)): mu = Number(mu) if isinstance(rho, str): rho = Function(rho)(*input_variables) elif isinstance(rho, (float, int)): rho = Number(rho) # set equations self.equations = {} # Stress equations w_z = -lambda_ / (lambda_ + 2 * mu) * (u.diff(x) + v.diff(y)) self.equations["stress_disp_xx"] = ( lambda_ * (u.diff(x) + v.diff(y) + w_z) + 2 * mu * u.diff(x) - sigma_xx ) self.equations["stress_disp_yy"] = ( lambda_ * (u.diff(x) + v.diff(y) + w_z) + 2 * mu * v.diff(y) - sigma_yy ) self.equations["stress_disp_xy"] = mu * (u.diff(y) + v.diff(x)) - sigma_xy # Equations of equilibrium self.equations["equilibrium_x"] = rho * ((u.diff(t)).diff(t)) - ( sigma_xx.diff(x) + sigma_xy.diff(y) ) self.equations["equilibrium_y"] = rho * ((v.diff(t)).diff(t)) - ( sigma_xy.diff(x) + sigma_yy.diff(y) ) # Traction equations self.equations["traction_x"] = normal_x * sigma_xx + normal_y * sigma_xy self.equations["traction_y"] = normal_x * sigma_xy + normal_y * sigma_yy
modulus-sym-main
modulus/sym/eq/pdes/linear_elasticity.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Advection diffusion equation Reference: https://en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation """ from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class AdvectionDiffusion(PDE): """ Advection diffusion equation Parameters ========== T : str The dependent variable. D : float, Sympy Symbol/Expr, str Diffusivity. If `D` is a str then it is converted to Sympy Function of form 'D(x,y,z,t)'. If 'D' is a Sympy Symbol or Expression then this is substituted into the equation. Q : float, Sympy Symbol/Expr, str The source term. If `Q` is a str then it is converted to Sympy Function of form 'Q(x,y,z,t)'. If 'Q' is a Sympy Symbol or Expression then this is substituted into the equation. Default is 0. rho : float, Sympy Symbol/Expr, str The density. If `rho` is a str then it is converted to Sympy Function of form 'rho(x,y,z,t)'. If 'rho' is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressible Navier Stokes. dim : int Dimension of the diffusion equation (1, 2, or 3). Default is 3. time : bool If time-dependent equations or not. Default is False. mixed_form: bool If True, use the mixed formulation of the wave equation. Examples ======== >>> ad = AdvectionDiffusion(D=0.1, rho=1.) >>> ad.pprint() advection_diffusion: u*T__x + v*T__y + w*T__z - 0.1*T__x__x - 0.1*T__y__y - 0.1*T__z__z >>> ad = AdvectionDiffusion(D='D', rho=1, dim=2, time=True) >>> ad.pprint() advection_diffusion: -D*T__x__x - D*T__y__y + u*T__x + v*T__y - D__x*T__x - D__y*T__y + T__t """ name = "AdvectionDiffusion" def __init__( self, T="T", D="D", Q=0, rho="rho", dim=3, time=False, mixed_form=False ): # set params self.T = T self.dim = dim self.time = time self.mixed_form = mixed_form # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) w = Function("w")(*input_variables) # Temperature assert type(T) == str, "T needs to be string" T = Function(T)(*input_variables) # Diffusivity if type(D) is str: D = Function(D)(*input_variables) elif type(D) in [float, int]: D = Number(D) # Source if type(Q) is str: Q = Function(Q)(*input_variables) elif type(Q) in [float, int]: Q = Number(Q) # Density if type(rho) is str: rho = Function(rho)(*input_variables) elif type(rho) in [float, int]: rho = Number(rho) # set equations self.equations = {} advection = ( rho * u * (T.diff(x)) + rho * v * (T.diff(y)) + rho * w * (T.diff(z)) ) if not self.mixed_form: diffusion = ( (rho * D * T.diff(x)).diff(x) + (rho * D * T.diff(y)).diff(y) + (rho * D * T.diff(z)).diff(z) ) self.equations["advection_diffusion_" + self.T] = ( T.diff(t) + advection - diffusion - Q ) elif self.mixed_form: T_x = Function(self.T + "_x")(*input_variables) T_y = Function(self.T + "_y")(*input_variables) if self.dim == 3: T_z = Function(self.T + "_z")(*input_variables) else: T_z = Number(0) diffusion = ( (rho * D * T_x).diff(x) + (rho * D * T_y).diff(y) + (rho * D * T_z).diff(z) ) self.equations["compatibility_" + self.T + "_x"] = T.diff(x) - T_x self.equations["compatibility_" + self.T + "_y"] = T.diff(y) - T_y self.equations["compatibility_" + self.T + "_z"] = T.diff(z) - T_z self.equations["compatibility_" + self.T + "_xy"] = T_x.diff(y) - T_y.diff( x ) self.equations["compatibility_" + self.T + "_xz"] = T_x.diff(z) - T_z.diff( x ) self.equations["compatibility_" + self.T + "_yz"] = T_y.diff(z) - T_z.diff( y ) if self.dim == 2: self.equations.pop("compatibility_" + self.T + "_z") self.equations.pop("compatibility_" + self.T + "_xz") self.equations.pop("compatibility_" + self.T + "_yz") self.equations["advection_diffusion_" + self.T] = ( T.diff(t) + advection - diffusion - Q )
modulus-sym-main
modulus/sym/eq/pdes/advection_diffusion.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wave equation Reference: https://en.wikipedia.org/wiki/Wave_equation """ from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE class WaveEquation(PDE): """ Wave equation Parameters ========== u : str The dependent variable. c : float, Sympy Symbol/Expr, str Wave speed coefficient. If `c` is a str then it is converted to Sympy Function of form 'c(x,y,z,t)'. If 'c' is a Sympy Symbol or Expression then this is substituted into the equation. dim : int Dimension of the wave equation (1, 2, or 3). Default is 2. time : bool If time-dependent equations or not. Default is True. mixed_form: bool If True, use the mixed formulation of the wave equation. Examples ======== >>> we = WaveEquation(c=0.8, dim=3) >>> we.pprint() wave_equation: u__t__t - 0.64*u__x__x - 0.64*u__y__y - 0.64*u__z__z >>> we = WaveEquation(c='c', dim=2, time=False) >>> we.pprint() wave_equation: -c**2*u__x__x - c**2*u__y__y - 2*c*c__x*u__x - 2*c*c__y*u__y """ name = "WaveEquation" def __init__(self, u="u", c="c", dim=3, time=True, mixed_form=False): # set params self.u = u self.dim = dim self.time = time self.mixed_form = mixed_form # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # Scalar function assert type(u) == str, "u needs to be string" u = Function(u)(*input_variables) # wave speed coefficient if type(c) is str: c = Function(c)(*input_variables) elif type(c) in [float, int]: c = Number(c) # set equations self.equations = {} if not self.mixed_form: self.equations["wave_equation"] = ( u.diff(t, 2) - c**2 * u.diff(x, 2) - c**2 * u.diff(y, 2) - c**2 * u.diff(z, 2) ) elif self.mixed_form: u_x = Function("u_x")(*input_variables) u_y = Function("u_y")(*input_variables) if self.dim == 3: u_z = Function("u_z")(*input_variables) else: u_z = Number(0) if self.time: u_t = Function("u_t")(*input_variables) else: u_t = Number(0) self.equations["wave_equation"] = ( u_t.diff(t) - c**2 * u_x.diff(x) - c**2 * u_y.diff(y) - c**2 * u_z.diff(z) ) self.equations["compatibility_u_x"] = u.diff(x) - u_x self.equations["compatibility_u_y"] = u.diff(y) - u_y self.equations["compatibility_u_z"] = u.diff(z) - u_z self.equations["compatibility_u_xy"] = u_x.diff(y) - u_y.diff(x) self.equations["compatibility_u_xz"] = u_x.diff(z) - u_z.diff(x) self.equations["compatibility_u_yz"] = u_y.diff(z) - u_z.diff(y) if self.dim == 2: self.equations.pop("compatibility_u_z") self.equations.pop("compatibility_u_xz") self.equations.pop("compatibility_u_yz") class HelmholtzEquation(PDE): name = "HelmholtzEquation" def __init__(self, u, k, dim=3, mixed_form=False): """ Helmholtz equation Parameters ========== u : str The dependent variable. k : float, Sympy Symbol/Expr, str Wave number. If `k` is a str then it is converted to Sympy Function of form 'k(x,y,z,t)'. If 'k' is a Sympy Symbol or Expression then this is substituted into the equation. dim : int Dimension of the wave equation (1, 2, or 3). Default is 2. mixed_form: bool If True, use the mixed formulation of the Helmholtz equation. """ # set params self.u = u self.dim = dim self.mixed_form = mixed_form # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") # Scalar function assert type(u) == str, "u needs to be string" u = Function(u)(*input_variables) # wave speed coefficient if type(k) is str: k = Function(k)(*input_variables) elif type(k) in [float, int]: k = Number(k) # set equations self.equations = {} if not self.mixed_form: self.equations["helmholtz"] = -( k**2 * u + u.diff(x, 2) + u.diff(y, 2) + u.diff(z, 2) ) elif self.mixed_form: u_x = Function("u_x")(*input_variables) u_y = Function("u_y")(*input_variables) if self.dim == 3: u_z = Function("u_z")(*input_variables) else: u_z = Number(0) self.equations["helmholtz"] = -( k**2 * u + u_x.diff(x) + u_y.diff(y) + u_z.diff(z) ) self.equations["compatibility_u_x"] = u.diff(x) - u_x self.equations["compatibility_u_y"] = u.diff(y) - u_y self.equations["compatibility_u_z"] = u.diff(z) - u_z self.equations["compatibility_u_xy"] = u_x.diff(y) - u_y.diff(x) self.equations["compatibility_u_xz"] = u_x.diff(z) - u_z.diff(x) self.equations["compatibility_u_yz"] = u_y.diff(z) - u_z.diff(y) if self.dim == 2: self.equations.pop("compatibility_u_z") self.equations.pop("compatibility_u_xz") self.equations.pop("compatibility_u_yz")
modulus-sym-main
modulus/sym/eq/pdes/wave_equation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import # from .advection_diffusion import AdvectionDiffusion, IntegralAdvection # from .diffusion import Diffusion, DiffusionInterface, IntegralDiffusion # from .energy_equation import EnergyFluid # from .navier_stokes import NavierStokes, IntegralContinuity, GradNormal # from .signed_distance_function import ScreenedPoissonDistance # from .turbulence_k_epsilon import KEpsilon # from .turbulence_zero_eq import ZeroEquation # from .wave_equation import WaveEquation # __all__ = [ # "AdvectionDiffusion", # "IntegralAdvection", # "Diffusion", # "DiffusionInterface", # "IntegralDiffusion", # "EnergyFluid", # "NavierStokes", # "IntegralContinuity", # "GradNormal", # "ScreenedPoissonDistance", # "KEpsilon", # "ZeroEquation", # "WaveEquation", # ]
modulus-sym-main
modulus/sym/eq/pdes/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Screened Poisson Distance Equation taken from, https://www.researchgate.net/publication/266149392_Dynamic_Distance-Based_Shape_Features_for_Gait_Recognition, Equation 6 in paper. """ from sympy import Symbol, Function, sqrt from modulus.sym.eq.pde import PDE class ScreenedPoissonDistance(PDE): """ Screened Poisson Distance Parameters ========== distance : str A user-defined variable for distance. Default is "normal_distance". tau : float A small, positive parameter. Default is 0.1. dim : int Dimension of the Screened Poisson Distance (1, 2, or 3). Default is 3. Example ======== >>> s = ScreenedPoissonDistance(tau=0.1, dim=2) >>> s.pprint() screened_poisson_normal_distance: -normal_distance__x**2 + 0.316227766016838*normal_distance__x__x - normal_distance__y**2 + 0.316227766016838*normal_distance__y__y + 1 """ name = "ScreenedPoissonDistance" def __init__(self, distance="normal_distance", tau=0.1, dim=3): # set params self.distance = distance self.dim = dim # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") # distance u assert type(distance) == str, "distance needs to be string" distance = Function(distance)(*input_variables) # set equations self.equations = {} sdf_grad = ( 1 - distance.diff(x) ** 2 - distance.diff(y) ** 2 - distance.diff(z) ** 2 ) poisson = sqrt(tau) * ( distance.diff(x, 2) + distance.diff(y, 2) + distance.diff(z, 2) ) self.equations["screened_poisson_" + self.distance] = sdf_grad + poisson
modulus-sym-main
modulus/sym/eq/pdes/signed_distance_function.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic equations """ from sympy import Symbol, Function, Number from modulus.sym.eq.pde import PDE from modulus.sym.node import Node class NormalDotVec(PDE): """ Normal dot velocity Parameters ========== dim : int Dimension of the equations (1, 2, or 3). Default is 3. """ name = "NormalDotVec" def __init__(self, vec=["u", "v", "w"]): # normal normal = [Symbol("normal_x"), Symbol("normal_y"), Symbol("normal_z")] # make input variables self.equations = {} self.equations["normal_dot_vel"] = 0 for v, n in zip(vec, normal): self.equations["normal_dot_vel"] += Symbol(v) * n class GradNormal(PDE): """ Implementation of the gradient boundary condition Parameters ========== T : str The dependent variable. dim : int Dimension of the equations (1, 2, or 3). Default is 3. time : bool If time-dependent equations or not. Default is True. Examples ======== >>> gn = ns = GradNormal(T='T') >>> gn.pprint() normal_gradient_T: normal_x*T__x + normal_y*T__y + normal_z*T__z """ name = "GradNormal" def __init__(self, T, dim=3, time=True): self.T = T self.dim = dim self.time = time # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") normal_x = Symbol("normal_x") normal_y = Symbol("normal_y") normal_z = Symbol("normal_z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 1: input_variables.pop("y") input_variables.pop("z") elif self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # variables to set the gradients (example Temperature) T = Function(T)(*input_variables) # set equations self.equations = {} self.equations["normal_gradient_" + self.T] = ( normal_x * T.diff(x) + normal_y * T.diff(y) + normal_z * T.diff(z) ) class Curl(PDE): """ del cross vector operator Parameters ========== vector : tuple of 3 Sympy Exprs, floats, ints or strings This will be the vector to take the curl of. curl_name : tuple of 3 strings These will be the output names of the curl operations. Examples ======== >>> c = Curl((0,0,'phi'), ('u','v','w')) >>> c.pprint() u: phi__y v: -phi__x w: 0 """ name = "Curl" def __init__(self, vector, curl_name=["u", "v", "w"]): # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # make input variables input_variables = {"x": x, "y": y, "z": z} # vector v_0 = vector[0] v_1 = vector[1] v_2 = vector[2] # make funtions if type(v_0) is str: v_0 = Function(v_0)(*input_variables) elif type(v_0) in [float, int]: v_0 = Number(v_0) if type(v_1) is str: v_1 = Function(v_1)(*input_variables) elif type(v_1) in [float, int]: v_1 = Number(v_1) if type(v_2) is str: v_2 = Function(v_2)(*input_variables) elif type(v_2) in [float, int]: v_2 = Number(v_2) # curl curl_0 = v_2.diff(y) - v_1.diff(z) curl_1 = v_0.diff(z) - v_2.diff(x) curl_2 = v_1.diff(x) - v_0.diff(y) # set equations self.equations = {} self.equations[curl_name[0]] = curl_0 self.equations[curl_name[1]] = curl_1 self.equations[curl_name[2]] = curl_2
modulus-sym-main
modulus/sym/eq/pdes/basic.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Zero Equation Turbulence model References: https://www.eureka.im/954.html https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/SimCFD-Learning/files/GUID-BBA4E008-8346-465B-9FD3-D193CF108AF0-htm.html """ from sympy import Symbol, Function, sqrt, Number, Min from modulus.sym.eq.pde import PDE class ZeroEquation(PDE): """ Zero Equation Turbulence model Parameters ========== nu : float The kinematic viscosity of the fluid. max_distance : float The maximum wall distance in the flow field. rho : float, Sympy Symbol/Expr, str The density. If `rho` is a str then it is converted to Sympy Function of form 'rho(x,y,z,t)'. If 'rho' is a Sympy Symbol or Expression then this is substituted into the equation. Default is 1. dim : int Dimension of the Zero Equation Turbulence model (2 or 3). Default is 3. time : bool If time-dependent equations or not. Default is True. Example ======== >>> zeroEq = ZeroEquation(nu=0.1, max_distance=2.0, dim=2) >>> kEp.pprint() nu: sqrt((u__y + v__x)**2 + 2*u__x**2 + 2*v__y**2) *Min(0.18, 0.419*normal_distance)**2 + 0.1 """ name = "ZeroEquation" def __init__( self, nu, max_distance, rho=1, dim=3, time=True ): # TODO add density into model # set params self.dim = dim self.time = time # model coefficients self.max_distance = max_distance self.karman_constant = 0.419 self.max_distance_ratio = 0.09 # coordinates x, y, z = Symbol("x"), Symbol("y"), Symbol("z") # time t = Symbol("t") # make input variables input_variables = {"x": x, "y": y, "z": z, "t": t} if self.dim == 2: input_variables.pop("z") if not self.time: input_variables.pop("t") # velocity componets u = Function("u")(*input_variables) v = Function("v")(*input_variables) if self.dim == 3: w = Function("w")(*input_variables) else: w = Number(0) # density if type(rho) is str: rho = Function(rho)(*input_variables) elif type(rho) in [float, int]: rho = Number(rho) # wall distance normal_distance = Function("sdf")(*input_variables) # mixing length mixing_length = Min( self.karman_constant * normal_distance, self.max_distance_ratio * self.max_distance, ) G = ( 2 * u.diff(x) ** 2 + 2 * v.diff(y) ** 2 + 2 * w.diff(z) ** 2 + (u.diff(y) + v.diff(x)) ** 2 + (u.diff(z) + w.diff(x)) ** 2 + (v.diff(z) + w.diff(y)) ** 2 ) # set equations self.equations = {} self.equations["nu"] = nu + rho * mixing_length**2 * sqrt(G)
modulus-sym-main
modulus/sym/eq/pdes/turbulence_zero_eq.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import pathlib from torch.autograd import Function from typing import Dict, List, Set, Optional, Union, Callable Tensor = torch.Tensor # Finite difference coefficnets from: # https://en.wikipedia.org/wiki/Finite_difference_coefficient class FirstDerivO2_f(Function): # [0.5, -0.5] @staticmethod def forward(ctx, tensor0, tensor1, dx): ctx.c0 = 0.5 / (dx) ctx.c1 = -0.5 / (dx) return ctx.c0 * tensor0 + ctx.c1 * tensor1 @staticmethod def backward(ctx, grad_output): return ctx.c0 * grad_output, ctx.c1 * grad_output, None class FirstDerivO4_f(Function): # [-1.0 / 12.0, 8.0 / 12.0, -8.0 / 12.0, 1.0 / 12.0] @staticmethod def forward(ctx, tensor0, tensor1, tensor2, tensor3, dx): ctx.c0 = -1.0 / (dx * 12.0) ctx.c1 = 8.0 / (dx * 12.0) ctx.c2 = -8.0 / (dx * 12.0) ctx.c3 = 1.0 / (dx * 12.0) return ctx.c0 * tensor0 + ctx.c1 * tensor1 + ctx.c2 * tensor2 + ctx.c3 * tensor3 @staticmethod def backward(ctx, grad_output): return ( ctx.c0 * grad_output, ctx.c1 * grad_output, ctx.c2 * grad_output, ctx.c3 * grad_output, None, ) class SecondDerivO2_f(Function): # [1.0, -2.0, 1.0] @staticmethod def forward(ctx, tensor0, tensor1, tensor2, dx): ctx.c0 = 1.0 / (dx**2) ctx.c1 = -2.0 / (dx**2) return ctx.c0 * tensor0 + ctx.c1 * tensor1 + ctx.c0 * tensor2 @staticmethod def backward(ctx, grad_output): return ( ctx.c0 * grad_output, ctx.c1 * grad_output, ctx.c0 * grad_output, None, ) class SecondDerivO4_f(Function): # [-1/12, 4/3, -5/2, 4/3, -1/12] @staticmethod def forward(ctx, tensor0, tensor1, tensor2, tensor3, tensor4, dx): ctx.c0 = -1.0 / (12.0 * dx**2) ctx.c1 = 4.0 / (3.0 * dx**2) ctx.c2 = -5.0 / (2.0 * dx**2) return ( ctx.c0 * tensor0 + ctx.c1 * tensor1 + ctx.c2 * tensor2 + ctx.c1 * tensor3 + ctx.c0 * tensor4 ) @staticmethod def backward(ctx, grad_output): return ( ctx.c0 * grad_output, ctx.c1 * grad_output, ctx.c2 * grad_output, ctx.c1 * grad_output, ctx.c0 * grad_output, None, ) class MixedSecondDerivO2_f(Function): # Ref: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119083405.app1 @staticmethod def forward(ctx, tensor0, tensor1, tensor2, tensor3, dx): ctx.c0 = 0.25 / (dx**2) ctx.c1 = -0.25 / (dx**2) return ctx.c0 * tensor0 + ctx.c1 * tensor1 + ctx.c1 * tensor2 + ctx.c0 * tensor3 @staticmethod def backward(ctx, grad_output): return ( ctx.c0 * grad_output, ctx.c1 * grad_output, ctx.c1 * grad_output, ctx.c0 * grad_output, None, ) class ThirdDerivO2_f(Function): # [1/2, -1.0, 1.0, -1/2] @staticmethod def forward(ctx, tensor0, tensor1, tensor2, tensor3, dx): ctx.c0 = 0.5 / (dx**3) ctx.c1 = -1.0 / (dx**3) ctx.c2 = 1.0 / (dx**3) ctx.c3 = -0.5 / (dx**3) return ctx.c0 * tensor0 + ctx.c1 * tensor1 + ctx.c2 * tensor2 + ctx.c3 * tensor3 @staticmethod def backward(ctx, grad_output): return ( ctx.c0 * grad_output, ctx.c1 * grad_output, ctx.c2 * grad_output, ctx.c3 * grad_output, None, ) class ForthDerivO2_f(Function): # [1.0, -4.0, 6.0, -4.0, 1.0] @staticmethod def forward(ctx, tensor0, tensor1, tensor2, tensor3, tensor4, dx): ctx.c0 = 1.0 / (dx**4) ctx.c1 = -4.0 / (dx**4) ctx.c2 = 6.0 / (dx**4) ctx.c3 = -4.0 / (dx**4) ctx.c4 = 1.0 / (dx**4) return ( ctx.c0 * tensor0 + ctx.c1 * tensor1 + ctx.c2 * tensor2 + ctx.c3 * tensor3 + ctx.c4 * tensor4 ) @staticmethod def backward(ctx, grad_output): return ( ctx.c0 * grad_output, ctx.c1 * grad_output, ctx.c2 * grad_output, ctx.c3 * grad_output, ctx.c4 * grad_output, None, )
modulus-sym-main
modulus/sym/eq/mfd/functions.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from .functions import * from modulus.sym.key import Key from typing import Dict, List, Set, Optional, Union, Callable Tensor = torch.Tensor class FirstDerivO2(torch.nn.Module): def __init__(self, derivative_key: Key) -> None: super().__init__() assert ( len(derivative_key.derivatives) == 1 ), f"Key must have one derivative for first derivative calc" self.var = derivative_key.name self.indep_var = str(derivative_key.derivatives[0]) self.out_name = str(derivative_key) def forward(self, inputs: Dict[str, Tensor], dx: float) -> Dict[str, Tensor]: outputs = {} outputs[self.out_name] = FirstDerivO2_f.apply( inputs[f"{self.var}>>{self.indep_var}::1"], inputs[f"{self.var}>>{self.indep_var}::-1"], dx, ) return outputs class FirstDerivO4(torch.nn.Module): def __init__(self, derivative_key: Key) -> None: super().__init__() assert ( len(derivative_key.derivatives) == 1 ), f"Key must have one derivative for first derivative calc" self.var = derivative_key.name self.indep_var = str(derivative_key.derivatives[0]) self.out_name = str(derivative_key) def forward(self, inputs: Dict[str, Tensor], dx: float) -> Dict[str, Tensor]: outputs = {} outputs[self.out_name] = FirstDerivO4_f.apply( inputs[f"{self.var}>>{self.indep_var}::2"], inputs[f"{self.var}>>{self.indep_var}::1"], inputs[f"{self.var}>>{self.indep_var}::-1"], inputs[f"{self.var}>>{self.indep_var}::-2"], dx, ) return outputs class SecondDerivO2(torch.nn.Module): def __init__(self, derivative_key: Key) -> None: super().__init__() assert ( len(derivative_key.derivatives) == 2 ), f"Key must have two derivatives for second derivative calc" assert ( derivative_key.derivatives[0] == derivative_key.derivatives[1] ), f"Derivatives keys should be the same" self.var = derivative_key.name self.indep_var = str(derivative_key.derivatives[0]) self.out_name = str(derivative_key) def forward(self, inputs: Dict[str, Tensor], dx: float) -> Dict[str, Tensor]: outputs = {} outputs[self.out_name] = SecondDerivO2_f.apply( inputs[f"{self.var}>>{self.indep_var}::1"], inputs[f"{self.var}"], inputs[f"{self.var}>>{self.indep_var}::-1"], dx, ) return outputs class SecondDerivO4(torch.nn.Module): def __init__(self, derivative_key: Key) -> None: super().__init__() assert ( len(derivative_key.derivatives) == 2 ), f"Key must have two derivatives for second derivative calc" assert ( derivative_key.derivatives[0] == derivative_key.derivatives[1] ), f"Derivatives keys should be the same" self.var = derivative_key.name self.indep_var = str(derivative_key.derivatives[0]) self.out_name = str(derivative_key) def forward(self, inputs: Dict[str, Tensor], dx: float) -> Dict[str, Tensor]: outputs = {} outputs[self.out_name] = SecondDerivO4_f.apply( inputs[f"{self.var}>>{self.indep_var}::2"], inputs[f"{self.var}>>{self.indep_var}::1"], inputs[f"{self.var}"], inputs[f"{self.var}>>{self.indep_var}::-1"], inputs[f"{self.var}>>{self.indep_var}::-2"], dx, ) return outputs class MixedSecondDerivO2(torch.nn.Module): def __init__(self, derivative_key: Key) -> None: super().__init__() assert ( len(derivative_key.derivatives) == 2 ), f"Key must have two derivatives for second derivative calc" self.var = derivative_key.name self.indep_vars = [ str(derivative_key.derivatives[0]), str(derivative_key.derivatives[1]), ] self.indep_vars.sort() self.out_name = str(derivative_key) def forward(self, inputs: Dict[str, Tensor], dx: float) -> Dict[str, Tensor]: outputs = {} outputs[self.out_name] = MixedSecondDerivO2_f.apply( inputs[f"{self.var}>>{self.indep_vars[0]}::1&&{self.indep_vars[1]}::1"], inputs[f"{self.var}>>{self.indep_vars[0]}::-1&&{self.indep_vars[1]}::1"], inputs[f"{self.var}>>{self.indep_vars[0]}::1&&{self.indep_vars[1]}::-1"], inputs[f"{self.var}>>{self.indep_vars[0]}::-1&&{self.indep_vars[1]}::-1"], dx, ) return outputs class ThirdDerivO2(torch.nn.Module): def __init__(self, derivative_key: Key) -> None: super().__init__() assert ( len(derivative_key.derivatives) == 3 ), f"Key must have three derivatives for third derivative calc" assert ( derivative_key.derivatives[0] == derivative_key.derivatives[1] == derivative_key.derivatives[2] ), f"Derivatives keys should be the same" self.var = derivative_key.name self.indep_var = str(derivative_key.derivatives[0]) self.out_name = str(derivative_key) def forward(self, inputs: Dict[str, Tensor], dx: float) -> Dict[str, Tensor]: outputs = {} outputs[self.out_name] = ThirdDerivO2_f.apply( inputs[f"{self.var}>>{self.indep_var}::2"], inputs[f"{self.var}>>{self.indep_var}::1"], inputs[f"{self.var}>>{self.indep_var}::-1"], inputs[f"{self.var}>>{self.indep_var}::-2"], dx, ) return outputs class ForthDerivO2(torch.nn.Module): def __init__(self, derivative_key: Key) -> None: super().__init__() assert ( len(derivative_key.derivatives) == 4 ), f"Key must have three derivatives for forth derivative calc" assert ( derivative_key.derivatives[0] == derivative_key.derivatives[1] == derivative_key.derivatives[2] == derivative_key.derivatives[3] ), f"Derivatives keys should be the same" self.var = derivative_key.name self.indep_var = str(derivative_key.derivatives[0]) self.out_name = str(derivative_key) self.register_buffer( "coeff", torch.Tensor([1.0, -4.0, 6.0, -4.0, 1.0]).double().unsqueeze(-1), persistent=False, ) def forward(self, inputs: Dict[str, Tensor], dx: float) -> Dict[str, Tensor]: outputs = {} outputs[self.out_name] = ForthDerivO2_f.apply( inputs[f"{self.var}>>{self.indep_var}::2"], inputs[f"{self.var}>>{self.indep_var}::1"], inputs[f"{self.var}"], inputs[f"{self.var}>>{self.indep_var}::-1"], inputs[f"{self.var}>>{self.indep_var}::-2"], dx, ) return outputs class DerivBase(torch.nn.Module): def __init__( self, derivative_keys: List[Key], dx: float, order: int = 2, jit: bool = True ) -> None: super().__init__() self.derivative_keys = derivative_keys self.dx = dx self.order = order # Create stencil set of points we need eval_list = [] self._stencil = set() @property def stencil(self) -> List[str]: """Returns list of stencil strings for this derivative Returns ------- List[str] List of stencil strings Example ------- Central 2nd derivative will return: `['x::1','x::0','x::-1']` """ return list(self._stencil) def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]: """Forward pass that calculates the finite difference gradient Parameters ---------- inputs : Dict[str, Tensor] Input tensor dictionary, should include points in FD stencil Returns ------- Dict[str, Tensor] Output gradients """ outputs = {} for module in self._eval: outputs.update(module(inputs, self.dx)) return outputs class FirstDeriv(DerivBase): def __init__( self, derivative_keys: List[Key], dx: float, order: int = 2, jit: bool = True ) -> None: super().__init__(derivative_keys, dx, order, jit) assert ( len(derivative_keys) == 0 or order == 2 or order == 4 ), "Second and forth order first derivatives supported" for key in derivative_keys: assert ( len(key.derivatives) == 1 ), f"Key with {len(key.derivatives)} derivs supplied to first order deriv" # Create stencil set of points we need eval_list = [] self._stencil = set() for key in self.derivative_keys: indep_vars = key.derivatives if order == 2: self._stencil = self._stencil.union( {f"{indep_vars[0]}::-1", f"{indep_vars[0]}::1"} ) eval_list.append(FirstDerivO2(key)) elif order == 4: self._stencil = self._stencil.union( { f"{indep_vars[0]}::-2", f"{indep_vars[0]}::-1", f"{indep_vars[0]}::1", f"{indep_vars[0]}::2", } ) eval_list.append(FirstDerivO4(key)) self._eval = torch.nn.ModuleList(eval_list) class SecondDeriv(DerivBase): def __init__( self, derivative_keys: List[Key], dx: float, order: int = 2, jit: bool = True ) -> None: super().__init__(derivative_keys, dx, order, jit) assert ( len(derivative_keys) == 0 or order == 2 or order == 4 ), "Second and forth order second derivatives supported" for key in derivative_keys: assert ( len(key.derivatives) == 2 ), f"Key with {len(key.derivatives)} deriv keys supplied to second deriv" # Create stencil set of points we need eval_list = [] self._stencil = set() for key in self.derivative_keys: indep_vars = key.derivatives if indep_vars[0] == indep_vars[1]: if order == 2: self._stencil = self._stencil.union( { f"{indep_vars[0]}::-1", f"{indep_vars[0]}::0", f"{indep_vars[0]}::1", } ) eval_list.append(SecondDerivO2(key)) elif order == 4: self._stencil = self._stencil.union( { f"{indep_vars[0]}::-2", f"{indep_vars[0]}::-1", f"{indep_vars[0]}::0", f"{indep_vars[0]}::1", f"{indep_vars[0]}::2", } ) eval_list.append(SecondDerivO4(key)) # Mixed derivative else: if order == 2: indep_vars = [str(var) for var in indep_vars] indep_vars.sort() # Avoid redundent points like (z::-1&&y::1 and y::1&&z::-1) self._stencil = self._stencil.union( { f"{indep_vars[0]}::-1&&{indep_vars[1]}::-1", f"{indep_vars[0]}::1&&{indep_vars[1]}::-1", f"{indep_vars[0]}::-1&&{indep_vars[1]}::1", f"{indep_vars[0]}::1&&{indep_vars[1]}::1", } ) eval_list.append(MixedSecondDerivO2(key)) elif order == 4: raise NotImplementedError( "Fourth order mixed second derivatives not supported" ) self._eval = torch.nn.ModuleList(eval_list) class ThirdDeriv(DerivBase): def __init__( self, derivative_keys: List[Key], dx: float, order: int = 2, jit: bool = True ) -> None: super().__init__(derivative_keys, dx, order, jit) assert ( len(derivative_keys) == 0 or order == 2 ), "Second order third derivatives supported" for key in derivative_keys: assert ( len(key.derivatives) == 3 ), f"Key with {len(key.derivatives)} deriv keys supplied to third deriv" assert ( key.derivatives[0] == key.derivatives[1] == key.derivatives[2] ), f"Mixed third derivatives not supported" # Create stencil set of points we need eval_list = [] self._stencil = set() for key in self.derivative_keys: indep_vars = key.derivatives if order == 2: self._stencil = self._stencil.union( { f"{indep_vars[0]}::-2", f"{indep_vars[0]}::-1", f"{indep_vars[0]}::1", f"{indep_vars[0]}::2", } ) eval_list.append(ThirdDerivO2(key)) self._eval = torch.nn.ModuleList(eval_list) class ForthDeriv(DerivBase): def __init__( self, derivative_keys: List[Key], dx: float, order: int = 2, jit: bool = True ) -> None: super().__init__(derivative_keys, dx, order, jit) assert ( len(derivative_keys) == 0 or order == 2 ), "Second order forth derivatives supported" for key in derivative_keys: assert ( len(key.derivatives) == 4 ), f"Key with {len(key.derivatives)} deriv keys supplied to forth deriv" assert ( key.derivatives[0] == key.derivatives[1] == key.derivatives[2] == key.derivatives[3] ), f"Mixed forth derivatives not supported" # Create stencil set of points we need eval_list = [] self._stencil = set() for key in self.derivative_keys: indep_vars = key.derivatives if order == 2: self._stencil = self._stencil.union( { f"{indep_vars[0]}::-2", f"{indep_vars[0]}::-1", f"{indep_vars[0]}::0", f"{indep_vars[0]}::1", f"{indep_vars[0]}::2", } ) eval_list.append(ForthDerivO2(key)) self._eval = torch.nn.ModuleList(eval_list)
modulus-sym-main
modulus/sym/eq/mfd/finite_derivatives.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .finite_derivatives import FirstDeriv, SecondDeriv, ThirdDeriv, ForthDeriv
modulus-sym-main
modulus/sym/eq/mfd/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
modulus-sym-main
modulus/sym/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from typing import Any, Callable, Optional import torch from torch.profiler import record_function, ProfilerActivity def timeit( func: Callable, *args, steps: int = 100, warmup: int = 10, run_profile: bool = False, verbose: bool = True, label: Optional[str] = None, label_padding: int = 35, cpu_timing: bool = False, ): """ Returns time/step in ms. If run_profile is True, then return (time/step in ms, a captured cuda events table) """ if label is None: assert func.__name__, "please provide a label for this benchmark" label = func.__name__ # warmup torch.cuda.nvtx.range_push(f"{label}_warmup") for _ in range(warmup): func(*args) torch.cuda.nvtx.range_pop() # pop label_warmup # start timer if cpu_timing: torch.cuda.synchronize() start = time.time() else: start_event = torch.cuda.Event(enable_timing=True) start_event.record() torch.cuda.nvtx.range_push(f"{label}") if run_profile: if verbose: print("\n" + "=" * 70 + " " + label + " " + "=" * 70) with torch.profiler.profile(activities=[ProfilerActivity.CUDA]) as prof: with record_function("run_total"): for i in range(steps): torch.cuda.nvtx.range_push(f"{i}th_iteration") func(*args) torch.cuda.nvtx.range_pop() events = prof.key_averages() if verbose: print( events.table( sort_by="self_cuda_time_total", max_src_column_width=200, row_limit=15, ) ) else: events = None for i in range(steps): torch.cuda.nvtx.range_push(f"{i}th_iteration") func(*args) torch.cuda.nvtx.range_pop() torch.cuda.nvtx.range_pop() # pop label # stop timer if cpu_timing: torch.cuda.synchronize() time_ms = ((time.time() - start) / steps) * 1000 else: end_event = torch.cuda.Event(enable_timing=True) end_event.record() end_event.synchronize() time_ms = start_event.elapsed_time(end_event) / steps if verbose: print(f"{label.ljust(label_padding)}: {time_ms:.3f} ms/step") if run_profile: return time_ms, events else: return time_ms def profile( func: Callable, *args, **kwargs, ): """ Simply a convenient wrapper of the timeit function with run_profile=True. Returns: (time/step in ms, a captured cuda events table) """ return timeit(func, *args, run_profile=True, **kwargs)
modulus-sym-main
modulus/sym/utils/benchmark/benchmark.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .benchmark import timeit, profile
modulus-sym-main
modulus/sym/utils/benchmark/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """simple Sympy helper functions """ from symengine import sqrt def line(x, point_x_1, point_y_1, point_x_2, point_y_2): """ line function from point intercepts Parameters ---------- x : Sympy Symbol/Exp the `x` in equation `y=a*x+b` point_x_1 : Sympy Symbol/Exp, float, int first intercept x position point_y_1 : Sympy Symbol/Exp, float, int first intercept y position point_x_2 : Sympy Symbol/Exp, float, int second intercept x position point_y_2 : Sympy Symbol/Exp, float, int second intercept y position Returns ------- y : Sympy Expr `y=slope*x+intercept` """ slope = (point_y_1 - point_y_2) / (point_x_1 - point_x_2) intercept = point_y_1 - slope * point_x_1 return slope * x + intercept def parabola(x, inter_1, inter_2, height): """ parabola from point intercepts Parameters ---------- x : Sympy Symbol/Exp the `x` in equation `y=a*x*2+b*x+c` inter_1 : Sympy Symbol/Exp, float, int first intercept such that `y=0` when `x=inter_1` inter_2 : Sympy Symbol/Exp, float, int second intercept such that `y=0` when `x=inter_1` height : Sympy Symbol/Exp, float, int max height of parabola Returns ------- y : Sympy Expr `y=factor*(x-inter_1)*(x-+inter_2)` """ factor = (4 * height) / (-(inter_1**2) - inter_2**2 + 2 * inter_1 * inter_2) return factor * (x - inter_1) * (x - inter_2) def parabola2D(x, y, inter_1_x, inter_2_x, inter_1_y, inter_2_y, height): """ square parabola from point intercepts Parameters ---------- x : Sympy Symbol/Exp the `x` in equation `z=parabola(x)*parabola(y)` y : Sympy Symbol/Exp the `y` in equation `z=a*x**2+b*y**2+c*xy+d*y+e*x+f` inter_1_x : Sympy Symbol/Exp, float, int first intercept such that `z=0` when `x=inter_1_x` inter_2_x : Sympy Symbol/Exp, float, int second intercept such that `z=0` when `x=inter_2_x` inter_1_y : Sympy Symbol/Exp, float, int first intercept such that `z=0` when `y=inter_1_y` inter_2_y : Sympy Symbol/Exp, float, int second intercept such that `z=0` when `y=inter_2_y` height : Sympy Symbol/Exp, float, int max height of parabola Returns ------- y : Sympy Expr `y=factor*(x-inter_1)*(x-+inter_2)` """ parabola_x = parabola(x, inter_1_x, inter_2_x, sqrt(height)) parabola_y = parabola(y, inter_1_y, inter_2_y, sqrt(height)) return parabola_x * parabola_y
modulus-sym-main
modulus/sym/utils/sympy/functions.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .numpy_printer import np_lambdify from .torch_printer import torch_lambdify, SympyToTorch
modulus-sym-main
modulus/sym/utils/sympy/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Helper functions for converting sympy equations to pytorch """ from sympy import lambdify, Symbol, Derivative, Function, Basic, Add, Max, Min from sympy.printing.str import StrPrinter import torch import numpy as np import functools from typing import List, Dict from modulus.sym.constants import diff_str, tf_dt def torch_lambdify(f, r, separable=False): """ generates a PyTorch function from a sympy equation Parameters ---------- f : Sympy Exp, float, int, bool the equation to convert to torch. If float, int, or bool this gets converted to a constant function of value `f`. r : list, dict A list of the arguments for `f`. If dict then the keys of the dict are used. Returns ------- torch_f : PyTorch function """ try: f = float(f) except: pass if isinstance(f, (float, int, bool)): # constant function def loop_lambda(constant): return lambda **x: torch.zeros_like(next(iter(x.items()))[1]) + constant lambdify_f = loop_lambda(f) else: vars = [k for k in r] if separable else [[k for k in r]] try: # NOTE this fixes a very odd bug in SymPy TODO add issue to SymPy lambdify_f = lambdify(vars, f, [TORCH_SYMPY_PRINTER]) except: lambdify_f = lambdify(vars, f, [TORCH_SYMPY_PRINTER]) return lambdify_f def _where_torch(conditions, x, y): if isinstance(x, (int, float)): x = float(x) * torch.ones(*conditions.get_shape()) if isinstance(y, (int, float)): y = float(y) * torch.ones(*conditions.get_shape()) return torch.where(conditions, x, y) def _heaviside_torch(x): return torch.maximum(torch.sign(x), torch.zeros(1, device=x.device)) def _sqrt_torch(x): return torch.sqrt((x - 1e-6) * _heaviside_torch(x - 1e-6) + 1e-6) # TODO: Add jit version here def _or_torch(*x): return_value = x[0] for value in x: return_value = torch.logical_or(return_value, value) return return_value # TODO: Add jit version here def _and_torch(*x): return_value = x[0] for value in x: return_value = torch.logical_and(return_value, value) return return_value @torch.jit.script def _min_jit(x: List[torch.Tensor]): assert len(x) > 0 min_tensor = x[0] for i in range(1, len(x)): min_tensor = torch.minimum(min_tensor, x[i]) return min_tensor def _min_torch(*x): # get tensor shape for value in x: if not isinstance(value, (int, float)): tensor_shape = list(map(int, value.shape)) device = value.device # convert all floats and ints to tensor x_only_tensors = [] for value in x: if isinstance(value, (int, float)): value = torch.zeros(tensor_shape, device=device) + value x_only_tensors.append(value) # reduce min min_tensor, _ = torch.min(torch.stack(x_only_tensors, -1), -1) return min_tensor # jit option # return _min_jit(x_only_tensors) # TODO: benchmark this other option that avoids stacking and extra memory movement # Update: cannot jit this because TorchScript doesn't support functools.reduce # return functools.reduce(torch.minimum, x) @torch.jit.script def _max_jit(x: List[torch.Tensor]): assert len(x) > 0 max_tensor = x[0] for i in range(1, len(x)): max_tensor = torch.maximum(max_tensor, x[i]) return max_tensor def _max_torch(*x): # get tensor shape for value in x: if not isinstance(value, (int, float)): tensor_shape = list(map(int, value.shape)) device = value.device # convert all floats and ints to tensor x_only_tensors = [] for value in x: if isinstance(value, (int, float)): value = (torch.zeros(tensor_shape) + value).to(device) x_only_tensors.append(value) # reduce max max_tensor, _ = torch.max(torch.stack(x_only_tensors, -1), -1) return max_tensor # jit option # return _max_jit(x_only_tensors) def _dirac_delta_torch(x): return torch.eq(x, 0.0).to(tf_dt) TORCH_SYMPY_PRINTER = { "abs": torch.abs, "Abs": torch.abs, "sign": torch.sign, "ceiling": torch.ceil, "floor": torch.floor, "log": torch.log, "exp": torch.exp, "sqrt": _sqrt_torch, "cos": torch.cos, "acos": torch.acos, "sin": torch.sin, "asin": torch.asin, "tan": torch.tan, "atan": torch.atan, "atan2": torch.atan2, "cosh": torch.cosh, "acosh": torch.acosh, "sinh": torch.sinh, "asinh": torch.asinh, "tanh": torch.tanh, "atanh": torch.atanh, "erf": torch.erf, "loggamma": torch.lgamma, "Min": _min_torch, "Max": _max_torch, "Heaviside": _heaviside_torch, "DiracDelta": _dirac_delta_torch, "logical_or": _or_torch, "logical_and": _and_torch, "where": _where_torch, "pi": np.pi, "conjugate": torch.conj, } class CustomDerivativePrinter(StrPrinter): def _print_Function(self, expr): """ Custom printing of the SymPy Derivative class. Instead of: D(x(t), t) We will print: x__t """ return expr.func.__name__ def _print_Derivative(self, expr): """ Custom printing of the SymPy Derivative class. Instead of: D(x(t), t) We will print: x__t """ prefix = str(expr.args[0].func) for expr in expr.args[1:]: prefix += expr[1] * (diff_str + str(expr[0])) return prefix def _subs_derivatives(expr): while True: try: deriv = expr.atoms(Derivative).pop() new_fn_name = str(deriv) expr = expr.subs(deriv, Function(new_fn_name)(*deriv.free_symbols)) except: break while True: try: fn = { fn for fn in expr.atoms(Function) if fn.class_key()[1] == 0 }.pop() # check if standard Sympy Eq (TODO better check) new_symbol_name = str(fn) expr = expr.subs(fn, Symbol(new_symbol_name)) except: break return expr # Override the __str__ method of to use CustromStrPrinter Basic.__str__ = lambda self: CustomDerivativePrinter().doprint(self) # Class to compile and evaluate a sympy expression in PyTorch # Cannot currently script this module because self.torch_expr is unknown class SympyToTorch(torch.nn.Module): def __init__( self, sympy_expr, name: str, freeze_terms: List[int] = [], detach_names: List[str] = [], ): super().__init__() # Sort keys to guarantee ordering self.keys = sorted([k.name for k in sympy_expr.free_symbols]) self.freeze_terms = freeze_terms if not self.freeze_terms: self.torch_expr = torch_lambdify(sympy_expr, self.keys) else: assert all( x < len(Add.make_args(sympy_expr)) for x in freeze_terms ), "The freeze term index cannot be larger than the total terms in the expression" self.torch_expr = [] for i in range(len(Add.make_args(sympy_expr))): self.torch_expr.append( torch_lambdify(Add.make_args(sympy_expr)[i], self.keys) ) self.freeze_list = list(self.torch_expr[i] for i in freeze_terms) self.name = name self.detach_names = detach_names def forward(self, var: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: args = [ var[k].detach() if k in self.detach_names else var[k] for k in self.keys ] if not self.freeze_terms: output = self.torch_expr(args) else: output = torch.zeros_like(var[self.keys[0]]) for i, expr in enumerate(self.torch_expr): if expr in self.freeze_list: output += expr(args).detach() else: output += expr(args) return {self.name: output}
modulus-sym-main
modulus/sym/utils/sympy/torch_printer.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Helper functions for converting sympy equations to numpy """ import types import inspect import numpy as np import symengine as se import sympy as sp NP_LAMBDA_STORE = {} def np_lambdify(f, r): """ generates a numpy function from a sympy equation Parameters ---------- f : Sympy Exp, float, int, bool or list of the previous the equation to convert to a numpy function. If float, int, or bool this gets converted to a constant function of value `f`. If f is a list then output for each element in list is is concatenated on axis -1. r : list, dict A list of the arguments for `f`. If dict then the keys of the dict are used. Returns ------- np_f : numpy function """ # possibly lambdify list of f if not isinstance(f, list): f = [f] # convert r to a list if dictionary # break up any tuples to elements in list if isinstance(r, dict): r = list(r.keys()) no_tuple_r = [] for key in r: if isinstance(key, tuple): for k in key: no_tuple_r.append(k) else: no_tuple_r.append(key) # lambidfy all functions in list lambdify_f = [] for f_i in f: # check if already a numpy function if isinstance(f_i, types.FunctionType): # add r inputs to function args = inspect.getargspec(f_i).args def lambdify_f_i(**x): return f_i(**{key: x[key] for key in args}) else: # check if already lambdified equation if (f_i, tuple(no_tuple_r)) in NP_LAMBDA_STORE.keys(): lambdify_f_i = NP_LAMBDA_STORE[(f_i, tuple(no_tuple_r))] else: # if not lambdify it try: if not isinstance(f_i, bool): f_i = float(f_i) except: pass if isinstance(f_i, (float, int)): # constant function def loop_lambda(constant): return ( lambda **x: np.zeros_like(next(iter(x.items()))[1]) + constant ) lambdify_f_i = loop_lambda(f_i) elif type(f_i) in [ type((se.Symbol("x") > 0).subs(se.Symbol("x"), 1)), type((se.Symbol("x") > 0).subs(se.Symbol("x"), -1)), bool, ]: # TODO hacky sympy boolian check def loop_lambda(constant): if constant: return lambda **x: np.ones_like( next(iter(x.items()))[1], dtype=bool ) else: return lambda **x: np.zeros_like( next(iter(x.items()))[1], dtype=bool ) lambdify_f_i = loop_lambda(f_i) else: try: # first try to compile with Symengine kk = [] for k in no_tuple_r: if isinstance(k, str): kk.append(se.Symbol(k)) else: kk.append(k) kk = [se.Symbol(name) for name in sorted([x.name for x in kk])] se_lambdify_f_i = se.lambdify(kk, [f_i], backend="llvm") def lambdify_f_i(**x): if len(x) == 1: v = list(x.values())[0] else: v = np.stack( [v for v in dict(sorted(x.items())).values()], axis=-1, ) out = se_lambdify_f_i(v) if isinstance(out, list): out = np.concatenate(out, axis=-1) return out except: # fall back on older SymPy compile sp_lambdify_f_i = sp.lambdify( [k for k in no_tuple_r], f_i, [NP_SYMPY_PRINTER, "numpy"] ) def lambdify_f_i(**x): v = sp_lambdify_f_i(**x) if isinstance(v, list): v = np.concatenate(v, axis=-1) return v # add new lambdified function to dictionary NP_LAMBDA_STORE[(f_i, tuple(no_tuple_r))] = lambdify_f_i # add new list of lambda functions lambdify_f.append(lambdify_f_i) # construct master lambda function for all def loop_grouped_lambda(lambdify_f): def grouped_lambda(**invar): output = [] for lambdify_f_i in lambdify_f: output.append(lambdify_f_i(**invar)) return np.concatenate(output, axis=-1) return grouped_lambda return loop_grouped_lambda(lambdify_f) def _xor_np(x): return np.logical_xor(x) def _min_np(x): return_value = x[0] for value in x: return_value = np.minimum(return_value, value) return return_value def _max_np(x): return_value = x[0] for value in x: return_value = np.maximum(return_value, value) return return_value def _heaviside_np(x): return np.heaviside(x, 0) def _equal_np(x, y): return np.isclose(x, y) NP_SYMPY_PRINTER = { "amin": _min_np, "amax": _max_np, "Heaviside": _heaviside_np, "equal": _equal_np, "Xor": _xor_np, } SYMENGINE_BLACKLIST = [sp.Heaviside, sp.DiracDelta]
modulus-sym-main
modulus/sym/utils/sympy/numpy_printer.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from typing import Any, Dict class StopCriterion: """ Stop criterion for training Parameters ---------- metric : str Metric to be monitored during the training min_delta : float minimum required change in the metric to qualify as a training improvement patience : float Number of training steps to wait for a training improvement to happen mode: str Choose 'min' if the metric is to be minimized, or 'max' if the metric is to be maximized freq: int Frequency of evaluating the stop criterion strict: bool If True, raises an error in case the metric is not valid. monitor_freq: Any Frequency of evaluating the monitor domain validation_freq: Any Frequency of evaluating the validation domain """ def __init__( self, metric: str, min_delta: float = 0.0, patience: float = 0, mode: str = "min", freq: int = 1000, strict: bool = True, monitor_freq: Any = None, validation_freq: Any = None, ): self.metric = metric self.min_delta = min_delta self.patience = patience self.mode = mode self.freq = freq self.strict = strict self.monitor_freq = monitor_freq self.validation_freq = validation_freq self.best_score = None self.counter = 0 self.check_freqs = True if self.freq > self.patience: raise RuntimeError( "Stop criterion patience should be greater than or equal to the freq for stopping criterion" ) self.mode_dict = {"min": np.less, "max": np.greater} if self.mode not in self.mode_dict.keys(): raise RuntimeError("Stop criterion mode can be either min or max") self.mode_op = self.mode_dict[self.mode] self.min_delta *= 1 if self.mode == "max" else -1 def evaluate(self, metric_dict: Dict[str, float]) -> bool: """ Evaluate the stop criterion Parameters ---------- metric_dict : str Dictionary of available metrics to compute """ if self.check_freqs: self._check_frequencies(metric_dict) score = self._get_score(metric_dict, self.target_key) if self.best_score is None: self.best_score = score elif self.mode_op(self.best_score + self.min_delta, score): if self.mode_op(score, self.best_score): self.best_score = score self.counter += self.freq if self.counter >= self.patience: return True else: self.best_score = score self.counter = 0 return False def _check_frequencies(self, metric_dict): found_metric = False for key in metric_dict.keys(): for k in metric_dict[key].keys(): if self.metric == k: self.target_key = key found_metric = True break if not found_metric and self.strict: raise RuntimeError( "[modulus.sym.stop_criterion] the specified metric for stopping criterion is not valid" ) if self.target_key == "monitor" and ( self.freq % self.monitor_freq != 0 or self.freq == 0 ): raise RuntimeError( "Stop criterion frequency should be a multiple of the monitor frequency" ) elif self.target_key == "validation" and ( self.freq % self.validation_freq != 0 or self.freq == 0 ): raise RuntimeError( "Stop criterion frequency should be a multiple of the validation frequency" ) self.check_freqs = False def _get_score(self, metric_dict, target_key): return metric_dict[target_key][self.metric]
modulus-sym-main
modulus/sym/utils/training/stop_criterion.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import numpy as np import sympy as sp import scipy from scipy import interpolate import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt # functions to plot a variable def plot_field( var, save_name, coordinates=["x", "y"], bounds_var=None, criteria=None, plot_title="", resolution=128, figsize=(8, 8), ): plt.figure(figsize=figsize) nr_plots = len(list(var.keys())) - 2 # not plotting x or y plot_index = 1 for key, value in var.items(): if key in coordinates: continue X, Y = _make_mesh(var, coordinates, bounds_var, resolution) pos = np.concatenate([var[coordinates[0]], var[coordinates[1]]], axis=1) value_star = interpolate.griddata(pos, value.flatten(), (X, Y), method="linear") if criteria is not None: np_criteria = _compile_criteria(coordinates, criteria) nan_mask = np.where(np_criteria(X, Y), 0.0, np.nan) value_star += nan_mask plt.subplot(nr_plots, 1, plot_index) plt.title(plot_title + ": " + key) plt.imshow( np.flip(value_star, axis=0), cmap="jet", extent=[np.min(X), np.max(X), np.min(Y), np.max(Y)], ) plt.xlabel(coordinates[0]) plt.ylabel(coordinates[1]) plt.colorbar() plot_index += 1 plt.savefig(save_name + ".png") plt.close() # functions to plot true and pred variables with diff plot def plot_field_compare( true_var, pred_var, save_name, coordinates=["x", "y"], bounds_var=None, criteria=None, resolution=128, figsize=(12, 10), same_colorbar=False, ): plt.figure(figsize=figsize) nr_plots = len(list(true_var.keys())) - 2 # not plotting x or y plot_index = 1 for key in true_var.keys(): if key in coordinates: continue X, Y = _make_mesh(true_var, coordinates, bounds_var, resolution) pos = np.concatenate( [true_var[coordinates[0]], true_var[coordinates[1]]], axis=1 ) true_field_star = interpolate.griddata( pos, true_var[key].flatten(), (X, Y), method="linear" ) pred_field_star = interpolate.griddata( pos, pred_var[key].flatten(), (X, Y), method="linear" ) if criteria is not None: np_criteria = _compile_criteria(coordinates, criteria) nan_mask = np.where(np_criteria(X, Y), 0.0, np.nan) true_field_star += nan_mask pred_field_star += nan_mask if same_colorbar: vmax = np.max(true_var[key]) vmin = np.min(true_var[key]) else: vmax = None vmin = None # pred plot plt.subplot(nr_plots, 3, plot_index) plt.title("Predicted: " + key) plt.imshow(pred_field_star, cmap="jet", vmax=vmax, vmin=vmin) plt.colorbar() plot_index += 1 # true plot plt.subplot(nr_plots, 3, plot_index) plt.title("True: " + key) plt.imshow(true_field_star, cmap="jet", vmax=vmax, vmin=vmin) plt.colorbar() plot_index += 1 # diff plot plt.subplot(nr_plots, 3, plot_index) plt.title("Difference: " + key) plt.imshow((true_field_star - pred_field_star), cmap="jet") plt.colorbar() plot_index += 1 plt.savefig(save_name + ".png") plt.close() def _make_mesh(var, coordinates, bounds_var, resolution): if bounds_var is not None: x_min = bounds_var[coordinates[0] + "_min"] x_max = bounds_var[coordinates[0] + "_max"] y_min = bounds_var[coordinates[1] + "_min"] y_max = bounds_var[coordinates[1] + "_max"] else: x_min = np.min(var[coordinates[0]]) x_max = np.max(var[coordinates[0]]) y_min = np.min(var[coordinates[1]]) y_max = np.max(var[coordinates[1]]) x_len = x_max - x_min y_len = y_max - y_min len_min = max(x_len, y_len) nn_x = int((x_len / len_min) * resolution) nn_y = int((y_len / len_min) * resolution) if bounds_var is not None: x = np.linspace( bounds_var[coordinates[0] + "_min"], bounds_var[coordinates[0] + "_max"], nn_x, ) y = np.linspace( bounds_var[coordinates[1] + "_min"], bounds_var[coordinates[1] + "_max"], nn_y, ) else: x = np.linspace(np.min(var[coordinates[0]]), np.max(var[coordinates[0]]), nn_x) y = np.linspace(np.min(var[coordinates[1]]), np.max(var[coordinates[1]]), nn_y) return np.meshgrid(x, y) def _compile_criteria(coordinates, criteria): np_criteria = sp.lambdify([sp.Symbol(k) for k in coordinates], criteria, "numpy") return np_criteria # functions to plot a variable def _var_to_mesh( var, key, coordinates=["x", "y"], bounds_var=None, criteria=None, resolution=128 ): X, Y = _make_mesh(var, coordinates, bounds_var, resolution) pos = np.concatenate([var[coordinates[0]], var[coordinates[1]]], axis=1) value_star = interpolate.griddata(pos, var[key].flatten(), (X, Y), method="linear") if criteria is not None: np_criteria = _compile_criteria(coordinates, criteria) nan_mask = np.where(np_criteria(X, Y), 0.0, np.nan) value_star += nan_mask # value_star = value_star * nan_mask return value_star
modulus-sym-main
modulus/sym/utils/io/field.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import matplotlib.pyplot as plt def plot_time_series(var, base_name, time_axis="step"): for plot_var in var.keys(): if plot_var != time_axis: plt.plot(var[time_axis][:, 0], var[plot_var][:, 0], label=plot_var) plt.legend() plt.xlabel(time_axis) plt.savefig(base_name + ".png") plt.close()
modulus-sym-main
modulus/sym/utils/io/time_series.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .vtk import ( VTKUniformGrid, VTKRectilinearGrid, VTKStructuredGrid, VTKUnstructuredGrid, VTKPolyData, VTKFromFile, var_to_polyvtk, grid_to_vtk, ) from .plotter import ( ValidatorPlotter, InferencerPlotter, GridValidatorPlotter, DeepONetValidatorPlotter, ) from .csv_rw import csv_to_dict, dict_to_csv
modulus-sym-main
modulus/sym/utils/io/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Defines helper Plotter class for adding plots to tensorboard summaries """ import numpy as np import scipy import matplotlib.pyplot as plt from typing import Dict class _Plotter: def __call__(self, *args): raise NotImplementedError def _add_figures(self, group, name, results_dir, writer, step, *args): "Try to make plots and write them to tensorboard summary" # catch exceptions on (possibly user-defined) __call__ try: fs = self(*args) except Exception as e: print(f"error: {self}.__call__ raised an exception:", str(e)) else: for f, tag in fs: f.savefig( results_dir + name + "_" + tag + ".png", bbox_inches="tight", pad_inches=0.1, ) writer.add_figure(group + "/" + name + "/" + tag, f, step, close=True) plt.close("all") def _interpolate_2D(self, size, invar, *outvars): "Interpolate 2D outvar solutions onto a regular mesh" assert len(invar) == 2 # define regular mesh to interpolate onto xs = [invar[k][:, 0] for k in invar] extent = (xs[0].min(), xs[0].max(), xs[1].min(), xs[1].max()) xyi = np.meshgrid( np.linspace(extent[0], extent[1], size), np.linspace(extent[2], extent[3], size), indexing="ij", ) # interpolate outvars onto mesh outvars_interp = [] for outvar in outvars: outvar_interp = {} for k in outvar: outvar_interp[k] = scipy.interpolate.griddata( (xs[0], xs[1]), outvar[k][:, 0], tuple(xyi) ) outvars_interp.append(outvar_interp) return [extent] + outvars_interp class ValidatorPlotter(_Plotter): "Default plotter class for validator" def __call__(self, invar, true_outvar, pred_outvar): "Default function for plotting validator data" ndim = len(invar) if ndim > 2: print("Default plotter can only handle <=2 input dimensions, passing") return [] # interpolate 2D data onto grid if ndim == 2: extent, true_outvar, pred_outvar = self._interpolate_2D( 100, invar, true_outvar, pred_outvar ) # make plots dims = list(invar.keys()) fs = [] for k in pred_outvar: f = plt.figure(figsize=(3 * 5, 4), dpi=100) for i, (o, tag) in enumerate( zip( [true_outvar[k], pred_outvar[k], true_outvar[k] - pred_outvar[k]], ["true", "pred", "diff"], ) ): plt.subplot(1, 3, 1 + i) if ndim == 1: plt.plot(invar[dims[0]][:, 0], o[:, 0]) plt.xlabel(dims[0]) elif ndim == 2: plt.imshow(o.T, origin="lower", extent=extent) plt.xlabel(dims[0]) plt.ylabel(dims[1]) plt.colorbar() plt.title(f"{k}_{tag}") plt.tight_layout() fs.append((f, k)) return fs class InferencerPlotter(_Plotter): "Default plotter class for inferencer" def __call__(self, invar, outvar): "Default function for plotting inferencer data" ndim = len(invar) if ndim > 2: print("Default plotter can only handle <=2 input dimensions, passing") return [] # interpolate 2D data onto grid if ndim == 2: extent, outvar = self._interpolate_2D(100, invar, outvar) # make plots dims = list(invar.keys()) fs = [] for k in outvar: f = plt.figure(figsize=(5, 4), dpi=100) if ndim == 1: plt.plot(invar[dims[0]][:, 0], outvar[:, 0]) plt.xlabel(dims[0]) elif ndim == 2: plt.imshow(outvar[k].T, origin="lower", extent=extent) plt.xlabel(dims[0]) plt.ylabel(dims[1]) plt.colorbar() plt.title(k) plt.tight_layout() fs.append((f, k)) return fs class GridValidatorPlotter(_Plotter): """Grid validation plotter for structured data""" def __init__(self, n_examples: int = 1): self.n_examples = n_examples def __call__( self, invar: Dict[str, np.array], true_outvar: Dict[str, np.array], pred_outvar: Dict[str, np.array], ): ndim = next(iter(invar.values())).ndim - 2 if ndim > 3: print("Default plotter can only handle <=3 input dimensions, passing") return [] # get difference diff_outvar = {} for k, v in true_outvar.items(): diff_outvar[k] = true_outvar[k] - pred_outvar[k] fs = [] for ie in range(self.n_examples): f = self._make_plot(ndim, ie, invar, true_outvar, pred_outvar, diff_outvar) fs.append((f, f"prediction_{ie}")) return fs def _make_plot(self, ndim, ie, invar, true_outvar, pred_outvar, diff_outvar): # make plot nrows = max(len(invar), len(true_outvar)) f = plt.figure(figsize=(4 * 5, nrows * 4), dpi=100) for ic, (d, tag) in enumerate( zip( [invar, true_outvar, pred_outvar, diff_outvar], ["in", "true", "pred", "diff"], ) ): for ir, k in enumerate(d): plt.subplot2grid((nrows, 4), (ir, ic)) if ndim == 1: plt.plot(d[k][ie, 0, :]) elif ndim == 2: plt.imshow(d[k][ie, 0, :, :].T, origin="lower") else: z = d[k].shape[-1] // 2 # Z slice plt.imshow(d[k][ie, 0, :, :, z].T, origin="lower") plt.title(f"{k}_{tag}") plt.colorbar() plt.tight_layout() return f class DeepONetValidatorPlotter(_Plotter): """DeepONet validation plotter for structured data""" def __init__(self, n_examples: int = 1): self.n_examples = n_examples def __call__( self, invar: Dict[str, np.array], true_outvar: Dict[str, np.array], pred_outvar: Dict[str, np.array], ): ndim = next(iter(invar.values())).shape[-1] if ndim > 3: print("Default plotter can only handle <=2 input dimensions, passing") return [] # get difference diff_outvar = {} for k, v in true_outvar.items(): diff_outvar[k] = true_outvar[k] - pred_outvar[k] fs = [] for ie in range(self.n_examples): f = self._make_plot(ndim, ie, invar, true_outvar, pred_outvar, diff_outvar) fs.append((f, f"prediction_{ie}")) return fs def _make_plot(self, ndim, ie, invar, true_outvar, pred_outvar, diff_outvar): # make plot # invar: input of trunk net. Dim: N*P*ndim # outvar: output of DeepONet. Dim: N*P nrows = max(len(invar), len(true_outvar)) f = plt.figure(figsize=(4 * 5, nrows * 4), dpi=100) invar_data = next(iter(invar.values())) for ic, (d, tag) in enumerate( zip( [true_outvar, pred_outvar, diff_outvar], ["true", "pred", "diff"], ) ): for ir, k in enumerate(d): plt.subplot2grid((nrows, 4), (ir, ic)) if ndim == 1: plt.plot(invar_data[ie, :].flatten(), d[k][ie, :]) elif ndim == 2: plt.scatter( x=invar_data[ie, :, 0], y=invar_data[ie, :, 1], c=d[k][ie, :], s=0.5, origin="lower", cmap="jet", ) plt.colorbar() plt.title(f"{k}_{tag}") plt.tight_layout() return f
modulus-sym-main
modulus/sym/utils/io/plotter.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ simple helper functions for reading and saving CSV files """ import csv import numpy as np def csv_to_dict(filename, mapping=None, delimiter=","): """ reads a csv file to a dictionary of columns Parameters ---------- filename : str The file name to load from mapping : None, dict If None load entire csv file and store every column as a key in the dict. If `mapping` is not none use this to map keys from CSV to keys in dict. delimiter: str The string used for separating values. Returns ------- data : dict of numpy arrays numpy arrays have shape [N, 1]. """ # Load csv file values = np.loadtxt(filename, skiprows=1, delimiter=delimiter, unpack=False) # get column keys csvfile = open(filename) reader = csv.reader(csvfile, delimiter=delimiter) first_line = next(iter(reader)) # set dictionary csv_dict = {} for i, name in enumerate(first_line): if mapping is not None: if name.strip() in mapping.keys(): csv_dict[mapping[name.strip()]] = values[:, i : i + 1] else: csv_dict[name.strip()] = values[:, i : i + 1] return csv_dict def dict_to_csv(dictonary, filename): """ saves a dict of numpy arrays to csv file Parameters ---------- dictionary : dict dictionary of numpy arrays. The numpy arrays have a shape of [N, 1]. filename : str The file name to save too """ # add csv to filename if filename[-4:] != ".csv": filename += ".csv" # save np arrays csvfile = open(filename, "w+") csvfile.write(",".join(['"' + str(x) + '"' for x in list(dictonary.keys())]) + "\n") for i in range(next(iter(dictonary.values())).shape[0]): csvfile.write(",".join([str(x[i, 0]) for x in dictonary.values()]) + "\n") csvfile.close()
modulus-sym-main
modulus/sym/utils/io/csv_rw.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for generating vtk files """ import time import torch import scipy import numpy as np import matplotlib import sympy as sp import logging import vtk from vtk.util.numpy_support import numpy_to_vtk, vtk_to_numpy from pathlib import Path import pathlib from typing import List, Dict, Union, Tuple logger = logging.getLogger(__name__) class VTKBase: # Only supports working with point data def __init__(self, file_name: str, file_dir: str): self.file_name = file_name self.file_dir = file_dir self.ext = ".vtk" self.vtk_obj = None self.writer = None self.export_map = {} def save_vtk(self): raise NotImplementedError("Implement in VTK subclass") def get_points(self): raise NotImplementedError("Implement in VTK subclass") def get_cells(self): raise NotImplementedError("Implement in VTK subclass") def set_points(self): raise NotImplementedError("Implement in VTK subclass") def set_cells(self): raise NotImplementedError("Implement in VTK subclass") def get_array_names(self): narrays = self.vtk_obj.GetPointData().GetNumberOfArrays() names = [] for i in range(narrays): names.append(self.vtk_obj.GetPointData().GetArrayName(i)) return names def get_array(self, name: str, dim: Union[None, int] = None): if name not in self.get_array_names(): logger.warn(f"{name} not found in data arrays") return None data_array = vtk_to_numpy(self.vtk_obj.GetPointData().GetArray(name)) # Expand last dim for scalars for consistency if data_array.ndim == 1: data_array = data_array[:, np.newaxis] elif dim is not None: # Get component of data array if dim > data_array.shape[1]: raise ValueError( f"Dimension requested of VTK dataarray {name}:{dim} is too large. Data-array size: {data_array.shape}" ) data_array = data_array[:, dim : dim + 1] return data_array def get_data_from_map(self, vtk_data_map: Dict[str, List[str]]): data_dict = {} coord_map = {"x": 0, "y": 1, "z": 2} # Loop through input map values for input_key, vtk_keys in vtk_data_map.items(): input_array = [] for vtk_key in vtk_keys: # Check if coordinate array if vtk_key in coord_map: input_array0 = self.get_points(dims=[coord_map[vtk_key]]) input_array.append(input_array0) # Check if data array elif vtk_key.split(":")[0] in self.get_array_names(): if len(vtk_key.split(":")) > 1: input_array0 = self.get_array( name=vtk_key.split(":")[0], dim=int(vtk_key.split(":")[1]) ) else: input_array0 = self.get_array(name=vtk_key) input_array.append(input_array0) data_dict[input_key] = np.concatenate(input_array, axis=1) return data_dict def var_to_vtk( self, data_vars: Dict[str, np.array], file_name: str = None, file_dir: str = None, step: int = None, ): if file_name is None: file_name = self.file_name if file_dir is None: file_dir = self.file_dir if step is not None: file_name = file_name + f"{step:06}" # Convert any non list values in input map to lists for input_key, vtk_keys in self.export_map.items(): if isinstance(vtk_keys, str): self.export_map[input_key] = [vtk_keys] # Apply vtk mask, to compose multidim variables out_var = {} for key, data_keys in self.export_map.items(): vtk_array = [] for data_key in data_keys: if data_key in data_vars: if data_vars[data_key].ndim == 1: vtk_array.append(data_vars[data_key][:, np.newaxis]) else: vtk_array.append(data_vars[data_key]) elif data_key is None: vtk_array.append( np.zeros((self.vtk_obj.GetNumberOfPoints(), 1), dtype=np.short) ) # If we recieved any data that fits the map if len(vtk_array) > 0: out_var[key] = np.squeeze(np.concatenate(vtk_array, axis=1)) # Add data to vtk file # TODO: Only save points inside class and create vtk obj on save call for key, data in out_var.items(): self.add_point_array(key, data.astype(np.float32)) self.save_vtk(file_name, file_dir) def save_vtk( self, file_name: str = None, file_dir: str = None, compression: int = 1, data_mode: int = 1, ): # Compression level: 1 (worst compression, fastest) ... 9 (best compression, slowest). # https://vtk.org/doc/nightly/html/classvtkXMLWriterBase.html # Data mode: 0 = ascii, 1 = binary if file_name is None: file_name = self.file_name if file_dir is None: file_dir = self.file_dir Path(file_dir).mkdir(parents=True, exist_ok=True) file_path = Path(file_dir) / Path(file_name + self.ext) self.writer.SetFileName(file_path) self.writer.SetCompressorTypeToZLib() self.writer.SetCompressionLevel(compression) self.writer.SetDataMode(data_mode) self.writer.SetInputData(self.vtk_obj) self.writer.Write() def add_point_array(self, name: str, data: np.array): """Adds point array data into VTK file Parameters ---------- name : str data array name data : np.array 1D or 2D numpy data array """ assert ( data.shape[0] == self.vtk_obj.GetNumberOfPoints() ), f"Input array incorrect size. Got {data.shape[0]} instead of {self.vtk_obj.GetNumberOfPoints()}" assert data.ndim < 3, "1D and 2D arrays supported" data_array = numpy_to_vtk(data, deep=True) if data.ndim == 2: data_array.SetNumberOfComponents(data.shape[1]) data_array.SetName(name) self.vtk_obj.GetPointData().AddArray(data_array) def remove_point_array(self, name: str): if name in self.get_array_names(): self.vtk_obj.GetPointData().RemoveArray(name) else: logger.warn(f"Point data {name} not present in VTK object") class VTKUniformGrid(VTKBase): """vtkUniformGrid wrapper class Parameters ---------- bounds : List[List[int]] Domain bounds of each dimension npoints : List[int] List of number of points in each dimension export_map : Dict[str, List[str]], optional Export map dictionary with keys that are VTK variables names and values that are lists of output variables. Will use 1 to 1 mapping if none is provided, by default {} file_name : str, optional File name of output vtk file, by default "vtk_output" file_dir : str, optional File directory of output vtk file, by default "." init_vtk : bool, optional Initialize new VTK object from parameters (used by VTKFromFile), by default True """ def __init__( self, bounds: List[List[int]], npoints: List[int], export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", init_vtk: bool = True, ): super().__init__(file_name, file_dir) self.vtk_obj = vtk.vtkUniformGrid() self.writer = vtk.vtkXMLImageDataWriter() self.ext = ".vti" self.export_map = export_map if init_vtk: self.init_points(bounds, npoints) def init_points( self, bounds: List[List[int]], npoints: List[int], ): assert len(bounds) == len( npoints ), f"Bounds and npoints must be same length {len(bounds)}, {len(npoints)}" assert ( len(bounds) > 0 and len(bounds) < 4 ), "Only 1, 2, 3 grid dimensionality allowed" # Padd for missing dimensions npoints = np.array(npoints + [1, 1]) bounds = np.array(bounds + [[0, 0], [0, 0]]) dx = abs(bounds[:, 0] - bounds[:, 1]) / np.maximum( np.ones_like(npoints), npoints - 1 ) # This is unique to uniform grid since it uses the imgdata backend self.vtk_obj.SetOrigin( bounds[0][0], bounds[1][0], bounds[2][0] ) # default values self.vtk_obj.SetSpacing(dx[0], dx[1], dx[2]) self.vtk_obj.SetDimensions(npoints[0], npoints[1], npoints[2]) def get_points(self, dims: List[int] = [0, 1, 2]): # Slow but VTK Image data does not explicitly store point coords points = [] for i in range(self.vtk_obj.GetNumberOfPoints()): points.append(self.vtk_obj.GetPoint(i)) points = np.array(points) return np.concatenate([points[:, i : i + 1] for i in dims], axis=1) def set_points(self, points: np.array): raise NotImplementedError("Cannot set points on vtkUniformGrid") def set_cells(self): raise AttributeError("Cannot set the cells of a vtkStructuredPoints") @classmethod def init_from_obj( cls, vtk_obj, export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", ): vtk_wrapper = VTKUniformGrid( None, None, export_map=export_map, file_name=file_name, file_dir=file_dir, init_vtk=False, ) vtk_wrapper.vtk_obj = vtk_obj return vtk_wrapper class VTKRectilinearGrid(VTKBase): """vtkRectilinearGrid wrapper class Parameters ---------- axis_coords : List[np.array] List of arrays that define points on each axis export_map : Dict[str, List[str]], optional Export map dictionary with keys that are VTK variables names and values that are lists of output variables. Will use 1 to 1 mapping if none is provided, by default {} file_name : str, optional File name of output vtk file, by default "vtk_output" file_dir : str, optional File directory of output vtk file, by default "." init_vtk : bool, optional Initialize new VTK object from parameters (used by VTKFromFile), by default True """ def __init__( self, axis_coords: List[np.array], export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", init_vtk: bool = True, ): super().__init__(file_name, file_dir) self.vtk_obj = vtk.vtkRectilinearGrid() self.writer = vtk.vtkXMLRectilinearGridWriter() self.ext = ".vtr" self.export_map = export_map if init_vtk: self.init_points(axis_coords) def init_points(self, coords: List[np.array]): assert len(coords) < 4, "Maximum of 3 spacial coordinate arrays accepted" # Padd for missing dimensions coords = coords + [np.array([0]), np.array([0])] # This is unique to vtkRectilinearGrid since points are not explicit self.vtk_obj.SetDimensions( coords[0].shape[0], coords[1].shape[0], coords[2].shape[0] ) self.vtk_obj.SetXCoordinates(numpy_to_vtk(coords[0])) self.vtk_obj.SetYCoordinates(numpy_to_vtk(coords[1])) self.vtk_obj.SetZCoordinates(numpy_to_vtk(coords[2])) def get_points(self, dims: List[int] = [0, 1, 2]): # GetPoint in vtkRectilinearGrid takes in point container to populate since # it does not have one internally # https://vtk.org/doc/nightly/html/classvtkRectilinearGrid.html points = vtk.vtkPoints() self.vtk_obj.GetPoints(points) # Now we can convert to numpy points = vtk_to_numpy(points.GetData()) return np.concatenate([points[:, i : i + 1] for i in dims], axis=1) def set_points(self, points: np.array): raise AttributeError("Cannot set the points of a vtkRectilinearGrid explicitly") def set_cells(self): raise AttributeError("Cannot set the cells of a vtkRectilinearGrid explicitly") @classmethod def init_from_obj( cls, vtk_obj, export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", ): vtk_wrapper = VTKRectilinearGrid( None, export_map=export_map, file_name=file_name, file_dir=file_dir, init_vtk=False, ) vtk_wrapper.vtk_obj = vtk_obj return vtk_wrapper class VTKStructuredGrid(VTKBase): """vtkStructuredGrid wrapper class Parameters ---------- points : np.array Mesh grid of points in 'ij' format dims : List[int] Number of points in each dimension export_map : Dict[str, List[str]], optional Export map dictionary with keys that are VTK variables names and values that are lists of output variables. Will use 1 to 1 mapping if none is provided, by default {} file_name : str, optional File name of output vtk file, by default "vtk_output" file_dir : str, optional File directory of output vtk file, by default "." init_vtk : bool, optional Initialize new VTK object from parameters (used by VTKFromFile), by default True """ def __init__( self, points: np.array, dims: List[int], export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", init_vtk: bool = True, ): super().__init__(file_name, file_dir) self.vtk_obj = vtk.vtkStructuredGrid() self.writer = vtk.vtkXMLStructuredGridWriter() self.ext = ".vts" self.export_map = export_map if init_vtk: self.init_points(points, dims) def init_points(self, points: np.array, dims: List[int]): assert points.ndim == 2, "Points array must have 2 dimensions [npoints, dim]" assert points.shape[1] < 4, "Maximum of 3 spacial point arrays accepted" assert len(dims) == points.shape[1], "Domain dimension must match dim of points" # Padd for missing dimensions points = np.concatenate( [points, np.zeros((points.shape[0], 2), dtype=np.short)], axis=1 ) dims = dims + [1, 1] assert ( dims[0] * dims[1] * dims[2] == points.shape[0] ), "Number of points do not match provided dimensions" pts = vtk.vtkPoints() pts.SetNumberOfPoints(points.shape[0]) pts.SetData(numpy_to_vtk(points[:, :3])) self.vtk_obj.SetDimensions(dims[:3]) self.vtk_obj.SetPoints(pts) def get_points(self, dims: List[int] = [0, 1, 2]): points = vtk_to_numpy(self.vtk_obj.GetPoints().GetData()) return np.concatenate([points[:, i : i + 1] for i in dims], axis=1) def set_points(self, points: np.array, dims: List[int]): points = np.concatenate( [points, np.zeros((points.shape[0], 2), dtype=np.short)], axis=1 ) dims = dims + [1, 1] assert ( dims[0] * dims[1] * dims[2] == points.shape[0] ), "Number of points do not match provided dimensions" pts = vtk.vtkPoints() pts.SetNumberOfPoints(points.shape[0]) pts.SetData(numpy_to_vtk(points[:, :3])) self.vtk_obj.SetDimensions(dims[:3]) self.vtk_obj.SetPoints(pts) def set_cells(self): raise AttributeError("Cannot set the cells of a vtkStructuredGrid explicitly") @classmethod def init_from_obj( cls, vtk_obj, export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", ): vtk_wrapper = VTKStructuredGrid( None, None, export_map=export_map, file_name=file_name, file_dir=file_dir, init_vtk=False, ) vtk_wrapper.vtk_obj = vtk_obj return vtk_wrapper # =================== # VTK Unstructured Grid # =================== class VTKUnstructuredGrid(VTKBase): """vtkUnstructuredGrid wrapper class Parameters ---------- points : np.array Array of point locations [npoints, (1,2 or 3)] cell_index : Tuple[ np.array, np.array ] Tuple of (cell_offsets, cell_connectivity) arrays. Cell offsets is a 1D array denoting how many points make up a face for each cell. Cell connectivity is a 1D array that contains verticies of each cell face in order cell_types : np.array Array of cell vtk types: https://vtk.org/doc/nightly/html/vtkCellType_8h_source.html export_map : Dict[str, List[str]], optional Export map dictionary with keys that are VTK variables names and values that are lists of output variables. Will use 1 to 1 mapping if none is provided, by default {} file_name : str, optional File name of output vtk file, by default "vtk_output" file_dir : str, optional File directory of output vtk file, by default "." init_vtk : bool, optional Initialize new VTK object from parameters (used by VTKFromFile), by default True """ def __init__( self, points: np.array, cell_index: Tuple[np.array, np.array], cell_types: np.array, export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", init_vtk: bool = True, ): super().__init__(file_name, file_dir) self.vtk_obj = vtk.vtkUnstructuredGrid() self.writer = vtk.vtkXMLUnstructuredGridWriter() self.ext = ".vtu" self.export_map = export_map if init_vtk: self.init_points(points, cell_index, cell_types) def init_points( self, points: np.array, cell_index: Tuple[np.array, np.array], cell_types: np.array, ): assert points.ndim == 2, "Points array must have 2 dimensions [npoints, dim]" assert points.shape[1] < 4, "Maximum of 3 spacial point arrays accepted" assert ( len(cell_index) == 2 ), "Cell index must be tuple of numpy arrays containing [offsets, connectivity]" # Could check cell type and cell index are consistent, but we assume the user # knows what they are doing # Padd for missing dimensions points = np.concatenate( [points, np.zeros((points.shape[0], 2), dtype=np.short)], axis=1 ) pts = vtk.vtkPoints() pts.SetNumberOfPoints(points.shape[0]) pts.SetData(numpy_to_vtk(points[:, :3])) self.vtk_obj.SetPoints(pts) vtk_celltypes = vtk.vtkIntArray() vtk_celltypes.SetNumberOfComponents(1) vtk_celltypes = numpy_to_vtk( cell_types.astype(int), array_type=vtk.vtkUnsignedCharArray().GetDataType() ) vtk_cells = vtk.vtkCellArray() vtk_offsets = numpy_to_vtk( cell_index[0], array_type=vtk.vtkTypeInt64Array().GetDataType() ) vtk_connectivity = numpy_to_vtk( cell_index[1], array_type=vtk.vtkTypeInt64Array().GetDataType() ) vtk_cells.SetData(vtk_offsets, vtk_connectivity) self.vtk_obj.SetCells(vtk_celltypes, vtk_cells) def get_points(self, dims: List[int] = [0, 1, 2]): points = vtk_to_numpy(self.vtk_obj.GetPoints().GetData()) return np.concatenate([points[:, i : i + 1] for i in dims], axis=1) # points = vtk_to_numpy(self.vtk_obj.GetPoints().GetData()) # points = [points[:, 0:1], points[:, 1:2], points[:, 2:3]] # return [points[i] for i in dims] def get_cells(self): cells = self.vtk_obj.GetCells() # Get cells data contains array [nedges, v1, v2, v3, ..., nedges, v1, v2, v3,...] # Need to seperate offset and connectivity array for practical use cell_connectivity = vtk_to_numpy(cells.GetConnectivityArray()) cell_offsets = vtk_to_numpy(cells.GetOffsetsArray()) return cell_offsets, cell_connectivity def get_celltypes(self): cell_types = vtk_to_numpy(self.vtk_obj.GetCellTypesArray()) return cell_types def set_points(self, points: np.array): assert points.ndim == 2, "Points array must have 2 dimensions [npoints, dim]" assert points.shape[1] < 4, "Maximum of 3 spacial point arrays accepted" points = np.concatenate( [points, np.zeros((points.shape[0], 2), dtype=np.short)], axis=1 ) pts = vtk.vtkPoints() pts.SetNumberOfPoints(points.shape[0]) pts.SetData(numpy_to_vtk(points[:, :3])) self.vtk_obj.SetPoints(pts) def set_cells(self, cell_index: Tuple[np.array, np.array], cell_types: np.array): assert ( len(cell_index) == 2 ), "Cell index must be tuple of numpy arrays containing [offsets, connectivity]" vtk_celltypes = vtk.vtkIntArray() vtk_celltypes.SetNumberOfComponents(1) vtk_celltypes = numpy_to_vtk( cell_types.astype(int), array_type=vtk.vtkUnsignedCharArray().GetDataType() ) vtk_cells = vtk.vtkCellArray() vtk_offsets = numpy_to_vtk( cell_index[0], array_type=vtk.vtkTypeInt64Array().GetDataType() ) vtk_connectivity = numpy_to_vtk( cell_index[1], array_type=vtk.vtkTypeInt64Array().GetDataType() ) vtk_cells.SetData(vtk_offsets, vtk_connectivity) self.vtk_obj.SetCells(vtk_celltypes, vtk_cells) @classmethod def init_from_obj( cls, vtk_obj, export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", ): vtk_wrapper = VTKUnstructuredGrid( None, None, None, export_map=export_map, file_name=file_name, file_dir=file_dir, init_vtk=False, ) vtk_wrapper.vtk_obj = vtk_obj return vtk_wrapper # =================== # VTK Polydata # =================== class VTKPolyData(VTKBase): """vtkPolyData wrapper class Parameters ---------- points : np.array Array of point locations [npoints, (1,2 or 3)] line_index : np.array, optional Array of line connections [nedges, 2], by default None poly_index : Tuple[poly_offsets, poly_connectivity] Tuple of polygon offsets and polygon connectivity arrays. Polygon offsets is a 1D array denoting how many points make up a face for each polygon. Polygon connectivity is a 1D array that contains verticies of each polygon face in order, by default None export_map : Dict[str, List[str]], optional Export map dictionary with keys that are VTK variables names and values that are lists of output variables. Will use 1 to 1 mapping if none is provided, by default {} file_name : str, optional File name of output vtk file, by default "vtk_output" file_dir : str, optional File directory of output vtk file, by default "." init_vtk : bool, optional Initialize new VTK object from parameters (used by VTKFromFile), by default True """ def __init__( self, points: np.array, line_index: np.array = None, poly_index: Tuple[ np.array, np.array ] = None, # Tuple[poly_offsets, poly_connectivity] export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", init_vtk: bool = True, ): super().__init__(file_name, file_dir) self.vtk_obj = vtk.vtkPolyData() self.writer = vtk.vtkXMLPolyDataWriter() self.ext = ".vtp" self.export_map = export_map if init_vtk: self.init_points(points, line_index, poly_index) def init_points( self, points: np.array, line_index: np.array = None, poly_index: Tuple[np.array, np.array] = None, ): assert points.ndim == 2, "Points array must have 2 dimensions [npoints, dim]" assert points.shape[1] < 4, "Maximum of 3 spacial point arrays accepted" # Padd for missing dimensions points = np.concatenate( [points, np.zeros((points.shape[0], 2), dtype=np.short)], axis=1 ) pts = vtk.vtkPoints() pts.SetNumberOfPoints(int(points.shape[0])) pts.SetData(numpy_to_vtk(points[:, :3])) self.vtk_obj.SetPoints(pts) # Add cell array for verts vert_cells = vtk.vtkCellArray() for i in range(points.shape[0]): vert_cells.InsertNextCell(1) vert_cells.InsertCellPoint(i) self.vtk_obj.SetVerts(vert_cells) if line_index is not None: self.set_lines(line_index) if poly_index is not None: self.set_polys(poly_index) def get_points(self, dims: List[int] = [0, 1, 2]): points = vtk_to_numpy(self.vtk_obj.GetPoints().GetData()) return np.concatenate([points[:, i : i + 1] for i in dims], axis=1) def get_lines(self): lines = vtk_to_numpy(self.vtk_obj.GetLines().GetData()) line_index = np.stack([lines[1::3], lines[2::3]], axis=1) return line_index def get_polys(self): polys = self.vtk_obj.GetPolys() # Poly data contains array [nedges, v1, v2, v3, ..., nedges, v1, v2, v3,...] # Need to seperate offset and connectivity array for practical use poly_connectivity = vtk_to_numpy(polys.GetConnectivityArray()) poly_offsets = vtk_to_numpy(polys.GetOffsetsArray()) return poly_offsets, poly_connectivity def get_cells(self): raise AttributeError("vtkPolyData has polys not cells, call get_polys instead") def set_points(self, points: np.array): assert points.ndim == 2, "Points array must have 2 dimensions [npoints, dim]" assert points.shape[1] < 4, "Maximum of 3 spacial point arrays accepted" points = np.concatenate( [points, np.zeros((points.shape[0], 2), dtype=np.short)], axis=1 ) pts = vtk.vtkPoints() pts.SetNumberOfPoints(points.shape[0]) pts.SetData(numpy_to_vtk(points[:, :3])) self.vtk_obj.SetPoints(pts) # Add cell array for verts vert_cells = vtk.vtkCellArray() for i in range(points.shape[0]): vert_cells.InsertNextCell(1) vert_cells.InsertCellPoint(i) self.vtk_obj.SetVerts(vert_cells) def set_lines(self, edge_index: np.array): assert ( edge_index.ndim == 2 and edge_index.shape[1] == 2 ), "Edge index array must have 2 dimensions [npoints, 2]" lines = vtk.vtkCellArray() for i in range(edge_index.shape[0]): lines.InsertNextCell(2) lines.InsertCellPoint(edge_index[i, 0]) lines.InsertCellPoint(edge_index[i, 1]) self.vtk_obj.SetLines(lines) def set_polys(self, poly_index: Tuple[np.array, np.array]): assert ( len(poly_index) == 2 ), "poly_index should be tuple of (poly_offsets, poly_connectivity)" vtk_polys = vtk.vtkCellArray() vtk_offsets = numpy_to_vtk( poly_index[0], array_type=vtk.vtkTypeInt64Array().GetDataType() ) vtk_connectivity = numpy_to_vtk( poly_index[1], array_type=vtk.vtkTypeInt64Array().GetDataType() ) vtk_polys.SetData(vtk_offsets, vtk_connectivity) self.vtk_obj.SetPolys(vtk_polys) def set_cells(self): raise AttributeError("vtkPolyData has polys not cells, call set_polys instead") @classmethod def init_from_obj( cls, vtk_obj, export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", ): vtk_wrapper = VTKPolyData( None, export_map=export_map, file_name=file_name, file_dir=file_dir, init_vtk=False, ) vtk_wrapper.vtk_obj = vtk_obj return vtk_wrapper class VTKFromFile(object): """Reads VTK file into memory and constructs corresponding VTK object Parameters ---------- file_path : str File directory/name of input vtk file export_map : Dict[str, List[str]], optional Export map dictionary with keys that are VTK variables names and values that are lists of output variables. Will use 1 to 1 mapping if none is provided, by default {} file_name : str, optional File name of output vtk file, by default "vtk_output" file_dir : str, optional File directory of output vtk file, by default "." force_legacy : bool, optional Force a legacy only read, by default False """ def __new__( cls, file_path: str, export_map: Dict[str, List[str]] = {}, file_name: str = "vtk_output", file_dir: str = ".", force_legacy: bool = False, ) -> None: assert Path(file_path).is_file(), f"Provided VTK file {file_path} not found" read_success = False # Attempt to create XML reader if not force_legacy: try: vtk_reader = cls.readXMLVTK(file_path) read_success = True except: logger.warn("VTK file not valid XML format, will attempt legacy load") # If failed or legacy force, create VTK Reader if not read_success: try: vtk_reader = cls.readLegacyVTK(file_path) read_success = True except: logger.warn("VTK file not valid VTK format") # Hopefully VTK reader is loaded assert read_success, "Failed to load VTK file in either XML or Legacy format" logger.info(f"Read {Path(file_path).name} file successfully") return cls.extractVTKObject( vtk_reader=vtk_reader, export_map=export_map, file_name=file_name, file_dir=file_dir, ) @classmethod def extractVTKObject(cls, vtk_reader, **kwargs) -> VTKBase: # Get vtk object from reader vtk_obj = vtk_reader.GetOutput() # Create modulus.sym.VTK wrapper if vtk_obj.__vtkname__ == "vtkImageData": vtk_wrapper = VTKUniformGrid.init_from_obj(vtk_obj, **kwargs) elif vtk_obj.__vtkname__ == "vtkRectilinearGrid": vtk_wrapper = VTKRectilinearGrid.init_from_obj(vtk_obj, **kwargs) elif vtk_obj.__vtkname__ == "vtkStructuredGrid": vtk_wrapper = VTKStructuredGrid.init_from_obj(vtk_obj, **kwargs) elif vtk_obj.__vtkname__ == "vtkUnstructuredGrid": vtk_wrapper = VTKUnstructuredGrid.init_from_obj(vtk_obj, **kwargs) elif vtk_obj.__vtkname__ == "vtkPolyData": vtk_wrapper = VTKPolyData.init_from_obj(vtk_obj, **kwargs) else: raise ValueError("Unsupported vtk data type read") logger.info(f"Loaded {vtk_obj.__vtkname__} object from file") return vtk_wrapper @classmethod def readXMLVTK(cls, file_path: str): # vtk.vtkXMLGenericDataObjectReader does not seem to work # Could read first like of XML and check VTKFile type=... file_path = Path(file_path) if file_path.suffix == ".vti": vtk_reader = vtk.vtkXMLImageDataReader() elif file_path.suffix == ".vtr": vtk_reader = vtk.vtkXMLRectilinearGridReader() elif file_path.suffix == ".vts": vtk_reader = vtk.vtkXMLStructuredGridReader() elif file_path.suffix == ".vtu": vtk_reader = vtk.vtkXMLUnstructuredGridReader() elif file_path.suffix == ".vtp": vtk_reader = vtk.vtkXMLPolyDataReader() else: raise ValueError("Unsupported XML VTK format") vtk_reader.SetFileName(file_path) vtk_reader.Update() return vtk_reader @classmethod def readLegacyVTK(cls, file_path: str): vtk_reader = vtk.vtkGenericDataObjectReader() vtk_reader.SetFileName(file_path) vtk_reader.ReadAllScalarsOn() vtk_reader.ReadAllVectorsOn() vtk_reader.Update() return vtk_reader def var_to_polyvtk( var_dict: Dict[str, np.array], file_path: str, coordinates=["x", "y", "z"] ): """Helper method for nodes to export thier variables to a vtkPolyData file Should be avoided when possible as other VTK formats can save on memory. Parameters ---------- var_dict : Dict[str, np.array] Dictionary of variables in the array format [nstates, dim] file_path : str File directory/name of output vtk file coordinates : list, optional Variable names that corresponds to point positions, by default ["x", "y", "z"] """ # Extract point locations points = [] for axis in coordinates: if axis not in var_dict.keys(): data0 = next(iter(var_dict.values())) points.append(np.zeros((data0.shape[0], 1), dtype=np.short)) else: points.append(var_dict[axis]) del var_dict[axis] points = np.concatenate(points, axis=1) # Create 1:1 export map export_map = {} for key in var_dict.keys(): export_map[key] = [key] file_path = Path(file_path) vtk_obj = VTKPolyData( points=points, export_map=export_map, file_name=file_path.stem, file_dir=file_path.parents[0], ) vtk_obj.var_to_vtk(data_vars=var_dict) def grid_to_vtk(var_dict: Dict[str, np.array], file_path: str, batch_index: int = 0): """Helper method for nodes to export image/grid data to vtkUniformData file. Arrays should be in the numpy 'ij' layout (element [0,0] is origin) Parameters ---------- var_dict : Dict[str, np.array] Dictionary of variables in the array format [batch, dim, xdim, ydim, zdim] file_path : str File directory/name of output vtk file batch_index : int, optional Batch index to write to file, by default 0 """ # convert keys to strings var = {str(key): value for key, value in var_dict.items()} shape = np.shape(next(iter(var.values()))) assert len(shape) > 2 and len(shape) < 6, "Input variables must be dim 3, 4, 5" # Padd for any missing dims bsize = shape[0] cdim = shape[1] grid_shape = list(shape[2:]) bounds = [[0, i - 1] for i in grid_shape] # Flatten data and select batch shaped_dict = {} for key in var_dict.keys(): shaped_dict[key] = var_dict[key][batch_index] cdim = shaped_dict[key].shape[0] shaped_dict[key] = shaped_dict[key].reshape(cdim, -1).T # Create 1:1 export map export_map = {} for key in shaped_dict.keys(): export_map[key] = [key] file_path = Path(file_path) vtk_obj = VTKUniformGrid( bounds=bounds, npoints=grid_shape, export_map=export_map, file_name=file_path.stem, file_dir=file_path.parents[0], ) vtk_obj.var_to_vtk(data_vars=shaped_dict)
modulus-sym-main
modulus/sym/utils/io/vtk.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Helper functions and classes for integration """ import torch import quadpy as qd import numpy as np def tensor_int(w, v, u=None): # u is a N*1 tensor # v is a N*M tensor # w is a N*1 tensor, quadrature (cubature) weights # N is the number of points # M is the number of (test) functions # return: 1*M tensor: integrals of u*v[i] if u is not None # return: 1*M tensor: integrals of v[i] if u is None if u is None: return torch.einsum("ik,ij->jk", v, w) else: return torch.einsum("ij,ik,ij->jk", u, v, w) # class template for the quadrature class Quadrature: def __init__(self, scheme, trans, jac): # scheme is the quadpy scheme # trans is the transform from reference domain to target domain # jac is the jacobian of trans, SHOULD BE 1D NUMPY ARRAY! # points_ref and weights_ref are on the reference domain self.scheme = scheme self.trans = trans self.jac = jac self.points_ref = scheme.points self.weights_ref = scheme.weights self.make_numpy() # self.make_tensor() self.N_points = self.points_numpy.shape[0] def make_numpy(self): # points_numpy and weights_numpy are N*d numpy arrays, where N is the # of points and d is the dimension # The approximated integral value is given by np.dot(f(p[:,0],p[:,1],p[:,2]),w) self.points_numpy = self.trans(self.points_ref) self.weights_numpy = ( self.weights_ref * self.jac ) # check here, should be 1D*1D numpy array, or 1D*constant def make_tensor(self): # points_tensor and weights_tensor are N*d tf tensors, where N is the # of points and d is the dimension self.points_tensor = torch.tensor(self.points_numpy, dtype=torch.float32) self.weights_tensor = torch.tensor( self.weights_numpy.reshape((-1, 1)), dtype=torch.float32 ) class Quadrature_Data: def __init__(self, points_numpy, weights_numpy): self.points_numpy = points_numpy self.weights_numpy = weights_numpy # self.make_tensor() def make_tensor(self): # points_tensor and weights_tensor are N*d tf tensors, where N is the # of points and d is the dimension self.points_tensor = torch.tensor(self.points_numpy, dtype=torch.float32) self.weights_tensor = torch.tensor( self.weights_numpy.reshape((-1, 1)), dtype=torch.float32 ) def Quad_Collection(quad_class, paras): points_tmp = [] weights_tmp = [] for para in paras: quad_tmp = quad_class(*para) points_tmp.append(quad_tmp.points_numpy) weights_tmp.append(quad_tmp.weights_numpy) return Quadrature_Data(np.vstack(points_tmp), np.hstack(weights_tmp)) # 1D classes. (Quad_Line can be used in nD) class Quad_Line(Quadrature): def __init__(self, p0, p1, n, scheme_fcn=qd.c1.gauss_legendre): self.p0 = np.reshape(np.array(p0), (1, -1)) self.p1 = np.reshape(np.array(p1), (1, -1)) super().__init__( scheme=scheme_fcn(n), trans=lambda t: 0.5 * (self.p0 + self.p1) + 0.5 * (self.p1 - self.p0) * np.reshape(t, (-1, 1)), jac=np.linalg.norm(self.p1 - self.p0) / 2, ) # 2D curves class Quad_Circle(Quadrature): def __init__(self, r, c, n, scheme_fcn=qd.u2.get_good_scheme): self.r = np.array(r) self.c = np.array(c) def my_trans(x): rr = np.multiply.outer(self.r, x) rr = np.swapaxes(rr, 0, -2) return rr + self.c super().__init__(scheme=scheme_fcn(n), trans=my_trans, jac=2 * np.pi * self.r) # 2D domains class Quad_Tri(Quadrature): def __init__(self, v, n, scheme_fcn=qd.t2.get_good_scheme): from quadpy.tn._helpers import get_vol self.v = np.array(v) # 3x2 numpy array if self.v.shape != (3, 2): self.v = self.v.T assert self.v.shape == (3, 2), "Vertices must be a 3 by 2 list or numpy array!" self.vol = get_vol(self.v) super().__init__( scheme=scheme_fcn(n), trans=lambda x: x.T @ self.v, jac=self.vol ) class Quad_Disk(Quadrature): def __init__(self, r, c, n, scheme_fcn=qd.s2.get_good_scheme): self.r = np.array(r) self.c = np.array(c) def my_trans(x): rr = np.multiply.outer(self.r, x.T) rr = np.swapaxes(rr, 0, -2) return rr + self.c super().__init__(scheme=scheme_fcn(n), trans=my_trans, jac=np.pi * self.r**2) class Quad_Rect(Quadrature): """ The points are specified in an array of shape (2, 2, ...) such that arr[0][0] is the lower left corner, arr[1][1] the upper right, and set region_type=False. If your c2 has its sides aligned with the coordinate axes, you can use v=[[x0, x1], [y0, y1]], and set region_type=True (default). """ def __init__(self, v, n, region_type=True, scheme_fcn=qd.c2.get_good_scheme): from quadpy.cn._helpers import transform, get_detJ if region_type: from quadpy.c2 import rectangle_points self.v = rectangle_points(*v) else: self.v = v super().__init__( scheme=scheme_fcn(n), trans=lambda x: transform(x, self.v), jac=lambda x: np.abs(get_detJ(x, self.v)) * 2 ** np.prod(len(self.v.shape) - 1), ) def make_numpy(self): self.points_numpy = self.trans(self.points_ref) self.weights_numpy = self.weights_ref * self.jac( self.points_ref ) # check here, should be 1D*1D numpy array, or 1D*constant # 3D surfaces class Quad_Sphere(Quadrature): def __init__(self, r, c, n, scheme_fcn=qd.u3.get_good_scheme): self.r = np.array(r) self.c = np.array(c) super().__init__( scheme=scheme_fcn(n), trans=lambda x: x.T * self.r + self.c, jac=4 * np.pi * self.r**2, ) # 3D domain class Quad_Ball(Quadrature): def __init__(self, r, c, n, scheme_fcn=qd.s3.get_good_scheme): assert ( n <= 7 ), "The degree of the cubature is not more than 7. Otherwise use nD ball scheme!" self.r = np.array(r) self.c = np.array(c) def my_trans(x): rr = np.multiply.outer(self.r, x.T) rr = np.swapaxes(rr, 0, -2) return rr + self.c super().__init__( scheme=scheme_fcn(n), trans=my_trans, jac=4 / 3 * np.pi * self.r**3 ) class Quad_Tet(Quadrature): def __init__(self, v, n, scheme_fcn=qd.t3.get_good_scheme): assert ( n <= 14 ), "The degree of the cubature is not more than 14. Otherwise use nD simplex scheme!" self.v = np.array(v) if self.v.shape != (4, 3): self.v = self.v.T assert self.v.shape == (4, 3), "Vertices must be a 4 by 3 list or numpy array!" from quadpy.tn._helpers import transform, get_vol self.vol = get_vol(self.v) super().__init__( scheme=scheme_fcn(n), trans=lambda x: transform(x, self.v.T).T, jac=self.vol ) class Quad_Cube(Quadrature): def __init__(self, v, n, region_type=True, scheme_fcn=qd.c3.get_good_scheme): from quadpy.cn._helpers import transform, get_detJ assert ( n <= 11 ), "The degree of the cubature is not more than 11. Otherwise use nD cube scheme!" if region_type: from quadpy.c3 import cube_points self.v = cube_points(*v) else: self.v = v super().__init__( scheme=scheme_fcn(n), trans=lambda x: transform(x, self.v), jac=lambda x: np.abs(get_detJ(x, self.v)) * 2 ** np.prod(len(self.v.shape) - 1), ) def make_numpy(self): self.points_numpy = self.trans(self.points_ref) self.weights_numpy = self.weights_ref * self.jac( self.points_ref ) # check here, should be 1D*1D numpy array, or 1D*constant class Quad_Pyramid(Quadrature): def __init__(self, v, scheme_fcn=qd.p3.felippa_5): from quadpy.p3._helpers import _transform, _get_det_J self.v = v super().__init__( scheme=scheme_fcn(), trans=lambda x: _transform(x.T, self.v).T, jac=lambda x: np.abs(_get_det_J(self.v, x.T)), ) def make_numpy(self): self.points_numpy = self.trans(self.points_ref) self.weights_numpy = self.weights_ref * self.jac( self.points_ref ) # check here, should be 1D*1D numpy array, or 1D*constant class Quad_Wedge(Quadrature): def __init__(self, v, scheme_fcn=qd.w3.felippa_6): from quadpy.w3._helpers import _transform, _get_detJ self.v = np.array(v) super().__init__( scheme=scheme_fcn(), trans=lambda x: _transform(x.T, self.v).T, jac=lambda x: np.abs(_get_detJ(x.T, self.v)), ) def make_numpy(self): self.points_numpy = self.trans(self.points_ref) self.weights_numpy = self.weights_ref * self.jac( self.points_ref ) # check here, should be 1D*1D numpy array, or 1D*constant # nD manifold class Quad_nD_Sphere(Quadrature): def __init__(self, r, c, dim, scheme_fcn=qd.un.dobrodeev_1978): import ndim self.r = np.array(r) self.c = np.array(c) self.dim = dim def my_trans(x): rr = np.multiply.outer(self.r, x) rr = np.swapaxes(rr, 0, -2) return rr + self.c self.vol = ndim.nsphere.volume(self.dim, r=self.r) super().__init__(scheme=scheme_fcn(self.dim), trans=my_trans, jac=self.vol) class Quad_nD_Simplex(Quadrature): def __init__(self, v, dim, n, scheme_fcn=qd.tn.grundmann_moeller): from quadpy.tn._helpers import transform, get_vol self.v = np.array(v) self.dim = dim self.vol = get_vol(self.v) super().__init__( scheme=scheme_fcn(self.dim, n), trans=lambda x: transform(x, self.v.T).T, jac=self.vol, ) class Quad_nD_Ball(Quadrature): def __init__(self, r, c, dim, scheme_fcn=qd.sn.dobrodeev_1970): import ndim self.r = np.array(r) self.c = np.array(c) self.dim = dim self.vol = ndim.nball.volume(self.dim, r=self.r, symbolic=False) def my_trans(x): rr = np.multiply.outer(self.r, x.T) rr = np.swapaxes(rr, 0, -2) return rr + self.c super().__init__(scheme=scheme_fcn(self.dim), trans=my_trans, jac=self.vol) class Quad_nD_Cube(Quadrature): def __init__(self, v, dim, region_type=True, scheme_fcn=qd.cn.stroud_cn_3_3): from quadpy.cn._helpers import transform, get_detJ self.dim = dim if region_type: from quadpy.cn._helpers import ncube_points self.v = ncube_points(*v) else: self.v = v super().__init__( scheme=scheme_fcn(self.dim), trans=lambda x: transform(x, self.v), jac=lambda x: 2 ** np.prod(len(self.v.shape) - 1) * np.abs(get_detJ(x, self.v)), ) def make_numpy(self): self.points_numpy = self.trans(self.points_ref) self.weights_numpy = self.weights_ref * self.jac( self.points_ref ) # check here, should be 1D*1D numpy array, or 1D*constant # 2D cubature based on mesh def domain_weights_and_points_2D(P, T, n=5, scheme=None): # P is the point info # T is the triangle info # n is the cubature order, if applicable T = T.astype(np.int) Nt = T.shape[0] if scheme is None: scheme = qd.t2._lether.lether(n) p_ref = scheme.points w_ref = scheme.weights xy_tmp = [] w_tmp = [] for i in range(1, Nt): idp = T[i, :] tri = np.vstack((P[idp[0], :], P[idp[1], :], P[idp[2], :])) S = 0.5 * np.abs(np.linalg.det(np.hstack((tri, np.ones((3, 1)))))) xy_tmp.append(p_ref.T @ tri) w_tmp.append(S * w_ref) xy = np.vstack(xy_tmp) w = np.hstack(w_tmp) return w.astype(np.float32), xy.astype(np.float32) # 3D cubature based on mesh def domain_weights_and_points_3D(P, T, n=5, scheme=None): # P is the point info # T is the triangle info # n is the cubature order, if applicable T = T.astype(np.int) Nt = T.shape[0] if scheme is None: scheme = qd.t3.get_good_scheme(n) p_ref = scheme.points w_ref = scheme.weights xyz_tmp = [] w_tmp = [] for i in range(0, Nt): idp = T[i, :] tet = np.vstack((P[idp[0], :], P[idp[1], :], P[idp[2], :], P[idp[3], :])) V = np.abs(np.linalg.det(np.hstack((tet, np.ones((4, 1)))))) / 6 xyz_tmp.append(p_ref.T @ tet) w_tmp.append(V * w_ref) xyz = np.vstack(xyz_tmp) w = np.hstack(w_tmp) return w.astype(np.float32), xyz.astype(np.float32) # Householder reflector def Householder_reflector(u0, v0): # u and v are unit vectors # Hu=v, Hv=u u = u0.reshape((-1, 1)) / np.linalg.norm(u0) v = v0.reshape((-1, 1)) / np.linalg.norm(v0) return np.eye(3) + (u @ v.T + v @ u.T - u @ u.T - v @ v.T) / (1 - u.T @ v)
modulus-sym-main
modulus/sym/utils/vpinn/integral.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .integral import * from .test_functions import *
modulus-sym-main
modulus/sym/utils/vpinn/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Helper functions for and classes for making test functions used in VPINNs """ import torch import numpy as np import sympy as sp from sympy import I import random, itertools from modulus.sym.utils.sympy.torch_printer import torch_lambdify x, y, z = sp.symbols("x, y ,z", real=True) class meta_test_function: def __init__(self, name, interval1d, sympy_fcn, is_real=True): self.name = name self.interval1d = interval1d self.sympy_fcn = sympy_fcn self.is_real = is_real def my_trig(n, x): return sp.exp(I * sp.pi * (n + 1) * x) Legendre_test = meta_test_function("Legendre", [-1, 1], sp.legendre) Chebyshev_T_test = meta_test_function("Chebyshev_T", [-1, 1], sp.chebyshevt) Chebyshev_U_test = meta_test_function("Chebyshev_U", [-1, 1], sp.chebyshevu) Trig_test = meta_test_function("Trig", [-1, 1], my_trig, False) class Degree_nk: def __init__(self, dim): self.dim = dim self.L = 0 self.last_degrees = [None, None] def __iter__(self): return self def __next__(self): dim = self.dim if self.L == 0: degrees = np.array([np.zeros(dim, dtype=int)]) else: degrees = [] mask0 = np.ones(len(self.last_degrees[0]), dtype=bool) if self.L > 1: mask1 = np.ones(len(self.last_degrees[1]), dtype=bool) for i in range(dim): deg = self.last_degrees[0][mask0] deg[:, i] += 1 degrees.append(deg) mask0 &= self.last_degrees[0][:, i] == 0 if self.L > 1: mask1 &= self.last_degrees[1][:, i] == 0 degrees = np.concatenate(degrees) self.last_degrees[1] = self.last_degrees[0] self.last_degrees[0] = degrees self.L += 1 return degrees class Test_Function: def __init__( self, name_ord_dict=None, box=None, diff_list=None, weight_fcn=None, simplify=None, ): # name_ord_dict: list of name and order of test functions. E.G. {Legendre_test:[1,2,3], sin_test:[1,5]} # 0 order Legendre is recommended, as it is constant 1, which is very helpful in most problems # box: the lower and upper limit of the domain. It also gives the dimension of the domain and functions. # diff_list: the list of derivatives of test functions need to return, E.G. [[1,0,0],[0,2,0],'grad','Delta'] if diff_list is None: diff_list = ["grad", "Delta"] if box is None: box = [[0, 0], [1, 1]] if name_ord_dict is None: name_ord_dict = {Legendre_test: [0, 1], Trig_test: [0, 1, 2, 3]} if weight_fcn is None: weight_fcn = 1.0 if simplify is None: simplify = False self.name_ord_dict = name_ord_dict self.lb = box[0] self.ub = box[1] self.diff_list = diff_list self.weight_fcn = weight_fcn self.simplify = simplify if self.simplify: self.simplify_fcn = sp.simplify else: self.simplify_fcn = lambda x: x self.dim = len(self.lb) self.initialize() self.make_fcn_list() self.lambdify_fcn_list() def initialize(self): self.test_sympy_dict = {"v": []} for k in self.diff_list: if k == "grad": self.test_sympy_dict["vx"] = [] if self.dim >= 2: self.test_sympy_dict["vy"] = [] if self.dim == 3: self.test_sympy_dict["vz"] = [] elif k == "Delta": self.test_sympy_dict["dv"] = [] else: my_str = "v" + "x" * k[0] if self.dim >= 2: my_str += "y" * k[1] if self.dim == 3: my_str += "z" * k[2] self.test_sympy_dict[my_str] = [] def generator(self, test_class): ord_list = self.name_ord_dict[test_class] if self.dim == 1: x_trans = test_class.interval1d[0] + ( test_class.interval1d[1] - test_class.interval1d[0] ) / (self.ub[0] - self.lb[0]) * (x - self.lb[0]) for k in ord_list: if test_class.is_real: yield self.simplify_fcn( self.weight_fcn * test_class.sympy_fcn(k, x_trans) ) else: for f in test_class.sympy_fcn(k, x_trans).as_real_imag(): yield self.simplify_fcn(self.weight_fcn * f) elif self.dim == 2: x_trans = test_class.interval1d[0] + ( test_class.interval1d[1] - test_class.interval1d[0] ) / (self.ub[0] - self.lb[0]) * (x - self.lb[0]) y_trans = test_class.interval1d[0] + ( test_class.interval1d[1] - test_class.interval1d[0] ) / (self.ub[1] - self.lb[1]) * (y - self.lb[1]) ev = itertools.islice(Degree_nk(self.dim), ord_list[0], ord_list[-1] + 1) for _ in ord_list: ord = next(ev) for k in ord: if test_class.is_real: yield self.simplify_fcn( self.weight_fcn * test_class.sympy_fcn(k[0], x_trans) * test_class.sympy_fcn(k[1], y_trans) ) else: for fx in test_class.sympy_fcn(k[0], x_trans).as_real_imag(): for fy in test_class.sympy_fcn( k[1], y_trans ).as_real_imag(): yield self.simplify_fcn(self.weight_fcn * fx * fy) else: x_trans = test_class.interval1d[0] + ( test_class.interval1d[1] - test_class.interval1d[0] ) / (self.ub[0] - self.lb[0]) * (x - self.lb[0]) y_trans = test_class.interval1d[0] + ( test_class.interval1d[1] - test_class.interval1d[0] ) / (self.ub[1] - self.lb[1]) * (y - self.lb[1]) z_trans = test_class.interval1d[0] + ( test_class.interval1d[1] - test_class.interval1d[0] ) / (self.ub[2] - self.lb[2]) * (z - self.lb[2]) ev = itertools.islice(Degree_nk(self.dim), ord_list[0], ord_list[-1] + 1) for _ in ord_list: ord = next(ev) for k in ord: if test_class.is_real: yield self.simplify_fcn( self.weight_fcn * test_class.sympy_fcn(k[0], x_trans) * test_class.sympy_fcn(k[1], y_trans) * test_class.sympy_fcn(k[2], z_trans) ) else: for fx in test_class.sympy_fcn(k[0], x_trans).as_real_imag(): for fy in test_class.sympy_fcn( k[1], y_trans ).as_real_imag(): for fz in test_class.sympy_fcn( k[2], z_trans ).as_real_imag(): yield self.simplify_fcn( self.weight_fcn * fx * fy * fz ) return def make_fcn_list(self): if self.dim == 1: for name in self.name_ord_dict.keys(): for fcn in self.generator(name): self.test_sympy_dict["v"].append(fcn) for k in self.diff_list: if k == "grad": self.test_sympy_dict["vx"].append( self.simplify_fcn(sp.diff(fcn, x)) ) elif k == "Delta": self.test_sympy_dict["dv"].append( self.simplify_fcn(sp.diff(fcn, x, 2)) ) else: self.test_sympy_dict["v" + "x" * k[0]].append( self.simplify_fcn(sp.diff(fcn, x, k[0])) ) elif self.dim == 2: for name in self.name_ord_dict.keys(): for fcn in self.generator(name): self.test_sympy_dict["v"].append(fcn) for k in self.diff_list: if k == "grad": self.test_sympy_dict["vx"].append( self.simplify_fcn(sp.diff(fcn, x)) ) self.test_sympy_dict["vy"].append( self.simplify_fcn(sp.diff(fcn, y)) ) elif k == "Delta": self.test_sympy_dict["dv"].append( self.simplify_fcn( sp.diff(fcn, x, 2) + sp.diff(fcn, y, 2) ) ) else: self.test_sympy_dict["v" + "x" * k[0] + "y" * k[1]].append( self.simplify_fcn(sp.diff(fcn, x, k[0], y, k[1])) ) elif self.dim == 3: for name in self.name_ord_dict.keys(): for fcn in self.generator(name): self.test_sympy_dict["v"].append(fcn) for k in self.diff_list: if k == "grad": self.test_sympy_dict["vx"].append( self.simplify_fcn(sp.diff(fcn, x)) ) self.test_sympy_dict["vy"].append( self.simplify_fcn(sp.diff(fcn, y)) ) self.test_sympy_dict["vz"].append( self.simplify_fcn(sp.diff(fcn, z)) ) elif k == "Delta": self.test_sympy_dict["dv"].append( self.simplify_fcn( sp.diff(fcn, x, 2) + sp.diff(fcn, y, 2) + sp.diff(fcn, z, 2) ) ) else: self.test_sympy_dict[ "v" + "x" * k[0] + "y" * k[1] + "z" * k[2] ].append( self.simplify_fcn( sp.diff(fcn, x, k[0], y, k[1], z, k[2]) ) ) self.num_fcn = len(self.test_sympy_dict["v"]) @staticmethod def lambdify(f_sympy, var_list): dim = len(var_list) if f_sympy.is_number: if dim == 1: return lambda x0, f_sympy=f_sympy: torch.zeros_like(x0) + float(f_sympy) elif dim == 2: return lambda x0, y0, f_sympy=f_sympy: torch.zeros_like(x0) + float( f_sympy ) elif dim == 3: return lambda x0, y0, z0, f_sympy=f_sympy: torch.zeros_like(x0) + float( f_sympy ) else: return torch_lambdify(f_sympy, var_list, separable=True) def lambdify_fcn_list(self): self.test_lambda_dict = {} if self.dim == 1: var_list = [x] elif self.dim == 2: var_list = [x, y] elif self.dim == 3: var_list = [x, y, z] for k in self.test_sympy_dict.keys(): self.test_lambda_dict[k] = [] for f_sympy in self.test_sympy_dict[k]: self.test_lambda_dict[k].append( Test_Function.lambdify(f_sympy, var_list) ) ### use torch_lambdify def eval_test(self, ind, x, y=None, z=None): # return N*M tensor # N is the number of points # M is the number of test functions tmp_list = [] for f in self.test_lambda_dict[ind]: if self.dim == 1: tmp_list.append(f(x)) elif self.dim == 2: assert y is not None, "please provide tensor y" tmp_list.append(f(x, y)) elif self.dim == 3: assert (y is not None) and ( z is not None ), "please provide tensor y and z" tmp_list.append(f(x, y, z)) return torch.cat(tmp_list, 1) ### tf.concat -> torch.cat class Vector_Test: def __init__(self, v1, v2, v3=None, mix=None): # 0<mix<1 is the percentage of how many test functions to generate. # mix>=1 is the number of test functions to generate. # self.dim: dimension of functions # self.num: number of total functions at hand # self.num_output: number of output functions self.test_lambda_dict = {} self.dim = v1.dim self.v1 = v1 self.v2 = v2 if v3 is None: self.num = 2 self.num_fcn = self.v1.num_fcn * self.v2.num_fcn else: self.num = 3 self.v3 = v3 self.num_fcn = self.v1.num_fcn * self.v2.num_fcn * self.v3.num_fcn self.mix = mix self.sample_vector_test() def sample_vector_test(self): mix = self.mix if (mix is None) or (mix == "all") or (mix == 1): self.mix = "all" self.num_output = self.num_fcn if self.num == 2: self.output_ind = [ k for k in itertools.product( range(self.v1.num_fcn), range(self.v2.num_fcn) ) ] else: self.output_ind = [ k for k in itertools.product( range(self.v1.num_fcn), range(self.v2.num_fcn), range(self.v3.num_fcn), ) ] elif 0 < mix < 1: self.mix = mix self.num_output = int(self.mix * self.num_fcn) if self.mix > 0 else 1 if self.num == 2: self.output_ind = random.sample( set( itertools.product( range(self.v1.num_fcn), range(self.v2.num_fcn) ) ), self.num_output, ) else: self.output_ind = random.sample( set( itertools.product( range(self.v1.num_fcn), range(self.v2.num_fcn), range(self.v3.num_fcn), ) ), self.num_output, ) elif mix >= 1: self.mix = int(mix) self.num_output = self.mix if self.num == 2: self.output_ind = random.sample( set( itertools.product( range(self.v1.num_fcn), range(self.v2.num_fcn) ) ), self.num_output, ) else: self.output_ind = random.sample( set( itertools.product( range(self.v1.num_fcn), range(self.v2.num_fcn), range(self.v3.num_fcn), ) ), self.num_output, ) def eval_test(self, ind, x, y=None, z=None): # return a list of N*M tensor # N is the number of points # M is the number of test functions # Usage: # v = Vector_Test(v1, v2) # v_x, v_y = v.eval_test('v', x_tensor, y_tensor) if self.dim == 1: var_list = [x] elif self.dim == 2: var_list = [x, y] else: var_list = [x, y, z] v1_val = self.v1.eval_test(ind, *var_list) v2_val = self.v2.eval_test(ind, *var_list) if self.num == 2: # Cannot use cuda graphs because of this x_ind = torch.tensor([k[0] for k in self.output_ind], device=x.device) y_ind = torch.tensor([k[1] for k in self.output_ind], device=x.device) return v1_val.index_select(1, x_ind), v2_val.index_select(1, y_ind) else: # Cannot use cuda graphs because of this v3_val = self.v3.eval_test(ind, *var_list) x_ind = torch.tensor([k[0] for k in self.output_ind], device=x.device) y_ind = torch.tensor([k[1] for k in self.output_ind], device=x.device) z_ind = torch.tensor([k[2] for k in self.output_ind], device=x.device) return ( v1_val.index_select(1, x_ind), v2_val.index_select(1, y_ind), v3_val.index_select(1, z_ind), ) class RBF_Function: def __init__( self, dim=2, RBF_name=None, diff_list=None, weight_fcn=None, simplify=None ): # center is N*d array, d is dimension. # eps is 1D array with length N. if RBF_name is None: self.RBF_name = "Gaussian" else: self.RBF_name = RBF_name if diff_list is None: diff_list = ["grad", "Delta"] if weight_fcn is None: weight_fcn = 1.0 if simplify is None: simplify = False self.simplify = simplify if self.simplify: self.simplify_fcn = sp.simplify else: self.simplify_fcn = lambda x: x self.dim = dim self.diff_list = diff_list self.weight_fcn = weight_fcn if self.dim == 1: self.r_sympy = sp.Abs(x) elif self.dim == 2: self.r_sympy = sp.sqrt(x**2 + y**2) else: self.r_sympy = sp.sqrt(x**2 + y**2 + z**2) if self.RBF_name == "Inverse quadratic": self.RBF_prototype = 1 / (1 + self.r_sympy**2) elif self.RBF_name == "Inverse multiquadric": self.RBF_prototype = 1 / sp.sqrt(1 + self.r_sympy**2) else: self.RBF_prototype = sp.exp(-self.r_sympy**2) self.initialize() self.make_fcn_list() self.lambdify_fcn_list() def initialize(self): self.test_sympy_dict = {"v": []} self.pow_dict = {"v": 0} for k in self.diff_list: if k == "grad": self.test_sympy_dict["vx"] = [] self.pow_dict["vx"] = 1 if self.dim >= 2: self.test_sympy_dict["vy"] = [] self.pow_dict["vy"] = 1 if self.dim == 3: self.test_sympy_dict["vz"] = [] self.pow_dict["vz"] = 1 elif k == "Delta": self.test_sympy_dict["dv"] = [] self.pow_dict["dv"] = 2 else: my_str = "v" + "x" * k[0] if self.dim >= 2: my_str += "y" * k[1] if self.dim == 3: my_str += "z" * k[2] self.test_sympy_dict[my_str] = [] self.pow_dict[my_str] = sum(k) def make_fcn_list(self): self.test_sympy_dict["v"] = self.RBF_prototype if self.dim == 1: for k in self.diff_list: if k == "grad": self.test_sympy_dict["vx"] = self.simplify_fcn( sp.diff(self.RBF_prototype, x) ) elif k == "Delta": self.test_sympy_dict["dv"] = self.simplify_fcn( sp.diff(self.RBF_prototype, x, 2) ) else: self.test_sympy_dict["v" + "x" * k[0]] = self.simplify_fcn( sp.diff(self.RBF_prototype, x, k[0]) ) elif self.dim == 2: for k in self.diff_list: if k == "grad": self.test_sympy_dict["vx"] = self.simplify_fcn( sp.diff(self.RBF_prototype, x) ) self.test_sympy_dict["vy"] = self.simplify_fcn( sp.diff(self.RBF_prototype, y) ) elif k == "Delta": self.test_sympy_dict["dv"] = self.simplify_fcn( sp.diff(self.RBF_prototype, x, 2) + sp.diff(self.RBF_prototype, y, 2) ) else: self.test_sympy_dict[ "v" + "x" * k[0] + "y" * k[1] ] = self.simplify_fcn(sp.diff(self.RBF_prototype, x, k[0], y, k[1])) else: for k in self.diff_list: if k == "grad": self.test_sympy_dict["vx"] = self.simplify_fcn( sp.diff(self.RBF_prototype, x) ) self.test_sympy_dict["vy"] = self.simplify_fcn( sp.diff(self.RBF_prototype, y) ) self.test_sympy_dict["vz"] = self.simplify_fcn( sp.diff(self.RBF_prototype, z) ) elif k == "Delta": self.test_sympy_dict["dv"] = self.simplify_fcn( sp.diff(self.RBF_prototype, x, 2) + sp.diff(self.RBF_prototype, y, 2) + sp.diff(self.RBF_prototype, z, 2) ) else: self.test_sympy_dict[ "v" + "x" * k[0] + "y" * k[1] + "z" * k[2] ] = self.simplify_fcn( sp.diff(self.RBF_prototype, x, k[0], y, k[1], z, k[2]) ) def lambdify_fcn_list(self): self.test_lambda_dict = {} if self.dim == 1: var_list = x elif self.dim == 2: var_list = [x, y] elif self.dim == 3: var_list = [x, y, z] for k in self.test_sympy_dict.keys(): f_sympy = self.test_sympy_dict[k] self.test_lambda_dict[k] = torch_lambdify(f_sympy, var_list, separable=True) def eval_test( self, ind, x, y=None, z=None, x_center=None, y_center=None, z_center=None, eps=None, ): # return N*M tensor # N is the number of points # M is the number of test functions # eps is a real number or tensor # all input tensors are column vectors assert x_center is not None, "please provide x_center" if eps is None: eps = torch.full( [1, x_center.shape[0]], 10.0, device=x.device ) ### tf.fill -> torch.full elif isinstance(eps, int) or isinstance(eps, float): eps = torch.full([1, x_center.shape[0]], np.float32(eps), device=x.device) elif isinstance(eps, torch.Tensor): eps = torch.reshape(eps, [1, -1]) x_center_t = torch.transpose( x_center, 0, 1 ) ### tf.transpose -> torch.transpose if self.dim == 1: x_new = eps * (x - x_center_t) elif self.dim == 2: y_center_t = torch.transpose( y_center, 0, 1 ) ### tf.transpose -> torch.transpose x_new = eps * (x - x_center_t) y_new = eps * (y - y_center_t) else: y_center_t = torch.transpose( y_center, 0, 1 ) ### tf.transpose -> torch.transpose z_center_t = torch.transpose( z_center, 0, 1 ) ### tf.transpose -> torch.transpose x_new = eps * (x - x_center_t) y_new = eps * (y - y_center_t) z_new = eps * (z - z_center_t) fcn = self.test_lambda_dict[ind] p = self.pow_dict[ind] if self.dim == 1: return fcn(x_new) * torch.pow(eps, p) ### tf.pow -> torch.pow elif self.dim == 2: return fcn(x_new, y_new) * torch.pow(eps, p) ### tf.pow -> torch.pow else: return fcn(x_new, y_new, z_new) * torch.pow(eps, p) ### tf.pow -> torch.pow
modulus-sym-main
modulus/sym/utils/vpinn/test_functions.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict from typing import List import torch import torch.nn as nn from torch import Tensor import modulus.sym.models.layers as layers from modulus.sym.models.arch import Arch from modulus.sym.key import Key class RadialBasisArch(Arch): """ Radial Basis Neural Network. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list bounds : Dict[str, Tuple[float, float]] Bounds to to randomly generate radial basis functions in. detach_keys : List[Key], optional List of keys to detach gradients, by default [] nr_centers : int = 128 number of radial basis functions to use. sigma : float = 0.1 Sigma in radial basis kernel. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], bounds: Dict[str, List[float]], detach_keys: List[Key] = [], nr_centers: int = 128, sigma: float = 0.1, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) out_features = sum(self.output_key_dict.values()) self.nr_centers = nr_centers self.sigma = sigma self.centers = nn.Parameter( torch.empty(nr_centers, len(bounds)), requires_grad=False ) with torch.no_grad(): for idx, bound in enumerate(bounds.values()): self.centers[:, idx].uniform_(bound[0], bound[1]) self.fc_layer = layers.FCLayer( nr_centers, out_features, activation_fn=layers.Activation.IDENTITY, ) def _tensor_forward(self, x: Tensor) -> Tensor: # no op since no scales x = self.process_input(x, input_dict=self.input_key_dict, dim=-1) x = x.unsqueeze(-2) # no need to unsqueeze(0), we could and we have to rely on broadcast to # make BatchedTensor work centers = self.centers radial_activation = torch.exp( -0.5 * torch.square(torch.norm(centers - x, p=2, dim=-1) / self.sigma) ) x = self.fc_layer(radial_activation) x = self.process_output(x) # no op return x def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: """ This is the original forward function, left here for the correctness test. """ x = self.prepare_input( in_vars, self.input_key_dict.keys(), self.detach_key_dict, -1 ) shape = (x.size(0), self.nr_centers, x.size(1)) x = x.unsqueeze(1).expand(shape) centers = self.centers.expand(shape) radial_activation = torch.exp( -0.5 * torch.square(torch.norm(centers - x, p=2, dim=-1) / self.sigma) ) x = self.fc_layer(radial_activation) return self.prepare_output(x, self.output_key_dict, -1)
modulus-sym-main
modulus/sym/models/radial_basis.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import Tensor from typing import Dict, List, Tuple import modulus.sym.models.fully_connected as fully_connected import modulus.sym.models.layers as layers from modulus.sym.models.layers import Activation from modulus.sym.models.arch import Arch from modulus.sym.key import Key class FourierNetArch(Arch): """Fourier encoding fully-connected neural network. This network is a fully-connected neural network that encodes the input features into Fourier space using sinesoidal activation functions. This helps reduce spectal bias during training. Parameters ---------- input_keys : List[Key] Input key list. output_keys : List[Key] Output key list. detach_keys : List[Key], optional List of keys to detach gradients, by default [] frequencies : Tuple, optional A tuple that describes the Fourier encodings to use any inputs in the list `['x', 'y', 'z', 't']`. The first element describes the type of frequency encoding with options, `'gaussian', 'full', 'axis', 'diagonal'`, by default ("axis", [i for i in range(10)]) :obj:`'gaussian'` samples frequency of Fourier series from Gaussian. :obj:`'axis'` samples along axis of spectral space with the given list range of frequencies. :obj:`'diagonal'` samples along diagonal of spectral space with the given list range of frequencies. :obj:`'full'` samples along entire spectral space for all combinations of frequencies in given list. frequencies_params : Tuple, optional Same as `frequencies` used for encodings of any inputs not in the list `['x', 'y', 'z', 't']`. By default ("axis", [i for i in range(10)]) activation_fn : Activation, optional Activation function, by default :obj:`Activation.SILU` layer_size : int, optional Layer size for every hidden layer of the model, by default 512 nr_layers : int, optional Number of hidden layers of the model, by default 6 skip_connections : bool, optional Apply skip connections every 2 hidden layers, by default False weight_norm : bool, optional Use weight norm on fully connected layers, by default True adaptive_activations : bool, optional Use an adaptive activation functions, by default False Variable Shape -------------- - Input variable tensor shape: :math:`[N, size]` - Output variable tensor shape: :math:`[N, size]` Example ------- Gaussian frequencies >>> std = 1.0; num_freq = 10 >>> model = .fourier_net.FourierNetArch( >>> [Key("x", size=2)], >>> [Key("y", size=2)], >>> frequencies=("gaussian", std, num_freq)) Diagonal frequencies >>> frequencies = [1.0, 2.0, 3.0, 4.0] >>> model = .fourier_net.FourierNetArch( >>> [Key("x", size=2)], >>> [Key("y", size=2)], >>> frequencies=("diagonal", frequencies)) Full frequencies >>> frequencies = [1.0, 2.0, 3.0, 4.0] >>> model = .fourier_net.FourierNetArch( >>> [Key("x", size=2)], >>> [Key("y", size=2)], >>> frequencies=("full", frequencies)) Note ---- For information regarding adaptive activations please refer to https://arxiv.org/abs/1906.01170. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], frequencies: Tuple = ("axis", [i for i in range(10)]), frequencies_params: Tuple = ("axis", [i for i in range(10)]), activation_fn: Activation = Activation.SILU, layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) if frequencies_params is None: frequencies_params = frequencies self.xyzt_var = [x for x in self.input_key_dict if x in ["x", "y", "z", "t"]] # Prepare slice index xyzt_slice_index = self.prepare_slice_index(self.input_key_dict, self.xyzt_var) self.register_buffer("xyzt_slice_index", xyzt_slice_index, persistent=False) self.params_var = [ x for x in self.input_key_dict if x not in ["x", "y", "z", "t"] ] params_slice_index = self.prepare_slice_index( self.input_key_dict, self.params_var ) self.register_buffer("params_slice_index", params_slice_index, persistent=False) in_features_xyzt = sum( (v for k, v in self.input_key_dict.items() if k in self.xyzt_var) ) in_features_params = sum( (v for k, v in self.input_key_dict.items() if k in self.params_var) ) in_features = in_features_xyzt + in_features_params out_features = sum(self.output_key_dict.values()) if in_features_xyzt > 0: self.fourier_layer_xyzt = layers.FourierLayer( in_features=in_features_xyzt, frequencies=frequencies ) in_features += self.fourier_layer_xyzt.out_features() else: self.fourier_layer_xyzt = None if in_features_params > 0: self.fourier_layer_params = layers.FourierLayer( in_features=in_features_params, frequencies=frequencies_params ) in_features += self.fourier_layer_params.out_features() else: self.fourier_layer_params = None self.fc = fully_connected.FullyConnectedArchCore( in_features=in_features, layer_size=layer_size, out_features=out_features, nr_layers=nr_layers, skip_connections=skip_connections, activation_fn=activation_fn, adaptive_activations=adaptive_activations, weight_norm=weight_norm, ) def _tensor_forward(self, x: Tensor) -> Tensor: x = self.process_input( x, self.input_scales_tensor, input_dict=self.input_key_dict, dim=-1 ) if self.fourier_layer_xyzt is not None: in_xyzt_var = self.slice_input(x, self.xyzt_slice_index, dim=-1) fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layer_params is not None: in_params_var = self.slice_input(x, self.params_slice_index, dim=-1) fourier_params = self.fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) x = self.fc(x) x = self.process_output(x, self.output_scales_tensor) return x def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: """ This is the original forward function, left here for the correctness test. """ x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) if self.fourier_layer_xyzt is not None: in_xyzt_var = self.prepare_input( in_vars, self.xyzt_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layer_params is not None: in_params_var = self.prepare_input( in_vars, self.params_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) fourier_params = self.fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) x = self.fc(x) return self.prepare_output( x, self.output_key_dict, dim=-1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/fourier_net.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import math from typing import Dict, Tuple, Callable, List, Union import numpy as np import torch import torch.nn.functional as F from torch import Tensor # TODO enum causes segmentation faults with current torch script. Go back to enum after torch script update """ @enum.unique class InterpolationType(enum.Enum): NEAREST_NEIGHBOR = (1, 1) LINEAR = (2, 2) SMOOTH_STEP_1 = (3, 2) SMOOTH_STEP_2 = (4, 2) GAUSSIAN = (6, 5) def __init__(self, index, stride): self.index = index self.stride = stride """ @torch.jit.script def linear_step(x: Tensor) -> Tensor: return torch.clip(x, 0, 1) @torch.jit.script def smooth_step_1(x: Tensor) -> Tensor: return torch.clip(3 * x**2 - 2 * x**3, 0, 1) @torch.jit.script def smooth_step_2(x: Tensor) -> Tensor: return torch.clip(x**3 * (6 * x**2 - 15 * x + 10), 0, 1) @torch.jit.script def nearest_neighbor_weighting(dist_vec: Tensor, dx: Tensor) -> Tensor: return torch.ones(dist_vec.shape[:-2] + [1] + [1], device=dist_vec.device) @torch.jit.script def _hyper_cube_weighting(lower_point: Tensor, upper_point: Tensor) -> Tensor: dim = lower_point.shape[-1] weights = [] weights = [upper_point[..., 0], lower_point[..., 0]] for i in range(1, dim): new_weights = [] for w in weights: new_weights.append(w * upper_point[..., i]) new_weights.append(w * lower_point[..., i]) weights = new_weights weights = torch.stack(weights, dim=-1) return torch.unsqueeze(weights, dim=-1) @torch.jit.script def linear_weighting(dist_vec: Tensor, dx: Tensor) -> Tensor: normalized_dist_vec = dist_vec / dx lower_point = normalized_dist_vec[..., 0, :] upper_point = -normalized_dist_vec[..., -1, :] return _hyper_cube_weighting(lower_point, upper_point) @torch.jit.script def smooth_step_1_weighting(dist_vec: Tensor, dx: Tensor) -> Tensor: normalized_dist_vec = dist_vec / dx lower_point = smooth_step_1(normalized_dist_vec[..., 0, :]) upper_point = smooth_step_1(-normalized_dist_vec[..., -1, :]) return _hyper_cube_weighting(lower_point, upper_point) @torch.jit.script def smooth_step_2_weighting(dist_vec: Tensor, dx: Tensor) -> Tensor: normalized_dist_vec = dist_vec / dx lower_point = smooth_step_2(normalized_dist_vec[..., 0, :]) upper_point = smooth_step_2(-normalized_dist_vec[..., -1, :]) return _hyper_cube_weighting(lower_point, upper_point) @torch.jit.script def gaussian_weighting(dist_vec: Tensor, dx: Tensor) -> Tensor: dim = dx.size(-1) sharpen = 2.0 sigma = dx / sharpen factor = 1.0 / ((2.0 * math.pi) ** (dim / 2.0) * sigma.prod()) gaussian = torch.exp(-0.5 * torch.square((dist_vec / sigma))) gaussian = factor * gaussian.prod(dim=-1) norm = gaussian.sum(dim=2, keepdim=True) weights = torch.unsqueeze(gaussian / norm, dim=3) return weights # @torch.jit.script def _gather_nd(params: Tensor, indices: Tensor) -> Tensor: """As seen here https://discuss.pytorch.org/t/how-to-do-the-tf-gather-nd-in-pytorch/6445/30""" orig_shape = list(indices.shape) num_samples = 1 for s in orig_shape[:-1]: num_samples *= s m = orig_shape[-1] n = len(params.shape) if m <= n: out_shape = orig_shape[:-1] + list(params.shape)[m:] else: raise ValueError( f"the last dimension of indices must less or equal to the rank of params. Got indices:{indices.shape}, params:{params.shape}. {m} > {n}" ) indices = indices.reshape((num_samples, m)).transpose(0, 1).tolist() output = params[indices] # (num_samples, ...) return output.reshape(out_shape).contiguous() @torch.jit.script def index_values_high_mem(points: Tensor, idx: Tensor) -> Tensor: idx = idx.unsqueeze(3).repeat_interleave(points.size(-1), dim=3) points = points.unsqueeze(1).repeat_interleave(idx.size(1), dim=1) out = torch.gather(points, dim=2, index=idx) return out # @torch.jit.script def index_values_low_mem(points: Tensor, idx: Tensor) -> Tensor: """ Input: points: (b,m,c) float32 array, known points idx: (b,n,3) int32 array, indices to known points Output: out: (b,m,n,c) float32 array, interpolated point values """ device = points.device idxShape = idx.shape batch_size = idxShape[0] num_points = idxShape[1] K = idxShape[2] num_features = points.shape[2] batch_indices = torch.reshape( torch.tile( torch.unsqueeze(torch.arange(0, batch_size).to(device), dim=0), (num_points * K,), ), [-1], ) # BNK point_indices = torch.reshape(idx, [-1]) # BNK vertices = _gather_nd( points, torch.stack((batch_indices, point_indices), dim=1) ) # BNKxC vertices4d = torch.reshape( vertices, [batch_size, num_points, K, num_features] ) # BxNxKxC return vertices4d @torch.jit.script def _grid_knn_idx( query_points: Tensor, grid: List[Tuple[float, float, int]], stride: int, padding: bool = True, ) -> Tensor: # set k k = stride // 2 # set device device = query_points.device # find nearest neighbors of query points from a grid # dx vector on grid dx = torch.tensor([(x[1] - x[0]) / (x[2] - 1) for x in grid]) dx = dx.view(1, 1, len(grid)).to(device) # min point on grid (this will change if we are padding the grid) start = torch.tensor([val[0] for val in grid]).to(device) if padding: start = start - (k * dx) start = start.view(1, 1, len(grid)) # this is the center nearest neighbor in the grid center_idx = (((query_points - start) / dx) + (stride / 2.0 % 1.0)).to(torch.int64) # index window idx_add = ( torch.arange(-((stride - 1) // 2), stride // 2 + 1).view(1, 1, -1).to(device) ) # find all index in window around center index # TODO make for more general diminsions if len(grid) == 1: idx_row_0 = center_idx[..., 0:1] + idx_add idx = idx_row_0.view(idx_row_0.shape[0:2] + torch.Size([int(stride)])) elif len(grid) == 2: dim_size_1 = grid[1][2] if padding: dim_size_1 += 2 * k idx_row_0 = dim_size_1 * (center_idx[..., 0:1] + idx_add) idx_row_0 = idx_row_0.unsqueeze(-1) idx_row_1 = center_idx[..., 1:2] + idx_add idx_row_1 = idx_row_1.unsqueeze(2) idx = (idx_row_0 + idx_row_1).view( idx_row_0.shape[0:2] + torch.Size([int(stride**2)]) ) elif len(grid) == 3: dim_size_1 = grid[1][2] dim_size_2 = grid[2][2] if padding: dim_size_1 += 2 * k dim_size_2 += 2 * k idx_row_0 = dim_size_2 * dim_size_1 * (center_idx[..., 0:1] + idx_add) idx_row_0 = idx_row_0.unsqueeze(-1).unsqueeze(-1) idx_row_1 = dim_size_2 * (center_idx[..., 1:2] + idx_add) idx_row_1 = idx_row_1.unsqueeze(2).unsqueeze(-1) idx_row_2 = center_idx[..., 2:3] + idx_add idx_row_2 = idx_row_2.unsqueeze(2).unsqueeze(3) idx = (idx_row_0 + idx_row_1 + idx_row_2).view( idx_row_0.shape[0:2] + torch.Size([int(stride**3)]) ) else: raise RuntimeError return idx # TODO currently the `tolist` operation is not supported by torch script and when fixed torch script will be used # @torch.jit.script def interpolation( query_points: Tensor, context_grid: Tensor, grid: List[Tuple[float, float, int]], interpolation_type: str = "smooth_step_2", mem_speed_trade: bool = True, ) -> Tensor: # set stride TODO this will be replaced with InterpolationType later if interpolation_type == "nearest_neighbor": stride = 1 elif interpolation_type == "linear": stride = 2 elif interpolation_type == "smooth_step_1": stride = 2 elif interpolation_type == "smooth_step_2": stride = 2 elif interpolation_type == "gaussian": stride = 5 else: raise RuntimeError # set device device = query_points.device # useful values dims = len(grid) nr_channels = context_grid.size(0) dx = [((x[1] - x[0]) / (x[2] - 1)) for x in grid] # generate mesh grid of position information [grid_dim_1, grid_dim_2, ..., 2-3] # NOTE the mesh grid is padded by stride//2 k = stride // 2 linspace = [ torch.linspace(x[0] - k * dx_i, x[1] + k * dx_i, x[2] + 2 * k) for x, dx_i in zip(grid, dx) ] meshgrid = torch.meshgrid(linspace) meshgrid = torch.stack(meshgrid, dim=-1).to(device) # pad context grid by k to avoid cuts on corners padding = dims * (k, k) context_grid = F.pad(context_grid, padding) # reshape query points, context grid and mesh grid for easier indexing # [1, grid_dim_1*grid_dim_2*..., 2-4] nr_grid_points = int(torch.tensor([x[2] + 2 * k for x in grid]).prod()) meshgrid = meshgrid.view(1, nr_grid_points, dims) context_grid = torch.reshape(context_grid, [1, nr_channels, nr_grid_points]) context_grid = torch.swapaxes(context_grid, 1, 2) query_points = query_points.unsqueeze(0) # compute index of nearest neighbor on grid to query points idx = _grid_knn_idx(query_points, grid, stride, padding=True) # index mesh grid to get distance vector if mem_speed_trade: mesh_grid_idx = index_values_low_mem(meshgrid, idx) else: mesh_grid_idx = index_values_high_mem(meshgrid, idx) dist_vec = query_points.unsqueeze(2) - mesh_grid_idx # make tf dx vec (for interpolation function) dx = torch.tensor(dx, dtype=torch.float32) dx = torch.reshape(dx, [1, 1, 1, dims]).to(device) # compute bump function if interpolation_type == "nearest_neighbor": weights = nearest_neighbor_weighting(dist_vec, dx) elif interpolation_type == "linear": weights = linear_weighting(dist_vec, dx) elif interpolation_type == "smooth_step_1": weights = smooth_step_1_weighting(dist_vec, dx) elif interpolation_type == "smooth_step_2": weights = smooth_step_2_weighting(dist_vec, dx) elif interpolation_type == "gaussian": weights = gaussian_weighting(dist_vec, dx) else: raise RuntimeError # index context grid with index if mem_speed_trade: context_grid_idx = index_values_low_mem(context_grid, idx) else: context_grid_idx = index_values_high_mem(context_grid, idx) # interpolate points product = weights * context_grid_idx interpolated_points = product.sum(dim=2) return interpolated_points[0]
modulus-sym-main
modulus/sym/models/interpolation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum from typing import Optional, List, Dict, Tuple, Union import torch import torch.nn as nn from torch import Tensor import modulus.sym.models.layers as layers from modulus.sym.models.arch import Arch from modulus.sym.models.layers import Activation from modulus.sym.key import Key from modulus.sym.constants import NO_OP_NORM class FilterTypeMeta(enum.EnumMeta): def __getitem__(self, name): try: return super().__getitem__(name.upper()) except (KeyError) as error: raise KeyError(f"Invalid activation function {name}") class FilterType(enum.Enum, metaclass=FilterTypeMeta): FOURIER = enum.auto() GABOR = enum.auto() class MultiplicativeFilterNetArch(Arch): """ Multiplicative Filter Net with Activations Reference: Fathony, R., Sahu, A.K., AI, A.A., Willmott, D. and Kolter, J.Z., MULTIPLICATIVE FILTER NETWORKS. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list detach_keys : List[Key], optional List of keys to detach gradients, by default [] layer_size : int = 512 Layer size for every hidden layer of the model. nr_layers : int = 6 Number of hidden layers of the model. skip_connections : bool = False If true then apply skip connections every 2 hidden layers. activation_fn : layers.Activation = layers.Activation.SILU Activation function used by network. filter_type : FilterType = FilterType.FOURIER Filter type for multiplicative filter network, (Fourier or Gabor). weight_norm : bool = True Use weight norm on fully connected layers. input_scale : float = 10.0 Scale inputs for multiplicative filters. gabor_alpha : float = 6.0 Alpha value for Gabor filter. gabor_beta : float = 1.0 Beta value for Gabor filter. normalization : Optional[Dict[str, Tuple[float, float]]] = None Normalization of input to network. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, activation_fn=layers.Activation.IDENTITY, filter_type: Union[FilterType, str] = FilterType.FOURIER, weight_norm: bool = True, input_scale: float = 10.0, gabor_alpha: float = 6.0, gabor_beta: float = 1.0, normalization: Optional[Dict[str, Tuple[float, float]]] = None, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) in_features = sum(self.input_key_dict.values()) out_features = sum(self.output_key_dict.values()) self.nr_layers = nr_layers self.skip_connections = skip_connections if isinstance(filter_type, str): filter_type = FilterType[filter_type] if filter_type == FilterType.FOURIER: self.first_filter = layers.FourierFilter( in_features=in_features, layer_size=layer_size, nr_layers=nr_layers, input_scale=input_scale, ) elif filter_type == FilterType.GABOR: self.first_filter = layers.GaborFilter( in_features=in_features, layer_size=layer_size, nr_layers=nr_layers, input_scale=input_scale, alpha=gabor_alpha, beta=gabor_beta, ) else: raise ValueError self.filters = nn.ModuleList() self.fc_layers = nn.ModuleList() for i in range(nr_layers): self.fc_layers.append( layers.FCLayer( in_features=layer_size, out_features=layer_size, activation_fn=activation_fn, weight_norm=weight_norm, ) ) if filter_type == FilterType.FOURIER: self.filters.append( layers.FourierFilter( in_features=in_features, layer_size=layer_size, nr_layers=nr_layers, input_scale=input_scale, ) ) elif filter_type == FilterType.GABOR: self.filters.append( layers.GaborFilter( in_features=in_features, layer_size=layer_size, nr_layers=nr_layers, input_scale=input_scale, alpha=gabor_alpha, beta=gabor_beta, ) ) else: raise ValueError self.final_layer = layers.FCLayer( in_features=layer_size, out_features=out_features, activation_fn=layers.Activation.IDENTITY, weight_norm=False, activation_par=None, ) self.normalization: Optional[Dict[str, Tuple[float, float]]] = normalization # iterate input keys and add NO_OP_NORM if it is not specified if self.normalization is not None: for key in self.input_key_dict: if key not in self.normalization: self.normalization[key] = NO_OP_NORM self.register_buffer( "normalization_tensor", self._get_normalization_tensor(self.input_key_dict, self.normalization), persistent=False, ) def _tensor_forward(self, x: Tensor) -> Tensor: x = self._tensor_normalize(x, self.normalization_tensor) x = self.process_input( x, self.input_scales_tensor, input_dict=self.input_key_dict, dim=-1 ) res = self.first_filter(x) res_skip: Optional[Tensor] = None for i, (fc_layer, filter) in enumerate(zip(self.fc_layers, self.filters)): res_fc = fc_layer(res) res_filter = filter(x) res = res_fc * res_filter if self.skip_connections and i % 2 == 0: if res_skip is not None: res, res_skip = res + res_skip, res else: res_skip = res x = self.final_layer(res) x = self.process_output(x, self.output_scales_tensor) return x def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: """ This is the original forward function, left here for the correctness test. """ x = self.prepare_input( self._normalize(in_vars, self.normalization), self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) res = self.first_filter(x) res_skip: Optional[Tensor] = None for i, (fc_layer, filter) in enumerate(zip(self.fc_layers, self.filters)): res_fc = fc_layer(res) res_filter = filter(x) res = res_fc * res_filter if self.skip_connections and i % 2 == 0: if res_skip is not None: res, res_skip = res + res_skip, res else: res_skip = res res = self.final_layer(res) return self.prepare_output( res, self.output_key_dict, dim=-1, output_scales=self.output_scales ) def _normalize( self, in_vars: Dict[str, Tensor], norms: Optional[Dict[str, Tuple[float, float]]], ) -> Dict[str, Tensor]: if norms is None: return in_vars normalized_in_vars = {} for k, v in in_vars.items(): if k in norms: v = (v - norms[k][0]) / (norms[k][1] - norms[k][0]) v = 2 * v - 1 normalized_in_vars[k] = v return normalized_in_vars
modulus-sym-main
modulus/sym/models/multiplicative_filter_net.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Dict import torch import torch.nn as nn from torch import Tensor import modulus.sym.models.layers as layers from modulus.sym.models.arch import Arch from modulus.sym.key import Key class DGMArch(Arch): """ A variation of the fully connected network. Reference: Sirignano, J. and Spiliopoulos, K., 2018. DGM: A deep learning algorithm for solving partial differential equations. Journal of computational physics, 375, pp.1339-1364. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list detach_keys : List[Key], optional List of keys to detach gradients, by default [] layer_size : int = 512 Layer size for every hidden layer of the model. nr_layers : int = 6 Number of hidden layers of the model. skip_connections : bool = False If true then apply skip connections every 2 hidden layers. activation_fn : layers.Activation = layers.Activation.SILU Activation function used by network. adaptive_activations : bool = False If True then use an adaptive activation function as described here https://arxiv.org/abs/1906.01170. weight_norm : bool = True Use weight norm on fully connected layers. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], layer_size: int = 512, nr_layers: int = 6, activation_fn=layers.Activation.SIN, adaptive_activations: bool = False, weight_norm: bool = True, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) in_features = sum(self.input_key_dict.values()) out_features = sum(self.output_key_dict.values()) if adaptive_activations: activation_par = nn.Parameter(torch.ones(1)) else: activation_par = None self.fc_start = layers.FCLayer( in_features=in_features, out_features=layer_size, activation_fn=activation_fn, weight_norm=weight_norm, ) self.dgm_layers = nn.ModuleList() for _ in range(nr_layers - 1): single_layer = {} for key in ["z", "g", "r", "h"]: single_layer[key] = layers.DGMLayer( in_features_1=in_features, in_features_2=layer_size, out_features=layer_size, activation_fn=activation_fn, weight_norm=weight_norm, activation_par=activation_par, ) self.dgm_layers.append(nn.ModuleDict(single_layer)) self.fc_end = layers.FCLayer( in_features=layer_size, out_features=out_features, activation_fn=layers.Activation.IDENTITY, weight_norm=False, activation_par=None, ) def _tensor_forward(self, x: Tensor) -> Tensor: x = self.process_input( x, self.input_scales_tensor, periodicity=self.periodicity, input_dict=self.input_key_dict, dim=-1, ) s = self.fc_start(x) for layer in self.dgm_layers: # TODO: this can be optimized, 'z', 'g', 'r' can be merged into a # single layer with 3x output size z = layer["z"](x, s) g = layer["g"](x, s) r = layer["r"](x, s) h = layer["h"](x, s * r) s = h - g * h + z * s x = self.fc_end(s) x = self.process_output(x, self.output_scales_tensor) return x def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: """ This is the original forward function, left here for the correctness test. """ x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) s = self.fc_start(x) for layer in self.dgm_layers: # TODO: this can be optimized, 'z', 'g', 'r' can be merged into a # single layer with 3x output size z = layer["z"](x, s) g = layer["g"](x, s) r = layer["r"](x, s) h = layer["h"](x, s * r) s = h - g * h + z * s x = self.fc_end(s) return self.prepare_output( x, self.output_key_dict, dim=-1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/dgm.py
# ignore_header_test """""" """ SRResNet model. This code was modified from, https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Super-Resolution The following license is provided from their source, MIT License Copyright (c) 2020 Sagar Vinodababu Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import torch from torch import nn import torchvision import math from typing import List, Dict from modulus.sym.key import Key from modulus.sym.models.arch import Arch from modulus.sym.models.layers import Activation, get_activation_fn Tensor = torch.Tensor class ConvolutionalBlock3d(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, batch_norm: bool = False, activation_fn: Activation = Activation.IDENTITY, ): super().__init__() activation_fn = get_activation_fn(activation_fn) # A container that will hold the layers in this convolutional block layers = list() # A convolutional layer layers.append( nn.Conv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, ) ) # A batch normalization (BN) layer, if wanted if batch_norm is True: layers.append(nn.BatchNorm3d(num_features=out_channels)) self.activation_fn = get_activation_fn(activation_fn) # Put together the convolutional block as a sequence of the layers in this container self.conv_block = nn.Sequential(*layers) def forward(self, input: Tensor) -> Tensor: output = self.activation_fn(self.conv_block(input)) return output # (N, out_channels, w, h) class PixelShuffle3d(nn.Module): # reference: http://www.multisilicon.com/blog/a25332339.html # This class is a 3d version of pixelshuffle. def __init__(self, scale: int): super().__init__() self.scale = scale def forward(self, input: Tensor) -> Tensor: batch_size, channels, in_depth, in_height, in_width = input.size() nOut = int(channels // self.scale**3) out_depth = in_depth * self.scale out_height = in_height * self.scale out_width = in_width * self.scale input_view = input.contiguous().view( batch_size, nOut, self.scale, self.scale, self.scale, in_depth, in_height, in_width, ) output = input_view.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() return output.view(batch_size, nOut, out_depth, out_height, out_width) class SubPixelConvolutionalBlock3d(nn.Module): def __init__( self, kernel_size: int = 3, conv_layer_size: int = 64, scaling_factor: int = 2 ): super().__init__() # A convolutional layer that increases the number of channels by scaling factor^2, followed by pixel shuffle and PReLU self.conv = nn.Conv3d( in_channels=conv_layer_size, out_channels=conv_layer_size * (scaling_factor**3), kernel_size=kernel_size, padding=kernel_size // 2, ) # These additional channels are shuffled to form additional pixels, upscaling each dimension by the scaling factor self.pixel_shuffle = PixelShuffle3d(scaling_factor) self.prelu = nn.PReLU() def forward(self, input: Tensor) -> Tensor: output = self.conv(input) # (N, n_channels * scaling factor^2, w, h) output = self.pixel_shuffle( output ) # (N, n_channels, w * scaling factor, h * scaling factor) output = self.prelu( output ) # (N, n_channels, w * scaling factor, h * scaling factor) return output class ResidualConvBlock3d(nn.Module): def __init__( self, n_layers: int = 1, kernel_size: int = 3, conv_layer_size: int = 64, activation_fn: Activation = Activation.IDENTITY, ): super().__init__() layers = [] for i in range(n_layers - 1): layers.append( ConvolutionalBlock3d( in_channels=conv_layer_size, out_channels=conv_layer_size, kernel_size=kernel_size, batch_norm=True, activation_fn=activation_fn, ) ) # The final convolutional block with no activation layers.append( ConvolutionalBlock3d( in_channels=conv_layer_size, out_channels=conv_layer_size, kernel_size=kernel_size, batch_norm=True, ) ) self.conv_layers = nn.Sequential(*layers) def forward(self, input: Tensor) -> Tensor: residual = input # (N, n_channels, w, h) output = self.conv_layers(input) # (N, n_channels, w, h) output = output + residual # (N, n_channels, w, h) return output class SRResNetArch(Arch): """3D super resolution network Based on the implementation: https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Super-Resolution Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list detach_keys : List[Key], optional List of keys to detach gradients, by default [] large_kernel_size : int, optional convolutional kernel size for first and last convolution, by default 7 small_kernel_size : int, optional convolutional kernel size for internal convolutions, by default 3 conv_layer_size : int, optional Latent channel size, by default 32 n_resid_blocks : int, optional Number of residual blocks before , by default 8 scaling_factor : int, optional Scaling factor to increase the output feature size compared to the input (2, 4, or 8), by default 8 activation_fn : Activation, optional Activation function, by default Activation.PRELU """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], large_kernel_size: int = 7, small_kernel_size: int = 3, conv_layer_size: int = 32, n_resid_blocks: int = 8, scaling_factor: int = 8, activation_fn: Activation = Activation.PRELU, ): super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) in_channels = sum(self.input_key_dict.values()) out_channels = sum(self.output_key_dict.values()) self.var_dim = 1 # Scaling factor must be 2, 4, or 8 scaling_factor = int(scaling_factor) assert scaling_factor in {2, 4, 8}, "The scaling factor must be 2, 4, or 8!" # The first convolutional block self.conv_block1 = ConvolutionalBlock3d( in_channels=in_channels, out_channels=conv_layer_size, kernel_size=large_kernel_size, batch_norm=False, activation_fn=activation_fn, ) # A sequence of n_resid_blocks residual blocks, each containing a skip-connection across the block self.residual_blocks = nn.Sequential( *[ ResidualConvBlock3d( n_layers=2, kernel_size=small_kernel_size, conv_layer_size=conv_layer_size, activation_fn=activation_fn, ) for i in range(n_resid_blocks) ] ) # Another convolutional block self.conv_block2 = ConvolutionalBlock3d( in_channels=conv_layer_size, out_channels=conv_layer_size, kernel_size=small_kernel_size, batch_norm=True, ) # Upscaling is done by sub-pixel convolution, with each such block upscaling by a factor of 2 n_subpixel_convolution_blocks = int(math.log2(scaling_factor)) self.subpixel_convolutional_blocks = nn.Sequential( *[ SubPixelConvolutionalBlock3d( kernel_size=small_kernel_size, conv_layer_size=conv_layer_size, scaling_factor=2, ) for i in range(n_subpixel_convolution_blocks) ] ) # The last convolutional block self.conv_block3 = ConvolutionalBlock3d( in_channels=conv_layer_size, out_channels=out_channels, kernel_size=large_kernel_size, batch_norm=False, ) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: input = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=1, input_scales=self.input_scales, periodicity=self.periodicity, ) output = self.conv_block1(input) # (N, 3, w, h) residual = output # (N, n_channels, w, h) output = self.residual_blocks(output) # (N, n_channels, w, h) output = self.conv_block2(output) # (N, n_channels, w, h) output = output + residual # (N, n_channels, w, h) output = self.subpixel_convolutional_blocks( output ) # (N, n_channels, w * scaling factor, h * scaling factor) output = self.conv_block3( output ) # (N, 3, w * scaling factor, h * scaling factor) return self.prepare_output( output, self.output_key_dict, dim=1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/super_res_net.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional import torch import torch.nn as nn from torch import Tensor import modulus.sym.models.layers as layers from modulus.sym.models.arch import Arch from modulus.sym.key import Key class ModifiedFourierNetArch(Arch): """ A modified Fourier Network which enables multiplicative interactions betweeen the Fourier features and hidden layers. References: (1) Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J.T. and Ng, R., 2020. Fourier features let networks learn high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739. (2) Wang, S., Teng, Y. and Perdikaris, P., 2020. Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:2001.04536. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list detach_keys : List[Key], optional List of keys to detach gradients, by default [] frequencies : Tuple[str, List[float]] = ("axis", [i for i in range(10)]) A tuple that describes the Fourier encodings to use any inputs in the list `['x', 'y', 'z', 't']`. The first element describes the type of frequency encoding with options, `'gaussian', 'full', 'axis', 'diagonal'`. `'gaussian'` samples frequency of Fourier series from Gaussian. `'axis'` samples along axis of spectral space with the given list range of frequencies. `'diagonal'` samples along diagonal of spectral space with the given list range of frequencies. `'full'` samples along entire spectral space for all combinations of frequencies in given list. frequencies_params : Tuple[str, List[float]] = ("axis", [i for i in range(10)]) Same as `frequencies` except these are used for encodings on any inputs not in the list `['x', 'y', 'z', 't']`. activation_fn : layers.Activation = layers.Activation.SILU Activation function used by network. layer_size : int = 512 Layer size for every hidden layer of the model. nr_layers : int = 6 Number of hidden layers of the model. skip_connections : bool = False If true then apply skip connections every 2 hidden layers. weight_norm : bool = True Use weight norm on fully connected layers. adaptive_activations : bool = False If True then use an adaptive activation function as described here https://arxiv.org/abs/1906.01170. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], frequencies=("axis", [i for i in range(10)]), frequencies_params=("axis", [i for i in range(10)]), activation_fn=layers.Activation.SILU, layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) self.skip_connections = skip_connections if adaptive_activations: activation_par = nn.Parameter(torch.ones(1)) else: activation_par = None self.xyzt_var = [x for x in self.input_key_dict if x in ["x", "y", "z", "t"]] # Prepare slice index xyzt_slice_index = self.prepare_slice_index(self.input_key_dict, self.xyzt_var) self.register_buffer("xyzt_slice_index", xyzt_slice_index, persistent=False) self.params_var = [ x for x in self.input_key_dict if x not in ["x", "y", "z", "t"] ] params_slice_index = self.prepare_slice_index( self.input_key_dict, self.params_var ) self.register_buffer("params_slice_index", params_slice_index, persistent=False) in_features_xyzt = sum( (v for k, v in self.input_key_dict.items() if k in self.xyzt_var) ) in_features_params = sum( (v for k, v in self.input_key_dict.items() if k in self.params_var) ) in_features = in_features_xyzt + in_features_params out_features = sum(self.output_key_dict.values()) in_features = in_features_xyzt + in_features_params if in_features_xyzt > 0: self.fourier_layer_xyzt = layers.FourierLayer( in_features=in_features_xyzt, frequencies=frequencies ) in_features += self.fourier_layer_xyzt.out_features() else: self.fourier_layer_xyzt = None if in_features_params > 0: self.fourier_layer_params = layers.FourierLayer( in_features=in_features_params, frequencies=frequencies_params ) in_features += self.fourier_layer_params.out_features() else: self.fourier_layer_params = None self.fc_u = layers.FCLayer( in_features=in_features, out_features=layer_size, activation_fn=activation_fn, weight_norm=weight_norm, activation_par=activation_par, ) self.fc_v = layers.FCLayer( in_features=in_features, out_features=layer_size, activation_fn=activation_fn, weight_norm=weight_norm, activation_par=activation_par, ) self.fc_0 = layers.FCLayer( in_features, layer_size, activation_fn, weight_norm, activation_par=activation_par, ) self.fc_layers = nn.ModuleList() for i in range(nr_layers - 1): self.fc_layers.append( layers.FCLayer( layer_size, layer_size, activation_fn, weight_norm, activation_par=activation_par, ) ) self.final_layer = layers.FCLayer( in_features=layer_size, out_features=out_features, activation_fn=layers.Activation.IDENTITY, weight_norm=False, activation_par=None, ) def _tensor_forward(self, x: Tensor) -> Tensor: x = self.process_input( x, self.input_scales_tensor, input_dict=self.input_key_dict, dim=-1 ) if self.fourier_layer_xyzt is not None: in_xyzt_var = self.slice_input(x, self.xyzt_slice_index, dim=-1) fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layer_params is not None: in_params_var = self.slice_input(x, self.params_slice_index, dim=-1) fourier_params = self.fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) xu = self.fc_u(x) xv = self.fc_v(x) x = self.fc_0(x) x_skip: Optional[Tensor] = None for i, layer in enumerate(self.fc_layers, 1): x = layer(x) x = xu - x * xu + x * xv if self.skip_connections and i % 2 == 0: if x_skip is not None: x, x_skip = x + x_skip, x else: x_skip = x x = self.final_layer(x) x = self.process_output(x, self.output_scales_tensor) return x def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: """ This is the original forward function, left here for the correctness test. """ x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) if self.fourier_layer_xyzt is not None: in_xyzt_var = self.prepare_input( in_vars, self.xyzt_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layer_params is not None: in_params_var = self.prepare_input( in_vars, self.params_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) fourier_params = self.fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) xu = self.fc_u(x) xv = self.fc_v(x) x = self.fc_0(x) x_skip: Optional[Tensor] = None for i, layer in enumerate(self.fc_layers, 1): x = layer(x) x = xu - x * xu + x * xv if self.skip_connections and i % 2 == 0: if x_skip is not None: x, x_skip = x + x_skip, x else: x_skip = x x = self.final_layer(x) return self.prepare_output( x, self.output_key_dict, dim=-1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/modified_fourier_net.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import List, Dict, Tuple, Union import torch import functorch import logging import torch.nn as nn from torch import Tensor from typing import Optional, Dict, Union, List from modulus.sym.models.arch import Arch from modulus.sym.key import Key from modulus.sym.manager import GraphManager logger = logging.getLogger(__name__) class DeepONetArch(Arch): """DeepONet Parameters ---------- branch_net : Arch Branch net model. Output key should be variable "branch" trunk_net : Arch Trunk net model. Output key should be variable "trunk" output_keys : List[Key], optional Output variable keys, by default None detach_keys : List[Key], optional List of keys to detach gradients, by default [] branch_dim : Union[None, int], optional Dimension of the branch encoding vector. If none, the model will use the variable trunk dimension. Should be set for 2D/3D models. By default None trunk_dim : Union[None, int], optional Dimension of the trunk encoding vector. If none, the model will use the variable trunk dimension. Should be set for 2D/3D models. By default None Note ---- The branch and trunk net should ideally output to the same dimensionality, but if this is not the case the DeepO model will use a linear layer to match both branch/trunk dimensionality to (branch_dim + trunk_dim)/2. This vector will then be used for the final output multiplication. Note ---- Higher dimension branch networks are supported. If the output is not a 1D vector the DeepO model will reshape for the final output multiplication. Note ---- For more info on DeepONet refer to: https://arxiv.org/abs/1910.03193 """ def __init__( self, branch_net: Arch, trunk_net: Arch, output_keys: List[Key] = None, detach_keys: List[Key] = [], branch_dim: Union[None, int] = None, trunk_dim: Union[None, int] = None, ) -> None: super().__init__( input_keys=[], output_keys=output_keys, detach_keys=detach_keys, ) # branch net self.branch_net = branch_net self.branch_dim = branch_dim # trunk net self.trunk_net = trunk_net self.trunk_dim = trunk_dim # Set up input keys not trunk and branch should be initialized self.input_keys = self.branch_net.input_keys + self.trunk_net.input_keys self.input_key_dict = {str(var): var.size for var in self.input_keys} self.input_scales = {str(k): k.scale for k in self.input_keys} # Set up output linear layer for multiple variables # If output dims have not been defined, attempt to set then through the variables if self.trunk_dim is None: self.trunk_dim = sum(self.trunk_net.output_key_dict.values()) if self.branch_dim is None: self.branch_dim = sum(self.branch_net.output_key_dict.values()) self.deepo_dim = (self.trunk_dim + self.branch_dim) // 2 out_features = sum(self.output_key_dict.values()) if not self.trunk_dim == self.branch_dim: self.branch_linear = torch.nn.Linear( self.branch_dim, self.deepo_dim, bias=False ) self.trunk_linear = torch.nn.Linear( self.trunk_dim, self.deepo_dim, bias=False ) else: self.branch_linear = torch.nn.Identity() self.trunk_linear = torch.nn.Identity() self.output_linear = torch.nn.Linear(self.deepo_dim, out_features, bias=False) # prepare slice indices branch_slice_index = self.prepare_slice_index( self.input_key_dict, self.branch_net.input_key_dict.keys() ) self.register_buffer("branch_slice_index", branch_slice_index, persistent=False) trunk_slice_index = self.prepare_slice_index( self.input_key_dict, self.trunk_net.input_key_dict.keys() ) self.register_buffer("trunk_slice_index", trunk_slice_index, persistent=False) # Because we directly call `branch_net._tensor_forward` and `trunk_net._tensor_forward` # method in `self._tensor_forward`, we have to redirect `self.forward` to # `self._dict_forward` if one of them does not support func_arch. if not self.supports_func_arch: self.forward = self._dict_forward if GraphManager().func_arch: logger.warning( f"The combination of branch_net ({type(self.branch_net)}) and trunk_net" + f"({type(self.trunk_net)}) does not support FuncArch." ) @property def supports_func_arch(self) -> bool: return self.branch_net.supports_func_arch and self.trunk_net.supports_func_arch def _tensor_forward(self, x: Tensor) -> Tensor: assert self.supports_func_arch, ( f"The combination of branch_net {type(self.branch_net)} and trunk_net " + f"{type(self.trunk_net)} does not support FuncArch." ) branch_x = self.slice_input(x, self.branch_slice_index, dim=-1) trunk_x = self.slice_input(x, self.trunk_slice_index, dim=-1) branch_output = self.branch_net._tensor_forward(branch_x) trunk_output = self.trunk_net._tensor_forward(trunk_x) # Convert ouputs into 1D feature vectors if torch._C._functorch.is_gradtrackingtensor( trunk_output ) or torch._C._functorch.is_batchedtensor(trunk_output): # batched tensor does not have the original shape branch_output = branch_output.view(-1) trunk_output = trunk_output.view(-1) else: branch_output = branch_output.view(branch_output.shape[0], -1) trunk_output = trunk_output.view(trunk_output.shape[0], -1) assert ( branch_output.size(-1) == self.branch_dim ), f"Invalid feature dimension from branch net, expected {self.branch_dim} but found {branch_output.size(-1)}" assert ( trunk_output.size(-1) == self.trunk_dim ), f"Invalid feature dimension from trunk net, expected {self.trunk_dim} but found {trunk_output.size(-1)}" # Send through final linear layers branch_output = self.branch_linear(branch_output) trunk_output = self.trunk_linear(trunk_output) y = self.output_linear(branch_output * trunk_output) y = self.process_output(y, self.output_scales_tensor) return y def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: # Forward pass of branch and trunk net branch_output = self.branch_net(in_vars) trunk_output = self.trunk_net(in_vars) branch_output = branch_output["branch"] trunk_output = trunk_output["trunk"] # Convert ouputs into 1D feature vectors branch_output = branch_output.view(branch_output.shape[0], -1) trunk_output = trunk_output.view(trunk_output.shape[0], -1) assert ( branch_output.size(-1) == self.branch_dim ), f"Invalid feature dimension from branch net, expected {self.branch_dim} but found {branch_output.size(-1)}" assert ( trunk_output.size(-1) == self.trunk_dim ), f"Invalid feature dimension from trunk net, expected {self.trunk_dim} but found {trunk_output.size(-1)}" # Send through final linear layers branch_output = self.branch_linear(branch_output) trunk_output = self.trunk_linear(trunk_output) out = self.output_linear(branch_output * trunk_output) return self.prepare_output( out, self.output_key_dict, dim=-1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/deeponet.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from torch import Tensor import numpy as np import logging import functorch import ast from termcolor import colored from inspect import signature, _empty from typing import Optional, Callable, List, Dict, Union, Tuple from modulus.sym.constants import NO_OP_SCALE from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.constants import JIT_PYTORCH_VERSION from modulus.sym.distributed import DistributedManager from modulus.sym.manager import JitManager, JitArchMode from modulus.sym.models.layers import Activation logger = logging.getLogger(__name__) class Arch(nn.Module): """ Base class for all neural networks """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], periodicity: Union[Dict[str, Tuple[float, float]], None] = None, ): super().__init__() self.input_keys = input_keys self.output_keys = output_keys self.periodicity = periodicity self.saveable = True self.input_key_dict = {str(var): var.size for var in input_keys} self.output_key_dict = {str(var): var.size for var in output_keys} # input and output scales input_scales = {str(k): k.scale for k in input_keys} output_scales = {str(k): k.scale for k in output_keys} self.input_scales = ( None if all([s == NO_OP_SCALE for s in input_scales.values()]) else input_scales ) self.output_scales = ( None if all([s == NO_OP_SCALE for s in output_scales.values()]) else output_scales ) # Register scales tensors as buffers. # Buffer is allowed to be None, in this case it is a no-op in process_input function. self.register_buffer( "input_scales_tensor", self._get_scalers_tensor(self.input_key_dict, self.input_scales), persistent=False, ) self.register_buffer( "output_scales_tensor", self._get_scalers_tensor(self.output_key_dict, self.output_scales), persistent=False, ) self.detach_keys = detach_keys self.detach_key_dict: Dict[str, int] = { str(var): var.size for var in detach_keys } self.var_dim = -1 # If no detach keys, add a dummy for TorchScript compilation if not self.detach_key_dict: dummy_str = "_" while dummy_str in self.input_key_dict: dummy_str += "_" self.detach_key_dict[dummy_str] = 0 def make_node(self, name: str, jit: Optional[bool] = None, optimize: bool = True): """Makes neural network node for unrolling with Modulus `Graph`. Parameters ---------- name : str This will be used as the name of created node. jit : bool If true then compile the whole arch with jit, https://pytorch.org/docs/stable/jit.html. If None (default), will use the JitManager to get the global flag and mode (the default mode is `jit_arch_mode="only_activation"`), which could be configured in the hydra config. Please note that jit=true does not work with functorch and autograd trim edges. optimize : bool If true then treat parameters as optimizable. Examples -------- Here is a simple example of creating a node from the fully connected network:: >>> from .fully_connected import FullyConnectedArch >>> from modulus.sym.key import Key >>> fc_arch = FullyConnectedArch([Key('x'), Key('y')], [Key('u')]) >>> fc_node = fc_arch.make_node(name="fc_node") >>> print(fc_node) node: fc_node inputs: [x, y] derivatives: [] outputs: [u] optimize: True """ manager = DistributedManager() model_parallel_rank = ( manager.group_rank("model_parallel") if manager.distributed else 0 ) # set name for loading and saving model self.name = name # set checkpoint filename for model # append model parallel rank since each process in the first model # parallel group will save a separate checkpoint self.checkpoint_filename = name + f".{model_parallel_rank}.pth" if jit: logger.warning( "Passing jit=true when constructing Arch Node is deprecated, " "please remove it as JITManager could automatically handel it." ) elif jit is None: jit = JitManager().enabled and JitManager().arch_mode == JitArchMode.ALL # compile network if jit: # Warn user if pytorch version difference if not torch.__version__ == JIT_PYTORCH_VERSION: logger.warning( f"Installed PyTorch version {torch.__version__} is not TorchScript" + f" supported in Modulus. Version {JIT_PYTORCH_VERSION} is officially supported." ) arch = torch.jit.script(self) node_name = "Arch Node (jit): " + ("" if name is None else str(name)) logger.info("Jit compiling network arch") else: arch = self node_name = "Arch Node: " + ("" if name is None else str(name)) # Set save and load methods TODO this is hacky but required for jit arch.save = self.save arch.load = self.load # Create and return node from this network architecture net_node = Node( self.input_keys, self.output_keys, arch, name=node_name, optimize=optimize ) return net_node def save(self, directory): torch.save(self.state_dict(), directory + "/" + self.checkpoint_filename) def load(self, directory, map_location=None): self.load_state_dict( torch.load( directory + "/" + self.checkpoint_filename, map_location=map_location ) ) def set_scaling( self, var_name: str, shift: float = 0, scale: float = 1, ): if var_name in self.input_key_dict: self.input_scales[var_name] = (shift, scale) if var_name in self.output_key_dict: self.output_scales[var_name] = (shift, scale) self.input_scales_tensor = self._get_scalers_tensor( self.input_key_dict, self.input_scales ) self.output_scales_tensor = self._get_scalers_tensor( self.output_key_dict, self.output_scales ) @staticmethod def _get_scalers_tensor( key_size_dict: Dict[str, int], key_scales: Union[Dict[str, Tuple[float, float]], None] = None, ) -> Tensor: if key_scales is None: return None scalers_tensor = [[], []] for key, size in key_size_dict.items(): for _ in range(size): scalers_tensor[0].append(key_scales[key][0]) scalers_tensor[1].append(key_scales[key][1]) return torch.tensor(scalers_tensor) @staticmethod def prepare_input( input_variables: Dict[str, Tensor], mask: List[str], detach_dict: Dict[str, int], dim: int = 0, input_scales: Union[Dict[str, Tuple[float, float]], None] = None, periodicity: Union[Dict[str, Tuple[float, float]], None] = None, ) -> Tensor: output_tensor = [] for key in mask: if key in detach_dict: x = input_variables[key].detach() else: x = input_variables[key] # Scale input data if input_scales is not None: x = (x - input_scales[key][0]) / input_scales[key][1] append_tensor = [x] if periodicity is not None: if key in list(periodicity.keys()): scaled_input = (x - periodicity[key][0]) / ( periodicity[key][1] - periodicity[key][0] ) sin_tensor = torch.sin(2.0 * np.pi * scaled_input) cos_tensor = torch.cos(2.0 * np.pi * scaled_input) append_tensor = [sin_tensor, cos_tensor] output_tensor += append_tensor return torch.cat(output_tensor, dim=dim) @staticmethod def concat_input( input_variables: Dict[str, Tensor], mask: List[str], detach_dict: Union[Dict[str, int], None] = None, dim: int = -1, ) -> Tensor: output_tensor = [] for key in mask: if detach_dict is not None and key in detach_dict: x = input_variables[key].detach() else: x = input_variables[key] output_tensor += [x] return torch.cat(output_tensor, dim=dim) @staticmethod def process_input( input_tensor: Tensor, input_scales_tensor: Union[Tensor, None] = None, periodicity: Union[Dict[str, Tuple[float, float]], None] = None, input_dict: Union[Dict[str, int], None] = None, dim: int = -1, ) -> Tensor: if input_scales_tensor is not None: input_tensor = ( input_tensor - input_scales_tensor[0] ) / input_scales_tensor[1] if periodicity is not None: assert input_dict is not None inputs = input_tensor.split(list(input_dict.values()), dim=dim) outputs = [] for i, key in enumerate(input_dict.keys()): if key in list(periodicity.keys()): scaled_input = (inputs[i] - periodicity[key][0]) / ( periodicity[key][1] - periodicity[key][0] ) sin_tensor = torch.sin(2.0 * np.pi * scaled_input) cos_tensor = torch.cos(2.0 * np.pi * scaled_input) outputs += [sin_tensor, cos_tensor] else: outputs += [inputs[i]] input_tensor = torch.cat(outputs, dim=dim) return input_tensor @staticmethod def prepare_slice_index( input_dict: Dict[str, int], slice_keys: List[str], ) -> Tensor: """ Used in fourier-like architectures. For example: input_dict = {"x": 1, "y": 2, "z": 1} slice_keys = ["x", "z"] return tensor([0, 3]) """ index_dict = {} c = 0 for key, size in input_dict.items(): index_dict[key] = [] for _ in range(size): index_dict[key].append(c) c += 1 slice_index = [] for key in slice_keys: slice_index += index_dict[key] return torch.tensor(slice_index) @staticmethod def slice_input( input_tensor: Tensor, slice_index: Tensor, dim: int = -1, ) -> Tensor: """ Used in fourier-like architectures. """ return input_tensor.index_select(dim, slice_index) @staticmethod def _get_normalization_tensor( key_size_dict: Dict[str, int], key_normalization: Union[Dict[str, Tuple[float, float]], None] = None, ) -> Tensor: """ Used in siren and multiplicative_filter_net architectures. """ if key_normalization is None: return None normalization_tensor = [[], []] for key, size in key_size_dict.items(): for _ in range(size): normalization_tensor[0].append(key_normalization[key][0]) normalization_tensor[1].append(key_normalization[key][1]) return torch.tensor(normalization_tensor) @staticmethod def _tensor_normalize(x: Tensor, norm_tensor: Tensor) -> Tensor: """ Used in siren and multiplicative_filter_net architectures. """ if norm_tensor is None: return x normalized_x = (x - norm_tensor[0]) / (norm_tensor[1] - norm_tensor[0]) normalized_x = 2 * normalized_x - 1 return normalized_x @staticmethod def prepare_output( output_tensor: Tensor, output_var: Dict[str, int], dim: int = 0, output_scales: Union[Dict[str, Tuple[float, float]], None] = None, ) -> Dict[str, Tensor]: # create unnormalised output tensor output = {} for k, v in zip( output_var, torch.split(output_tensor, list(output_var.values()), dim=dim), ): output[k] = v if output_scales is not None: output[k] = output[k] * output_scales[k][1] + output_scales[k][0] return output @staticmethod def split_output( output_tensor: Tensor, output_dict: Dict[str, int], dim: int = -1, ) -> Dict[str, Tensor]: output = {} for k, v in zip( output_dict, torch.split(output_tensor, list(output_dict.values()), dim=dim), ): output[k] = v return output @staticmethod def process_output( output_tensor: Tensor, output_scales_tensor: Union[Tensor, None] = None, ) -> Tensor: if output_scales_tensor is not None: output_tensor = ( output_tensor * output_scales_tensor[1] + output_scales_tensor[0] ) return output_tensor def _tensor_forward(self, x: Tensor) -> None: r""" This method defines the computation performed with an input tensor concatenated from the input dictionary. All subclasses need to override this method to be able to use FuncArch. """ raise NotImplementedError def _find_computable_deriv_with_func_arch( self, needed_names: List[Key], allow_partial_hessian ): """ Given a list of names, find a list of derivatives that could be computed by using the FuncArch API. allow_partial_hessian: bool If allow_partial_hessian is on, allow evaluating partial hessian to save some unnecessary computations. For example, when the input is x, outputs are [u, p], and the needed derivatives are `[u__x, p__x, u__x__x]`, when this flag is on, FuncArch will only evaluate [u__x, u__x__x]. """ compute_derivs = {1: [], 2: []} # collect all computable derivatives for n in needed_names: computable = True # check the derivative is computable order = len(n.derivatives) if 0 < order < 3 and Key(n.name) in self.output_keys: for deriv in n.derivatives: if deriv not in self.input_keys: computable = False if computable: compute_derivs[order].append(n) # Filtering out the Jacobian terms that are not required for the Hessian terms, # these Jacobian terms will get picked up by the regular autograd engine. if allow_partial_hessian and len(compute_derivs[2]): needed_hessian_name = set([d.name for d in compute_derivs[2]]) compute_derivs[1] = [ d for d in compute_derivs[1] if d.name in needed_hessian_name ] return sorted(compute_derivs[1]) + sorted(compute_derivs[2]) @property @torch.jit.unused # We could not use @torch.jit.ignore when combining with @property # see https://github.com/pytorch/pytorch/issues/54688 . # Using @torch.jit.unused is good for us as we never call `supports_func_arch` # in `forward` or `_tensor_forward` method. def supports_func_arch(self) -> bool: """ Returns whether the instantiate arch object support FuncArch API. We determine it by checking whether the arch object's subclass has overridden the `_tensor_forward` method. """ return self.__class__._tensor_forward != Arch._tensor_forward @classmethod def from_config(cls, cfg: Dict): """Instantiates a neural network based on a model's OmegaConfig Nearly all parameters of a model can be specified in the Hydra config or provied when calling `instantiate_arch`. Additionally, model keys can be defined and parsed or proved manually in the `instantiate_arch` method. Parameters that are not primitive data types can be added explicitly or as python code as a string in the config. Parameters ---------- cfg : Dict Config dictionary Returns ------- Arch, Dict[str, any] Returns instantiated model and dictionary of parameters used to initialize it Example ------- This is an example of a fourier network's config >>> arch: >>> fourier: >>> input_keys: [x, y] # Key('x'), Key('y') >>> output_keys: ['trunk', 256] # Key('trunk', size=256) >>> frequencies: "('axis', [i for i in range(5)])" # Python code gets parsed >>> frequencies_params: "[0,1,2,3,4]" # Literal strings allowed >>> nr_layers: 4 >>> layer_size: 128 Note ---- Refer to `Key.convert_config` for more details on how to define keys in the config. """ model_params = signature(cls.__init__).parameters # Init keys if config was used to define them (string) if "input_keys" in cfg: cfg["input_keys"] = Key.convert_config(cfg["input_keys"]) if "output_keys" in cfg: cfg["output_keys"] = Key.convert_config(cfg["output_keys"]) if "detach_keys" in cfg: cfg["detach_keys"] = Key.convert_config(cfg["detach_keys"]) # Activation functions if "activation_fn" in cfg and isinstance(cfg["activation_fn"], str): cfg["activation_fn"] = Activation[cfg["activation_fn"]] params = {} for key in model_params: parameter = model_params[key] if parameter.name in cfg: if isinstance(cfg[parameter.name], str) and not isinstance( parameter.kind, str ): try: # Try eval for python code that needs to run # Such as list compression param_literal = ast.literal_eval(cfg[parameter.name]) except: # Fall back... hope a string works param_literal = cfg[parameter.name] params[parameter.name] = param_literal else: params[parameter.name] = cfg[parameter.name] # If parameter is not in the config and has no default value # Give a warning, because this will error elif parameter.default is _empty and parameter.name != "self": logger.warning( colored( f"Positional argument '{parameter.name}' not provided. Consider manually adding it to instantiate_arch() call.", "yellow", ) ) model = cls(**params) # Set any variable scaling if "scaling" in cfg and not cfg["scaling"] is None: for scale_dict in cfg["scaling"]: try: name = next(iter(scale_dict)) shift, scale = scale_dict[name] model.set_scaling(name, shift, scale) except: logger.warning(f"Failed to set scaling with config {scale_dict}") return model, params class FuncArch(nn.Module): """ Base class for all neural networks using functorch functional API. FuncArch perform Jacobian and Hessian calculations during the forward pass. Parameters ---------- arch : Arch An instantiated Arch object. deriv_keys : List[Key] A list of needed derivative keys. forward_func : Callable, Optional If provided then it will be used as the forward function instead of the `arch._tensor_forward` function. """ def __init__( self, arch: Arch, deriv_keys: List[Key], forward_func: Optional[Callable] = None ): super().__init__() if "torch.jit" in str(type(arch)): raise RuntimeError( f"Found {type(arch)}, currently FuncArch does not work with jit." ) assert isinstance( arch, Arch ), f"arch should be an instantiated Arch object, but found to be {type(arch)}." assert ( arch.supports_func_arch ), f"{type(arch)} currently does not support FuncArch." if forward_func is None: forward_func = arch._tensor_forward self.saveable = True self.deriv_keys = deriv_keys self.arch = arch self.input_key_dim = self._get_key_dim(arch.input_keys) self.output_key_dim = self._get_key_dim(arch.output_keys) self.deriv_key_dict, self.max_order = self._collect_derivs( arch.input_key_dict, arch.output_key_dict, deriv_keys ) # may only need to evaluate the partial hessian or jacobian needed_output_keys = set( [Key(d.name) for d in self.deriv_key_dict[1] + self.deriv_key_dict[2]] ) # keep the keys in the original order, so the mapped dims are correct needed_output_keys = [ key for key in arch.output_keys if key in needed_output_keys ] # needed_output_dims is used to slice I_N to save some computation self.needed_output_dims = torch.tensor( [self.output_key_dim[key.name] for key in needed_output_keys] ) # if partial hessian or jacobian, the final output shape has changed and so the # corresponding output key dim mapping self.output_key_dim = {str(var): i for i, var in enumerate(needed_output_keys)} in_features = sum(arch.input_key_dict.values()) out_features = sum(arch.output_key_dict.values()) if self.max_order == 0: self._tensor_forward = forward_func elif self.max_order == 1: I_N = torch.eye(out_features)[self.needed_output_dims] self.register_buffer("I_N", I_N, persistent=False) self._tensor_forward = self._jacobian_impl(forward_func) elif self.max_order == 2: I_N1 = torch.eye(out_features)[self.needed_output_dims] I_N2 = torch.eye(in_features) self.register_buffer("I_N1", I_N1, persistent=False) self.register_buffer("I_N2", I_N2, persistent=False) self._tensor_forward = self._hessian_impl(forward_func) else: raise ValueError( "FuncArch currently does not support " f"{self.max_order}th order derivative" ) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.arch.concat_input( in_vars, self.arch.input_key_dict.keys(), detach_dict=self.arch.detach_key_dict, dim=-1, ) if self.max_order == 0: pred = self._tensor_forward(x) jacobian = None hessian = None elif self.max_order == 1: pred, jacobian = self._tensor_forward(x) hessian = None elif self.max_order == 2: pred, jacobian, hessian = self._tensor_forward(x) else: raise ValueError( "FuncArch currently does not support " f"{self.max_order}th order derivative" ) # prepare output, jacobian and hessian out = self.arch.split_output( pred, self.arch.output_key_dict, dim=-1, ) if jacobian is not None: out.update( self.prepare_jacobian( jacobian, self.deriv_key_dict[1], self.input_key_dim, self.output_key_dim, ) ) if hessian is not None: out.update( self.prepare_hessian( hessian, self.deriv_key_dict[2], self.input_key_dim, self.output_key_dim, ) ) return out def make_node(self, name: str, jit: bool = False, optimize: bool = True): """Makes functional arch node for unrolling with Modulus `Graph`. Parameters ---------- name : str This will be used as the name of created node. jit : bool If true then compile with jit, https://pytorch.org/docs/stable/jit.html. optimize : bool If true then treat parameters as optimizable. """ # Forcing JIT off jit = False # set name for loading and saving model self.name = name self.checkpoint_filename = name + ".pth" node_name = "Functional " + ("Arch" if name is None else str(name)) ft_arch = self # Set save and load methods ft_arch.save = self.arch.save ft_arch.load = self.arch.load # Create and return node from this network architecture net_node = Node( self.arch.input_keys, self.arch.output_keys + self.deriv_keys, ft_arch, name=node_name, optimize=optimize, ) return net_node @staticmethod def _get_key_dim(keys: List[Key]): """ Find the corresponding dims of the keys. For example: Suppose we have the following keys and corresponding size {x: 2, y: 1, z: 1}, the concatenate result has dim 4, and each key map to a dim {x: [0, 1], y: 2, z: 3}. TODO Currently, the keys with more than one dim are dropped because they have no use cases. """ def exclusive_sum(sizes: List): return np.concatenate([[0], np.cumsum(sizes)]) exclu_sum = exclusive_sum([k.size for k in keys]) out = {} for i, k in enumerate(keys): if k.size == 1: out[str(k)] = exclu_sum[i] return out @staticmethod def _collect_derivs( input_key_dict: Dict[str, int], output_key_dict: Dict[str, int], deriv_keys: List[Key], ): deriv_key_dict = {1: [], 2: []} for x in deriv_keys: # check the derivative is computable assert x.name in output_key_dict, f"Cannot calculate {x}" assert output_key_dict[x.name] == 1, f"key ({x.name}) size must be 1" for deriv in x.derivatives: assert deriv.name in input_key_dict, f"Cannot calculate {x}" assert ( input_key_dict[deriv.name] == 1 ), f"key ({deriv.name}) size must be 1" # collect each order derivatives order = len(x.derivatives) if order == 0 or order >= 3: raise ValueError( "FuncArch currently does not support " f"{order}th order derivative" ) else: deriv_key_dict[order].append(x) max_order = 0 for order, keys in deriv_key_dict.items(): if keys: max_order = order return deriv_key_dict, max_order def _jacobian_impl(self, forward_func): def jacobian_func(x, v): pred, vjpfunc = functorch.vjp(forward_func, x) return vjpfunc(v)[0], pred def get_jacobian(x): I_N = self.I_N jacobian, pred = functorch.vmap( functorch.vmap(jacobian_func, in_dims=(None, 0)), in_dims=(0, None) )(x, I_N) pred = pred[:, 0, :] return pred, jacobian return get_jacobian def _hessian_impl(self, forward_func): def hessian_func(x, v1, v2): def jacobian_func(x): pred, vjpfunc = functorch.vjp(forward_func, x) return vjpfunc(v1)[0], pred # jvp and vjp (jacobian, hessian, pred) = functorch.jvp( jacobian_func, (x,), (v2,), has_aux=True ) # vjp and vjp is slow # jacobian, hessianfunc, pred = functorch.vjp(jacobian_func, x, has_aux=True) # hessian = hessianfunc(v2)[0] return hessian, jacobian, pred def get_hessian(x): I_N1 = self.I_N1 # used to slice hessian rows I_N2 = self.I_N2 # used to slice hessian columns hessian, jacobian, pred = functorch.vmap( functorch.vmap( functorch.vmap(hessian_func, in_dims=(None, None, 0)), # I_N2 in_dims=(None, 0, None), # I_N1 ), in_dims=(0, None, None), # x )(x, I_N1, I_N2) pred = pred[:, 0, 0, :] jacobian = jacobian[:, :, 0, :] return pred, jacobian, hessian return get_hessian @staticmethod def prepare_jacobian( output_tensor: Tensor, deriv_keys_1st_order: List[Key], input_key_dim: Dict[str, int], output_key_dim: Dict[str, int], ) -> Dict[str, Tensor]: output = {} for k in deriv_keys_1st_order: input_dim = input_key_dim[k.derivatives[0].name] out_dim = output_key_dim[k.name] output[str(k)] = output_tensor[:, out_dim, input_dim].reshape(-1, 1) return output @staticmethod def prepare_hessian( output_tensor: Tensor, deriv_keys_2nd_order: List[Key], input_key_dim: Dict[str, int], output_key_dim: Dict[str, int], ) -> Dict[str, Tensor]: output = {} for k in deriv_keys_2nd_order: input_dim0 = input_key_dim[k.derivatives[0].name] input_dim1 = input_key_dim[k.derivatives[1].name] out_dim = output_key_dim[k.name] output[str(k)] = output_tensor[:, out_dim, input_dim0, input_dim1].reshape( -1, 1 ) return output
modulus-sym-main
modulus/sym/models/arch.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
modulus-sym-main
modulus/sym/models/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Union, Tuple import torch import torch.nn as nn from torch import Tensor import modulus.sym.models.layers as layers from modulus.sym.models.arch import Arch from modulus.sym.key import Key class MultiscaleFourierNetArch(Arch): """ Multi-scale Fourier Net References: 1. Sifan Wang, Hanwen Wang, Paris Perdikaris, On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks, Computer Methods in Applied Mechanics and Engineering, Volume 384,2021. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list detach_keys : List[Key], optional List of keys to detach gradients, by default [] frequencies : Tuple[Tuple[str, List[float]],...] = (("axis", [i for i in range(10)]),) A set of Fourier encoding tuples to use any inputs in the list `['x', 'y', 'z', 't']`. The first element describes the type of frequency encoding with options, `'gaussian', 'full', 'axis', 'diagonal'`. `'gaussian'` samples frequency of Fourier series from Gaussian. `'axis'` samples along axis of spectral space with the given list range of frequencies. `'diagonal'` samples along diagonal of spectral space with the given list range of frequencies. `'full'` samples along entire spectral space for all combinations of frequencies in given list. frequencies_params : Tuple[Tuple[str, List[float]],...] = (("axis", [i for i in range(10)]),) Same as `frequencies` except these are used for encodings on any inputs not in the list `['x', 'y', 'z', 't']`. activation_fn : layers.Activation = layers.Activation.SILU Activation function used by network. layer_size : int = 512 Layer size for every hidden layer of the model. nr_layers : int = 6 Number of hidden layers of the model. skip_connections : bool = False If true then apply skip connections every 2 hidden layers. weight_norm : bool = True Use weight norm on fully connected layers. adaptive_activations : bool = False If True then use an adaptive activation function as described here https://arxiv.org/abs/1906.01170. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], frequencies=(("axis", [i for i in range(10)]),), frequencies_params=(("axis", [i for i in range(10)]),), activation_fn=layers.Activation.SILU, layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) self.skip_connections = skip_connections self.xyzt_var = [x for x in self.input_key_dict if x in ["x", "y", "z", "t"]] # Prepare slice index xyzt_slice_index = self.prepare_slice_index(self.input_key_dict, self.xyzt_var) self.register_buffer("xyzt_slice_index", xyzt_slice_index, persistent=False) self.params_var = [ x for x in self.input_key_dict if x not in ["x", "y", "z", "t"] ] params_slice_index = self.prepare_slice_index( self.input_key_dict, self.params_var ) self.register_buffer("params_slice_index", params_slice_index, persistent=False) in_features_xyzt = sum( (v for k, v in self.input_key_dict.items() if k in self.xyzt_var) ) in_features_params = sum( (v for k, v in self.input_key_dict.items() if k in self.params_var) ) in_features = in_features_xyzt + in_features_params out_features = sum(self.output_key_dict.values()) if adaptive_activations: activation_par = nn.Parameter(torch.ones(1)) else: activation_par = None in_features = in_features_xyzt + in_features_params if frequencies_params is None: frequencies_params = frequencies self.num_freqs = len(frequencies) if in_features_xyzt > 0: self.fourier_layers_xyzt = nn.ModuleList() for idx in range(self.num_freqs): self.fourier_layers_xyzt.append( layers.FourierLayer( in_features=in_features_xyzt, frequencies=frequencies[idx], ) ) in_features += self.fourier_layers_xyzt[0].out_features() else: self.fourier_layers_xyzt = None if in_features_params > 0: self.fourier_layers_params = nn.ModuleList() for idx in range(self.num_freqs): self.fourier_layers_params.append( layers.FourierLayer( in_features=in_features_params, frequencies=frequencies_params[idx], ) ) in_features += self.fourier_layers_params[0].out_features() else: self.fourier_layers_params = None self.fc_layers = nn.ModuleList() layer_in_features = in_features for i in range(nr_layers): self.fc_layers.append( layers.FCLayer( layer_in_features, layer_size, activation_fn, weight_norm, activation_par, ) ) layer_in_features = layer_size self.final_layer = layers.FCLayer( in_features=layer_size * self.num_freqs, out_features=out_features, activation_fn=layers.Activation.IDENTITY, weight_norm=False, activation_par=None, ) def _tensor_forward(self, x: Tensor) -> Tensor: x = self.process_input( x, self.input_scales_tensor, input_dict=self.input_key_dict, dim=-1 ) if self.fourier_layers_xyzt is not None: in_xyzt_var = self.slice_input(x, self.xyzt_slice_index, dim=-1) if self.fourier_layers_params is not None: in_params_var = self.slice_input(x, self.params_slice_index, dim=-1) old_x = x fc_outputs = [] _len = ( len(self.fourier_layers_xyzt) if self.fourier_layers_xyzt is not None else len(self.fourier_layers_params) ) zip_fourier_layers_xyzt = ( self.fourier_layers_xyzt if self.fourier_layers_xyzt is not None else [None] * _len ) zip_fourier_layers_params = ( self.fourier_layers_params if self.fourier_layers_params is not None else [None] * _len ) for fourier_layer_xyzt, fourier_layer_params in zip( zip_fourier_layers_xyzt, zip_fourier_layers_params ): x = old_x if self.fourier_layers_xyzt is not None: fourier_xyzt = fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layers_params is not None: fourier_params = fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) x_skip: Optional[Tensor] = None for i, layer in enumerate(self.fc_layers): x = layer(x) if self.skip_connections and i % 2 == 0: if x_skip is not None: x, x_skip = x + x_skip, x else: x_skip = x fc_outputs.append(x) x = torch.cat(fc_outputs, dim=-1) x = self.final_layer(x) x = self.process_output(x, self.output_scales_tensor) return x def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: """ This is the original forward function, left here for the correctness test. """ x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) if self.fourier_layers_xyzt is not None: in_xyzt_var = self.prepare_input( in_vars, self.xyzt_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) if self.fourier_layers_params is not None: in_params_var = self.prepare_input( in_vars, self.params_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) old_x = x fc_outputs = [] _len = ( len(self.fourier_layers_xyzt) if self.fourier_layers_xyzt is not None else len(self.fourier_layers_params) ) zip_fourier_layers_xyzt = ( self.fourier_layers_xyzt if self.fourier_layers_xyzt is not None else [None] * _len ) zip_fourier_layers_params = ( self.fourier_layers_params if self.fourier_layers_params is not None else [None] * _len ) for fourier_layer_xyzt, fourier_layer_params in zip( zip_fourier_layers_xyzt, zip_fourier_layers_params ): x = old_x if self.fourier_layers_xyzt is not None: fourier_xyzt = fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layers_params is not None: fourier_params = fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) x_skip: Optional[Tensor] = None for i, layer in enumerate(self.fc_layers): x = layer(x) if self.skip_connections and i % 2 == 0: if x_skip is not None: x, x_skip = x + x_skip, x else: x_skip = x fc_outputs.append(x) x = torch.cat(fc_outputs, dim=-1) x = self.final_layer(x) return self.prepare_output( x, self.output_key_dict, dim=-1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/multiscale_fourier_net.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional import torch import torch.nn as nn from torch import Tensor import modulus.sym.models.layers as layers from modulus.sym.models.arch import Arch from modulus.sym.key import Key class HighwayFourierNetArch(Arch): """ A modified highway network using Fourier features. References: (1) Srivastava, R.K., Greff, K. and Schmidhuber, J., 2015. Training very deep networks. In Advances in neural information processing systems (pp. 2377-2385). (2) Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J.T. and Ng, R., 2020. Fourier features let networks learn high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list detach_keys : List[Key], optional List of keys to detach gradients, by default [] frequencies : Tuple[str, List[float]] = ("axis", [i for i in range(10)]) A tuple that describes the Fourier encodings to use any inputs in the list `['x', 'y', 'z', 't']`. The first element describes the type of frequency encoding with options, `'gaussian', 'full', 'axis', 'diagonal'`. `'gaussian'` samples frequency of Fourier series from Gaussian. `'axis'` samples along axis of spectral space with the given list range of frequencies. `'diagonal'` samples along diagonal of spectral space with the given list range of frequencies. `'full'` samples along entire spectral space for all combinations of frequencies in given list. frequencies_params : Tuple[str, List[float]] = ("axis", [i for i in range(10)]) Same as `frequencies` except these are used for encodings on any inputs not in the list `['x', 'y', 'z', 't']`. activation_fn : layers.Activation = layers.Activation.SILU Activation function used by network. layer_size : int = 512 Layer size for every hidden layer of the model. nr_layers : int = 6 Number of hidden layers of the model. skip_connections : bool = False If true then apply skip connections every 2 hidden layers. weight_norm : bool = True Use weight norm on fully connected layers. adaptive_activations : bool = False If True then use an adaptive activation function as described here https://arxiv.org/abs/1906.01170. transform_fourier_features : bool = True If True use the Fourier features in the projector layer. project_fourier_features : bool = False If True use the Fourier features in the projector layer. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], frequencies=("axis", [i for i in range(10)]), frequencies_params=("axis", [i for i in range(10)]), activation_fn=layers.Activation.SILU, layer_size: int = 512, nr_layers: int = 6, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False, transform_fourier_features: bool = True, project_fourier_features: bool = False, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) self.transform_fourier_features = transform_fourier_features self.project_fourier_features = project_fourier_features self.skip_connections = skip_connections self.xyzt_var = [x for x in self.input_key_dict if x in ["x", "y", "z", "t"]] # Prepare slice index xyzt_slice_index = self.prepare_slice_index(self.input_key_dict, self.xyzt_var) self.register_buffer("xyzt_slice_index", xyzt_slice_index, persistent=False) self.params_var = [ x for x in self.input_key_dict if x not in ["x", "y", "z", "t"] ] params_slice_index = self.prepare_slice_index( self.input_key_dict, self.params_var ) self.register_buffer("params_slice_index", params_slice_index, persistent=False) in_features_xyzt = sum( (v for k, v in self.input_key_dict.items() if k in self.xyzt_var) ) in_features_params = sum( (v for k, v in self.input_key_dict.items() if k in self.params_var) ) in_features = in_features_xyzt + in_features_params out_features = sum(self.output_key_dict.values()) if adaptive_activations: activation_par = nn.Parameter(torch.ones(1)) else: activation_par = None in_features = in_features_xyzt + in_features_params initial_in_features = in_features if in_features_xyzt > 0: self.fourier_layer_xyzt = layers.FourierLayer( in_features=in_features_xyzt, frequencies=frequencies ) in_features += self.fourier_layer_xyzt.out_features() else: self.fourier_layer_xyzt = None if in_features_params > 0: self.fourier_layer_params = layers.FourierLayer( in_features=in_features_params, frequencies=frequencies_params ) in_features += self.fourier_layer_params.out_features() else: self.fourier_layer_params = None if transform_fourier_features: transformer_in_features = in_features else: transformer_in_features = initial_in_features if project_fourier_features: projector_in_features = in_features else: projector_in_features = initial_in_features self.fc_t = layers.FCLayer( transformer_in_features, layer_size, activation_fn=layers.Activation.SIGMOID, weight_norm=weight_norm, activation_par=activation_par, ) self.fc_v = layers.FCLayer( projector_in_features, layer_size, activation_fn=layers.Activation.IDENTITY, weight_norm=weight_norm, activation_par=activation_par, ) self.fc_layers = nn.ModuleList() layer_in_features = in_features for i in range(nr_layers): self.fc_layers.append( layers.FCLayer( layer_in_features, layer_size, activation_fn=activation_fn, weight_norm=weight_norm, activation_par=activation_par, ) ) layer_in_features = layer_size self.final_layer = layers.FCLayer( layer_size, out_features, activation_fn=layers.Activation.IDENTITY, weight_norm=False, activation_par=None, ) def _tensor_forward(self, x: Tensor) -> Tensor: x = self.process_input( x, self.input_scales_tensor, input_dict=self.input_key_dict, dim=-1 ) old_x = x if self.fourier_layer_xyzt is not None: in_xyzt_var = self.slice_input(x, self.xyzt_slice_index, dim=-1) fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layer_params is not None: in_params_var = self.slice_input(x, self.params_slice_index, dim=-1) fourier_params = self.fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) if self.transform_fourier_features: transformer_input = x else: transformer_input = old_x if self.project_fourier_features: projector_input = x else: projector_input = old_x xt = self.fc_t(transformer_input) xp = self.fc_v(projector_input) x_skip: Optional[Tensor] = None for i, layer in enumerate(self.fc_layers): x = layer(x) x = x * xt + xp - xp * xt if self.skip_connections and i % 2 == 0: if x_skip is not None: x, x_skip = x + x_skip, x else: x_skip = x x = self.final_layer(x) x = self.process_output(x, self.output_scales_tensor) return x def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) old_x = x if self.fourier_layer_xyzt is not None: in_xyzt_var = self.prepare_input( in_vars, self.xyzt_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var) x = torch.cat((x, fourier_xyzt), dim=-1) if self.fourier_layer_params is not None: in_params_var = self.prepare_input( in_vars, self.params_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) fourier_params = self.fourier_layer_params(in_params_var) x = torch.cat((x, fourier_params), dim=-1) if self.transform_fourier_features: transformer_input = x else: transformer_input = old_x if self.project_fourier_features: projector_input = x else: projector_input = old_x xt = self.fc_t(transformer_input) xp = self.fc_v(projector_input) x_skip: Optional[Tensor] = None for i, layer in enumerate(self.fc_layers): x = layer(x) x = x * xt + xp - xp * xt if self.skip_connections and i % 2 == 0: if x_skip is not None: x, x_skip = x + x_skip, x else: x_skip = x x = self.final_layer(x) return self.prepare_output( x, self.output_key_dict, dim=-1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/highway_fourier_net.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Dict, Tuple, Union from modulus.sym.key import Key import torch import torch.nn as nn from torch import Tensor from modulus.sym.models.layers import Activation, FCLayer, Conv1dFCLayer from modulus.sym.models.arch import Arch from typing import List class FullyConnectedArchCore(nn.Module): def __init__( self, in_features: int = 512, layer_size: int = 512, out_features: int = 512, nr_layers: int = 6, skip_connections: bool = False, activation_fn: Activation = Activation.SILU, adaptive_activations: bool = False, weight_norm: bool = True, conv_layers: bool = False, ) -> None: super().__init__() self.skip_connections = skip_connections # Allows for regular linear layers to be swapped for 1D Convs # Useful for channel operations in FNO/Transformers if conv_layers: fc_layer = Conv1dFCLayer else: fc_layer = FCLayer if adaptive_activations: activation_par = nn.Parameter(torch.ones(1)) else: activation_par = None if not isinstance(activation_fn, list): activation_fn = [activation_fn] * nr_layers if len(activation_fn) < nr_layers: activation_fn = activation_fn + [activation_fn[-1]] * ( nr_layers - len(activation_fn) ) self.layers = nn.ModuleList() layer_in_features = in_features for i in range(nr_layers): self.layers.append( fc_layer( layer_in_features, layer_size, activation_fn[i], weight_norm, activation_par, ) ) layer_in_features = layer_size self.final_layer = fc_layer( in_features=layer_size, out_features=out_features, activation_fn=Activation.IDENTITY, weight_norm=False, activation_par=None, ) def forward(self, x: Tensor) -> Tensor: x_skip: Optional[Tensor] = None for i, layer in enumerate(self.layers): x = layer(x) if self.skip_connections and i % 2 == 0: if x_skip is not None: x, x_skip = x + x_skip, x else: x_skip = x x = self.final_layer(x) return x def get_weight_list(self): weights = [layer.conv.weight for layer in self.layers] + [ self.final_layer.conv.weight ] biases = [layer.conv.bias for layer in self.layers] + [ self.final_layer.conv.bias ] return weights, biases class FullyConnectedArch(Arch): """Fully Connected Neural Network. Parameters ---------- input_keys : List[Key] Input key list. output_keys : List[Key] Output key list. detach_keys : List[Key], optional List of keys to detach gradients, by default [] layer_size : int, optional Layer size for every hidden layer of the model, by default 512 nr_layers : int, optional Number of hidden layers of the model, by default 6 activation_fn : Activation, optional Activation function used by network, by default :obj:`Activation.SILU` periodicity : Union[Dict[str, Tuple[float, float]], None], optional Dictionary of tuples that allows making model give periodic predictions on the given bounds in tuple. skip_connections : bool, optional Apply skip connections every 2 hidden layers, by default False weight_norm : bool, optional Use weight norm on fully connected layers, by default True adaptive_activations : bool, optional Use an adaptive activation functions, by default False Variable Shape -------------- - Input variable tensor shape: :math:`[N, size]` - Output variable tensor shape: :math:`[N, size]` Example ------- Fully-connected model (2 -> 64 -> 64 -> 2) >>> arch = .fully_connected.FullyConnectedArch( >>> [Key("x", size=2)], >>> [Key("y", size=2)], >>> layer_size = 64, >>> nr_layers = 2) >>> model = arch.make_node() >>> input = {"x": torch.randn(64, 2)} >>> output = model.evaluate(input) Fully-connected model with periodic outputs between (0,1) >>> arch = .fully_connected.FullyConnectedArch( >>> [Key("x", size=2)], >>> [Key("y", size=2)], >>> periodicity={'x': (0, 1)}) Note ---- For information regarding adaptive activations please refer to https://arxiv.org/abs/1906.01170. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], layer_size: int = 512, nr_layers: int = 6, activation_fn=Activation.SILU, periodicity: Union[Dict[str, Tuple[float, float]], None] = None, skip_connections: bool = False, adaptive_activations: bool = False, weight_norm: bool = True, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys, periodicity=periodicity, ) if self.periodicity is not None: in_features = sum( [ x.size for x in self.input_keys if x.name not in list(periodicity.keys()) ] ) + +sum( [ 2 * x.size for x in self.input_keys if x.name in list(periodicity.keys()) ] ) else: in_features = sum(self.input_key_dict.values()) out_features = sum(self.output_key_dict.values()) self._impl = FullyConnectedArchCore( in_features, layer_size, out_features, nr_layers, skip_connections, activation_fn, adaptive_activations, weight_norm, ) def _tensor_forward(self, x: Tensor) -> Tensor: x = self.process_input( x, self.input_scales_tensor, periodicity=self.periodicity, input_dict=self.input_key_dict, dim=-1, ) x = self._impl(x) x = self.process_output(x, self.output_scales_tensor) return x def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: """ This is the original forward function, left here for the correctness test. """ x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, periodicity=self.periodicity, ) y = self._impl(x) return self.prepare_output( y, self.output_key_dict, dim=-1, output_scales=self.output_scales ) class ConvFullyConnectedArch(Arch): def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], layer_size: int = 512, nr_layers: int = 6, activation_fn=Activation.SILU, skip_connections: bool = False, adaptive_activations: bool = False, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys, ) self.var_dim = 1 in_features = sum(self.input_key_dict.values()) out_features = sum(self.output_key_dict.values()) self._impl = FullyConnectedArchCore( in_features, layer_size, out_features, nr_layers, skip_connections, activation_fn, adaptive_activations, weight_norm=False, conv_layers=True, ) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=1, input_scales=self.input_scales, periodicity=self.periodicity, ) x_shape = list(x.size()) x = x.view(x.shape[0], x.shape[1], -1) y = self._impl(x) x_shape[1] = y.shape[1] y = y.view(x_shape) return self.prepare_output( y, self.output_key_dict, dim=1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/fully_connected.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import enum import inspect import importlib from omegaconf import OmegaConf from inspect import signature from modulus.sym import Key from modulus.sym.models.layers import Activation from modulus.sym.models.arch import Arch logger = logging.getLogger(__name__) class ModulusModels(object): _model_classes = { "afno": "AFNOArch", "distributed_afno": "DistributedAFNOArch", "deeponet": "DeepONetArch", "fno": "FNOArch", "fourier": "FourierNetArch", "fully_connected": "FullyConnectedArch", "conv_fully_connected": "ConvFullyConnectedArch", "fused_fully_connected": "FusedMLPArch", "fused_fourier": "FusedFourierNetArch", "fused_hash_encoding": "FusedGridEncodingNetArch", "hash_encoding": "MultiresolutionHashNetArch", "highway_fourier": "HighwayFourierNetArch", "modified_fourier": "ModifiedFourierNetArch", "multiplicative_fourier": "MultiplicativeFilterNetArch", "multiscale_fourier": "MultiscaleFourierNetArch", "pix2pix": "Pix2PixArch", "siren": "SirenArch", "super_res": "SRResNetArch", } # Dynamic imports (prevents dep warnings of unused models) _model_imports = { "afno": "modulus.sym.models.afno", "distributed_afno": "modulus.sym.models.afno.distributed", "deeponet": "modulus.sym.models.deeponet", "fno": "modulus.sym.models.fno", "fourier": "modulus.sym.models.fourier_net", "fully_connected": "modulus.sym.models.fully_connected", "conv_fully_connected": "modulus.sym.models.fully_connected", "fused_fully_connected": "modulus.sym.models.fused_mlp", "fused_fourier": "modulus.sym.models.fused_mlp", "fused_hash_encoding": "modulus.sym.models.fused_mlp", "hash_encoding": "modulus.sym.models.hash_encoding_net", "highway_fourier": "modulus.sym.models.highway_fourier_net", "modified_fourier": "modulus.sym.models.modified_fourier_net", "multiplicative_fourier": "modulus.sym.models.multiplicative_filter_net", "multiscale_fourier": "modulus.sym.models.multiscale_fourier_net", "pix2pix": "modulus.sym.models.pix2pix", "siren": "modulus.sym.models.siren", "super_res": "modulus.sym.models.super_res_net", } _registered_archs = {} def __new__(cls): obj = super(ModulusModels, cls).__new__(cls) obj._registered_archs = cls._registered_archs return obj def __contains__(self, k): return k.lower() in self._model_classes or k.lower() in self._registered_archs def __len__(self): return len(self._model_classes) + len(self._registered_archs) def __getitem__(self, k: str): assert isinstance(k, str), "Model type key should be a string" # Case invariant k = k.lower() # Import built-in archs if k in self._model_classes: return getattr( importlib.import_module(self._model_imports[k]), self._model_classes[k] ) # Return user registered arch elif k in self._registered_archs: return self._registered_archs[k] else: raise ValueError("Invalid model type key") def keys(self): return list(self._model_classes.keys()) + list(self._registered_archs.keys()) @classmethod def add_model(cls, key: str, value): key = key.lower() assert ( not key in cls._model_classes ), f"Model type name {key} already registered! Must be unique." cls._registered_archs[key] = value def register_arch(model: Arch, type_name: str): """Add a custom architecture to the Modulus model zoo Parameters ---------- model : Arch Model class type_name : str Unique name to idenitfy model in the configs """ ModulusModels.add_model(type_name, model)
modulus-sym-main
modulus/sym/models/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import numpy as np from torch import Tensor from typing import Dict, List, Tuple import itertools import modulus.sym.models.fully_connected as fully_connected import modulus.sym.models.layers as layers from modulus.sym.models.interpolation import ( _grid_knn_idx, _hyper_cube_weighting, smooth_step_2, linear_step, ) from modulus.sym.models.arch import Arch from modulus.sym.key import Key from modulus.sym.distributed import DistributedManager class MultiresolutionHashNetArch(Arch): """Hash encoding network as seen in, Müller, Thomas, et al. "Instant Neural Graphics Primitives with a Multiresolution Hash Encoding." arXiv preprint arXiv:2201.05989 (2022). A reference pytorch implementation can be found, https://github.com/yashbhalgat/HashNeRF-pytorch Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list detach_keys : List[Key], optional List of keys to detach gradients, by default [] activation_fn : layers.Activation = layers.Activation.SILU Activation function used by network. layer_size : int = 64 Layer size for every hidden layer of the model. nr_layers : int = 3 Number of hidden layers of the model. skip_connections : bool = False If true then apply skip connections every 2 hidden layers. weight_norm : bool = False Use weight norm on fully connected layers. adaptive_activations : bool = False If True then use an adaptive activation function as described here https://arxiv.org/abs/1906.01170. bounds : List[Tuple[float, float]] = [(-1.0, 1.0), (-1.0, 1.0)] List of bounds for hash grid. Each element is a tuple of the upper and lower bounds. nr_levels : int = 5 Number of levels in the hash grid. nr_features_per_level : int = 2 Number of features from each hash grid. log2_hashmap_size : int = 19 Hash map size will be `2**log2_hashmap_size`. base_resolution : int = 2 base resolution of hash grids. finest_resolution : int = 32 Highest resolution of hash grids. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], activation_fn=layers.Activation.SILU, layer_size: int = 64, nr_layers: int = 3, skip_connections: bool = False, weight_norm: bool = True, adaptive_activations: bool = False, bounds: List[Tuple[float, float]] = [(-1.0, 1.0), (-1.0, 1.0)], nr_levels: int = 16, nr_features_per_level: int = 2, log2_hashmap_size: int = 19, base_resolution: int = 2, finest_resolution: int = 32, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) # get needed input output information self.xyzt_var = [x for x in self.input_key_dict if x in ["x", "y", "z", "t"]] self.params_var = [ x for x in self.input_key_dict if x not in ["x", "y", "z", "t"] ] in_features_xyzt = sum( (v for k, v in self.input_key_dict.items() if k in self.xyzt_var) ) in_features_params = sum( (v for k, v in self.input_key_dict.items() if k in self.params_var) ) in_features = in_features_xyzt + in_features_params out_features = sum(self.output_key_dict.values()) if len(self.params_var) == 0: self.params_var = None # get device for torch constants used in inference self.device = DistributedManager().device # store hash grid parameters self.bounds = bounds self.log2_hashmap_size = log2_hashmap_size self.base_resolution = Tensor([base_resolution]) self.finest_resolution = Tensor([finest_resolution]) self.nr_levels = nr_levels self.nr_features_per_level = nr_features_per_level # make embeddings self.embedding = nn.Embedding( self.nr_levels * 2**self.log2_hashmap_size, self.nr_features_per_level ) nn.init.uniform_(self.embedding.weight, a=-0.001, b=0.001) self.b = np.exp( (np.log(self.finest_resolution) - np.log(self.base_resolution)) / (nr_levels - 1) ) # make grid dx and start tensors list_dx = [] list_start = [] list_resolution = [] for i in range(self.nr_levels): # calculate resolution resolution = int(np.floor(self.base_resolution * self.b**i)) list_resolution.append( torch.tensor([resolution]).to(self.device).view(1, 1) ) # make adjust factor adjust_factor = ((8253729**i + 2396403) % 32767) / 32767.0 # compute grid and adjust it not_adjusted_dx = [(x[1] - x[0]) / (resolution - 1) for x in self.bounds] grid = [ ( b[0] + (-2.0 + adjust_factor) * x, b[1] + (2.0 + adjust_factor) * x, resolution, ) for b, x in zip(self.bounds, not_adjusted_dx) ] # make grid spacing size tensor dx = torch.tensor([(x[1] - x[0]) / (x[2] - 1) for x in grid]).to( self.device ) dx = dx.view(1, len(grid)) list_dx.append(dx) # make start tensor of grid start = torch.tensor([val[0] for val in grid]).to(self.device) start = start.view(1, len(grid)) list_start.append(start) # stack values self.resolutions = torch.stack(list_resolution, dim=1) self.dx = torch.stack(list_dx, dim=1) self.start = torch.stack(list_start, dim=1) # hyper cube for adding to lower point index self.hyper_cube = ( torch.tensor(list(itertools.product(*(len(self.bounds) * [[0, 1]])))) .to(self.device) .view(1, 1, -1, len(bounds)) ) # multiply factor for hash encoding to order layers list_mul_factor = [] mul_factor = torch.tensor([1], dtype=torch.int).to(self.device) for r in range(self.nr_levels): for d in range(len(self.bounds)): list_mul_factor.append(mul_factor.clone()) mul_factor *= self.resolutions[0, r, 0] mul_factor %= 20731370 # prevent overflow self.mul_factor = torch.stack(list_mul_factor).view( 1, self.nr_levels, 1, len(self.bounds) ) # make fully connected decoding network self.fc = fully_connected.FullyConnectedArchCore( in_features=(self.nr_features_per_level * nr_levels) + in_features_params, layer_size=layer_size, out_features=out_features, nr_layers=nr_layers, skip_connections=skip_connections, activation_fn=activation_fn, adaptive_activations=adaptive_activations, weight_norm=weight_norm, ) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: # get spacial inputs and hash encode in_xyzt_var = self.prepare_input( in_vars, self.xyzt_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) # unsqueeze input to operate on all grids at once unsqueezed_xyzt = torch.unsqueeze(in_xyzt_var, 1) # get lower and upper bounds cells lower_indice = torch.floor((unsqueezed_xyzt - self.start) / self.dx).int() all_indice = torch.unsqueeze(lower_indice, -2) + self.hyper_cube lower_point = lower_indice * self.dx + self.start upper_point = lower_point + self.dx # get hash from indices and resolutions key = torch.sum(all_indice * self.mul_factor, dim=-1) key = 10000003 * key + 124777 * torch.bitwise_xor( key, torch.tensor(3563504501) ) # shuffle it key = ( torch.tensor(self.nr_levels * (1 << self.log2_hashmap_size) - 1).to( key.device ) & key ) # compute embedding embed = self.embedding(key) # compute smooth step interpolation of embeddings smoothed_lower_point = smooth_step_2((unsqueezed_xyzt - lower_point) / self.dx) smoother_upper_point = smooth_step_2(-(unsqueezed_xyzt - upper_point) / self.dx) weights = _hyper_cube_weighting(smoothed_lower_point, smoother_upper_point) # add embedding to list hash_xyzt = torch.sum(embed * weights, dim=-2) x = torch.reshape(hash_xyzt, [hash_xyzt.shape[0], -1]) # add other features if self.params_var is not None: in_params_var = self.prepare_input( in_vars, self.params_var, detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) x = torch.cat((x, in_params_var), dim=-1) x = self.fc(x) return self.prepare_output( x, self.output_key_dict, dim=-1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/hash_encoding_net.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Dict, Tuple, Union from modulus.sym.key import Key import torch import torch.nn as nn from torch import Tensor import logging import modulus.sym.models.layers as layers from modulus.sym.models.arch import Arch from typing import List logger = logging.getLogger(__name__) if torch.cuda.is_available(): major, minor = torch.cuda.get_device_capability() compute_capability = major * 10 + minor if compute_capability < 80: logger.warning( "Detected GPU architecture older than Ampere. Please check documentation for instructions to recompile and run tinycudann for your GPU" ) import tinycudann as tcnn else: raise ImportError("Tiny CUDA NN only supported on CUDA enabled GPUs") class TinyCudaNNArchCore(Arch): """ Fully Fused Multi Layer Perceptron (MLP) architecture. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list periodicity : Union[Dict[str, Tuple[float, float]], None] = None Dictionary of tuples that allows making model give periodic predictions on the given bounds in tuple. For example, `periodicity={'x': (0, 1)}` would make the network give periodic results for `x` on the interval `(0, 1)`. detach_keys : List[Key], optional List of keys to detach gradients, by default [] layer_size : int = 64 Layer size for every hidden layer of the model. nr_layers : int = 2 Number of hidden layers of the model. activation_fn : layers.Activation = layers.Activation.SIGMOID Activation function used by network. fully_fused : bool = True Whether to use a fully fused MLP kernel implementation This option is only respected if the number of neurons per layer is one of [16, 32, 64, 128] and is supported only on Turing+ architectures encoding_config : Optional[Dict] = None Optional encoding configuration dictionary See here for specifics: https://github.com/NVlabs/tiny-cuda-nn/blob/master/DOCUMENTATION.md#encodings """ def __init__( self, input_keys: List[Key], output_keys: List[Key], periodicity: Union[Dict[str, Tuple[float, float]], None] = None, detach_keys: List[Key] = [], layer_size: int = 64, nr_layers: int = 2, activation_fn=layers.Activation.SIGMOID, fully_fused: bool = True, encoding_config: Optional[Dict] = None, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys, periodicity=periodicity, ) # supported activations supported_activations = { layers.Activation.RELU: "ReLU", # layers.Activation.EXP : "Exponential", # layers.Activation.SIN : "Sine", layers.Activation.SIGMOID: "Sigmoid", layers.Activation.SQUAREPLUS: "Squareplus", layers.Activation.SOFTPLUS: "Softplus", layers.Activation.IDENTITY: "None", } if activation_fn not in supported_activations.keys(): raise ValueError( f"{activation_fn} activation is not supported for fused architectures." ) if self.periodicity is not None: in_features = sum( [ x.size for x in self.input_keys if x.name not in list(periodicity.keys()) ] ) + +sum( [ 2 * x.size for x in self.input_keys if x.name in list(periodicity.keys()) ] ) else: in_features = sum(self.input_key_dict.values()) out_features = sum(self.output_key_dict.values()) if fully_fused and (layer_size not in set([16, 32, 64, 128])): fully_fused = False logger.warning( f"Unsupported layer_size {layer_size} for FullyFusedMLP. Using CutlassMLP instead." ) network_config = { "otype": "FullyFusedMLP" if fully_fused else "CutlassMLP", "activation": supported_activations[activation_fn], "output_activation": "None", "n_neurons": layer_size, "n_hidden_layers": nr_layers, } if encoding_config is not None: self._impl = tcnn.NetworkWithInputEncoding( in_features, out_features, encoding_config, network_config ) else: self._impl = tcnn.Network(in_features, out_features, network_config) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, periodicity=self.periodicity, ) y = self._impl(x) return self.prepare_output( y, self.output_key_dict, dim=-1, output_scales=self.output_scales ) def make_node(self, name: str, jit: bool = False, optimize: bool = True): if jit: logger.warning( "JIT compilation not supported for TinyCudaNNArchCore. Creating node with JIT turned off" ) return super().make_node(name, False, optimize) class FusedMLPArch(TinyCudaNNArchCore): """ Fully Fused Multi Layer Perceptron (MLP) architecture. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list periodicity : Union[Dict[str, Tuple[float, float]], None] = None Dictionary of tuples that allows making model give periodic predictions on the given bounds in tuple. For example, `periodicity={'x': (0, 1)}` would make the network give periodic results for `x` on the interval `(0, 1)`. detach_keys : List[Key], optional List of keys to detach gradients, by default [] layer_size : int = 64 Layer size for every hidden layer of the model. nr_layers : int = 2 Number of hidden layers of the model. activation_fn : layers.Activation = layers.Activation.SIGMOID Activation function used by network. fully_fused : bool = True Whether to use a fully fused MLP kernel implementation This option is only respected if the number of neurons per layer is one of [16, 32, 64, 128] and is supported only on Turing+ architectures """ def __init__( self, input_keys: List[Key], output_keys: List[Key], periodicity: Union[Dict[str, Tuple[float, float]], None] = None, detach_keys: List[Key] = [], layer_size: int = 64, nr_layers: int = 2, activation_fn=layers.Activation.SIGMOID, fully_fused: bool = True, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, periodicity=periodicity, detach_keys=detach_keys, layer_size=layer_size, nr_layers=nr_layers, activation_fn=activation_fn, fully_fused=fully_fused, encoding_config=None, ) class FusedFourierNetArch(TinyCudaNNArchCore): """ Fused Fourier Net architecture. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list periodicity : Union[Dict[str, Tuple[float, float]], None] = None Dictionary of tuples that allows making model give periodic predictions on the given bounds in tuple. For example, `periodicity={'x': (0, 1)}` would make the network give periodic results for `x` on the interval `(0, 1)`. detach_keys : List[Key], optional List of keys to detach gradients, by default [] layer_size : int = 64 Layer size for every hidden layer of the model. nr_layers : int = 2 Number of hidden layers of the model. activation_fn : layers.Activation = layers.Activation.SIN Activation function used by network. fully_fused : bool = True Whether to use a fully fused MLP kernel implementation This option is only respected if the number of neurons per layer is one of [16, 32, 64, 128] and is supported only on Turing+ architectures n_frequencies : int = 12 number of frequencies to use in the encoding """ def __init__( self, input_keys: List[Key], output_keys: List[Key], periodicity: Union[Dict[str, Tuple[float, float]], None] = None, detach_keys: List[Key] = [], layer_size: int = 64, nr_layers: int = 2, activation_fn=layers.Activation.SIGMOID, fully_fused: bool = True, n_frequencies: int = 12, ) -> None: encoding_config = { "otype": "Frequency", "n_frequencies": n_frequencies, } super().__init__( input_keys=input_keys, output_keys=output_keys, periodicity=periodicity, detach_keys=detach_keys, layer_size=layer_size, nr_layers=nr_layers, activation_fn=activation_fn, fully_fused=fully_fused, encoding_config=encoding_config, ) class FusedGridEncodingNetArch(TinyCudaNNArchCore): """ Fused Fourier Net architecture. Parameters ---------- input_keys : List[Key] Input key list output_keys : List[Key] Output key list periodicity : Union[Dict[str, Tuple[float, float]], None] = None Dictionary of tuples that allows making model give periodic predictions on the given bounds in tuple. For example, `periodicity={'x': (0, 1)}` would make the network give periodic results for `x` on the interval `(0, 1)`. detach_keys : List[Key], optional List of keys to detach gradients, by default [] layer_size : int = 64 Layer size for every hidden layer of the model. nr_layers : int = 2 Number of hidden layers of the model. activation_fn : layers.Activation = layers.Activation.SIN Activation function used by network. fully_fused : bool = True Whether to use a fully fused MLP kernel implementation This option is only respected if the number of neurons per layer is one of [16, 32, 64, 128] and is supported only on Turing+ architectures indexing : str = "Hash" Type of backing storage of the grids. Can be "Hash", "Tiled" or "Dense". n_levels : int = 16 Number of levels (resolutions) n_features_per_level : int = 2 Dimensionality of feature vector stored in each level's entries. log2_hashmap_size : int = 19 If type is "Hash", is the base-2 logarithm of the number of elements in each backing hash table. base_resolution : int = 16 The resolution of the coarsest level is base_resolution^input_dims. per_level_scale : float = 2.0 The geometric growth factor, i.e. the factor by which the resolution of each grid is larger (per axis) than that of the preceeding level. interpolation : str = "Smoothstep" How to interpolate nearby grid lookups. Can be "Nearest", "Linear", or "Smoothstep" (for smooth derivatives). """ def __init__( self, input_keys: List[Key], output_keys: List[Key], periodicity: Union[Dict[str, Tuple[float, float]], None] = None, detach_keys: List[Key] = [], layer_size: int = 64, nr_layers: int = 2, activation_fn=layers.Activation.SIGMOID, fully_fused: bool = True, indexing: str = "Hash", n_levels: int = 16, n_features_per_level: int = 2, log2_hashmap_size: int = 19, base_resolution: int = 16, per_level_scale: float = 2.0, interpolation: str = "Smoothstep", ) -> None: if indexing not in ["Hash", "Tiled", "Dense"]: raise ValueError(f"indexing type {indexing} not supported") if interpolation not in ["Nearest", "Linear", "Smoothstep"]: raise ValueError(f"interpolation type {interpolation} not supported") encoding_config = { "otype": "Grid", "type": indexing, "n_levels": n_levels, "n_features_per_level": 2, "log2_hashmap_size": 19, "base_resolution": 16, "per_level_scale": 2.0, "interpolation": interpolation, } super().__init__( input_keys=input_keys, output_keys=output_keys, periodicity=periodicity, detach_keys=detach_keys, layer_size=layer_size, nr_layers=nr_layers, activation_fn=activation_fn, fully_fused=fully_fused, encoding_config=encoding_config, )
modulus-sym-main
modulus/sym/models/fused_mlp.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Dict, Tuple from modulus.sym.key import Key import copy import torch import torch.nn as nn from torch import Tensor import modulus.sym.models.layers as layers from .interpolation import smooth_step_1, smooth_step_2 from modulus.sym.models.arch import Arch from typing import List class MovingTimeWindowArch(Arch): """ Moving time window model the keeps track of current time window and previous window. Parameters ---------- arch : Arch Modulus architecture to use for moving time window. window_size : float Size of the time window. This will be used to slide the window forward every iteration. """ def __init__( self, arch: Arch, window_size: float, ) -> None: output_keys = ( arch.output_keys + [Key(x.name + "_prev_step") for x in arch.output_keys] + [Key(x.name + "_prev_step_diff") for x in arch.output_keys] ) super().__init__( input_keys=arch.input_keys, output_keys=output_keys, periodicity=arch.periodicity, ) # set networks for current and prev time window self.arch_prev_step = arch self.arch = copy.deepcopy(arch) # store time window parameters self.window_size = window_size self.window_location = nn.Parameter(torch.empty(1), requires_grad=False) self.reset_parameters() def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: with torch.no_grad(): in_vars["t"] += self.window_location y_prev_step = self.arch_prev_step.forward(in_vars) y = self.arch.forward(in_vars) y_keys = list(y.keys()) for key in y_keys: y_prev = y_prev_step[key] y[key + "_prev_step"] = y_prev y[key + "_prev_step_diff"] = y[key] - y_prev return y def move_window(self): self.window_location.data += self.window_size for param, param_prev_step in zip( self.arch.parameters(), self.arch_prev_step.parameters() ): param_prev_step.data = param.detach().clone().data param_prev_step.requires_grad = False def reset_parameters(self) -> None: nn.init.constant_(self.window_location, 0)
modulus-sym-main
modulus/sym/models/moving_time_window.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Dict, Tuple, Optional, Union import torch import torch.nn as nn from torch import Tensor import modulus.sym.models.layers as layers from modulus.sym.models.arch import Arch from modulus.sym.key import Key from modulus.sym.constants import NO_OP_NORM class SirenArch(Arch): """Sinusoidal Representation Network (SIREN). Parameters ---------- input_keys : List[Key] Input key list. output_keys : List[Key] Output key list. detach_keys : List[Key], optional List of keys to detach gradients, by default [] layer_size : int, optional Layer size for every hidden layer of the model, by default 512 nr_layers : int, optional Number of hidden layers of the model, by default 6 first_omega : float, optional Scales first weight matrix by this factor, by default 30 omega : float, optional Scales the weight matrix of all hidden layers by this factor, by default 30 normalization : Dict[str, Tuple[float, float]], optional Normalization of input to network, by default None Variable Shape -------------- - Input variable tensor shape: :math:`[N, size]` - Output variable tensor shape: :math:`[N, size]` Example ------- Siren model (2 -> 64 -> 64 -> 2) >>> arch = .siren.SirenArch( >>> [Key("x", size=2)], >>> [Key("y", size=2)], >>> layer_size = 64, >>> nr_layers = 2) >>> model = arch.make_node() >>> input = {"x": torch.randn(64, 2)} >>> output = model.evaluate(input) Note ---- Reference: Sitzmann, Vincent, et al. Implicit Neural Representations with Periodic Activation Functions. https://arxiv.org/abs/2006.09661. """ def __init__( self, input_keys: List[Key], output_keys: List[Key], detach_keys: List[Key] = [], layer_size: int = 512, nr_layers: int = 6, first_omega: float = 30.0, omega: float = 30.0, normalization: Dict[str, Tuple[float, float]] = None, ) -> None: super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) in_features = sum(self.input_key_dict.values()) out_features = sum(self.output_key_dict.values()) layers_list = [] layers_list.append( layers.SirenLayer( in_features, layer_size, layers.SirenLayerType.FIRST, first_omega, ) ) for _ in range(nr_layers - 1): layers_list.append( layers.SirenLayer( layer_size, layer_size, layers.SirenLayerType.HIDDEN, omega ) ) layers_list.append( layers.SirenLayer( layer_size, out_features, layers.SirenLayerType.LAST, omega ) ) self.layers = nn.Sequential(*layers_list) self.normalization: Optional[Dict[str, Tuple[float, float]]] = normalization # iterate input keys and add NO_OP_NORM if it is not specified if self.normalization is not None: for key in self.input_key_dict: if key not in self.normalization: self.normalization[key] = NO_OP_NORM self.register_buffer( "normalization_tensor", self._get_normalization_tensor(self.input_key_dict, self.normalization), persistent=False, ) def _tensor_forward(self, x: Tensor) -> Tensor: x = self._tensor_normalize(x, self.normalization_tensor) x = self.process_input( x, self.input_scales_tensor, input_dict=self.input_key_dict, dim=-1 ) x = self.layers(x) x = self.process_output(x, self.output_scales_tensor) return x def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.concat_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, ) y = self._tensor_forward(x) return self.split_output(y, self.output_key_dict, dim=-1) def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: """ This is the original forward function, left here for the correctness test. """ x = self.prepare_input( self._normalize(in_vars, self.normalization), self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=-1, input_scales=self.input_scales, ) x = self.layers(x) return self.prepare_output( x, self.output_key_dict, dim=-1, output_scales=self.output_scales ) def _normalize( self, in_vars: Dict[str, Tensor], norms: Optional[Dict[str, Tuple[float, float]]], ) -> Dict[str, Tensor]: if norms is None: return in_vars normalized_in_vars = {} for k, v in in_vars.items(): if k in norms: v = (v - norms[k][0]) / (norms[k][1] - norms[k][0]) v = 2 * v - 1 normalized_in_vars[k] = v return normalized_in_vars
modulus-sym-main
modulus/sym/models/siren.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Union, Optional, Tuple import torch import torch.nn as nn from torch import Tensor import torch.nn.functional as F import numpy as np import logging import modulus.sym.models.layers as layers from modulus.sym.models.layers import Activation from modulus.sym.models.layers.spectral_layers import ( calc_latent_derivatives, first_order_pino_grads, second_order_pino_grads, ) from modulus.sym.models.arch import Arch from modulus.sym.models.fully_connected import ConvFullyConnectedArch from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.constants import JIT_PYTORCH_VERSION logger = logging.getLogger(__name__) class FNO1DEncoder(nn.Module): def __init__( self, in_channels: int = 1, nr_fno_layers: int = 4, fno_layer_size: int = 32, fno_modes: Union[int, List[int]] = 16, padding: Union[int, List[int]] = 8, padding_type: str = "constant", activation_fn: Activation = Activation.GELU, coord_features: bool = True, ) -> None: super().__init__() self.in_channels = in_channels self.nr_fno_layers = nr_fno_layers self.fno_width = fno_layer_size self.coord_features = coord_features # Spectral modes to have weights if isinstance(fno_modes, int): fno_modes = [fno_modes] # Add relative coordinate feature if self.coord_features: self.in_channels = self.in_channels + 1 self.activation_fn = layers.get_activation_fn(activation_fn) self.spconv_layers = nn.ModuleList() self.conv_layers = nn.ModuleList() # Initial lift layer self.lift_layer = layers.Conv1dFCLayer(self.in_channels, self.fno_width) # Build Neural Fourier Operators for _ in range(self.nr_fno_layers): self.spconv_layers.append( layers.SpectralConv1d(self.fno_width, self.fno_width, fno_modes[0]) ) self.conv_layers.append(nn.Conv1d(self.fno_width, self.fno_width, 1)) # Padding values for spectral conv if isinstance(padding, int): padding = [padding] self.pad = padding[:1] self.ipad = [-pad if pad > 0 else None for pad in self.pad] self.padding_type = padding_type def forward(self, x: Tensor) -> Tensor: if self.coord_features: coord_feat = self.meshgrid(list(x.shape), x.device) x = torch.cat((x, coord_feat), dim=1) x = self.lift_layer(x) # (left, right) x = F.pad(x, (0, self.pad[0]), mode=self.padding_type) # Spectral layers for k, conv_w in enumerate(zip(self.conv_layers, self.spconv_layers)): conv, w = conv_w if k < len(self.conv_layers) - 1: x = self.activation_fn( conv(x) + w(x) ) # Spectral Conv + GELU causes JIT issue! else: x = conv(x) + w(x) x = x[..., : self.ipad[0]] return x def meshgrid(self, shape: List[int], device: torch.device): bsize, size_x = shape[0], shape[2] grid_x = torch.linspace(0, 1, size_x, dtype=torch.float32, device=device) grid_x = grid_x.unsqueeze(0).unsqueeze(0).repeat(bsize, 1, 1) return grid_x class FNO2DEncoder(nn.Module): def __init__( self, in_channels: int = 1, nr_fno_layers: int = 4, fno_layer_size: int = 32, fno_modes: Union[int, List[int]] = 16, padding: Union[int, List[int]] = 8, padding_type: str = "constant", activation_fn: Activation = Activation.GELU, coord_features: bool = True, ) -> None: super().__init__() self.in_channels = in_channels self.nr_fno_layers = nr_fno_layers self.fno_width = fno_layer_size self.coord_features = coord_features # Spectral modes to have weights if isinstance(fno_modes, int): fno_modes = [fno_modes, fno_modes] # Add relative coordinate feature if self.coord_features: self.in_channels = self.in_channels + 2 self.activation_fn = layers.get_activation_fn(activation_fn) self.spconv_layers = nn.ModuleList() self.conv_layers = nn.ModuleList() # Initial lift layer self.lift_layer = layers.Conv2dFCLayer(self.in_channels, self.fno_width) # Build Neural Fourier Operators for _ in range(self.nr_fno_layers): self.spconv_layers.append( layers.SpectralConv2d( self.fno_width, self.fno_width, fno_modes[0], fno_modes[1] ) ) self.conv_layers.append(nn.Conv2d(self.fno_width, self.fno_width, 1)) # Padding values for spectral conv if isinstance(padding, int): padding = [padding, padding] padding = padding + [0, 0] # Pad with zeros for smaller lists self.pad = padding[:2] self.ipad = [-pad if pad > 0 else None for pad in self.pad] self.padding_type = padding_type def forward(self, x: Tensor) -> Tensor: assert ( x.dim() == 4 ), "Only 4D tensors [batch, in_channels, grid_x, grid_y] accepted for 2D FNO" if self.coord_features: coord_feat = self.meshgrid(list(x.shape), x.device) x = torch.cat((x, coord_feat), dim=1) x = self.lift_layer(x) # (left, right, top, bottom) x = F.pad(x, (0, self.pad[0], 0, self.pad[1]), mode=self.padding_type) # Spectral layers for k, conv_w in enumerate(zip(self.conv_layers, self.spconv_layers)): conv, w = conv_w if k < len(self.conv_layers) - 1: x = self.activation_fn( conv(x) + w(x) ) # Spectral Conv + GELU causes JIT issue! else: x = conv(x) + w(x) # remove padding x = x[..., : self.ipad[1], : self.ipad[0]] return x def meshgrid(self, shape: List[int], device: torch.device): bsize, size_x, size_y = shape[0], shape[2], shape[3] grid_x = torch.linspace(0, 1, size_x, dtype=torch.float32, device=device) grid_y = torch.linspace(0, 1, size_y, dtype=torch.float32, device=device) grid_x, grid_y = torch.meshgrid(grid_x, grid_y, indexing="ij") grid_x = grid_x.unsqueeze(0).unsqueeze(0).repeat(bsize, 1, 1, 1) grid_y = grid_y.unsqueeze(0).unsqueeze(0).repeat(bsize, 1, 1, 1) return torch.cat((grid_x, grid_y), dim=1) class FNO3DEncoder(nn.Module): def __init__( self, in_channels: int = 1, nr_fno_layers: int = 4, fno_layer_size: int = 32, fno_modes: Union[int, List[int]] = 16, padding: Union[int, List[int]] = 8, padding_type: str = "constant", activation_fn: Activation = Activation.GELU, coord_features: bool = True, ) -> None: super().__init__() self.in_channels = in_channels self.nr_fno_layers = nr_fno_layers self.fno_width = fno_layer_size self.coord_features = coord_features # Spectral modes to have weights if isinstance(fno_modes, int): fno_modes = [fno_modes, fno_modes, fno_modes] # Add relative coordinate feature if self.coord_features: self.in_channels = self.in_channels + 3 self.activation_fn = layers.get_activation_fn(activation_fn) self.spconv_layers = nn.ModuleList() self.conv_layers = nn.ModuleList() # Initial lift layer self.lift_layer = layers.Conv3dFCLayer(self.in_channels, self.fno_width) # Build Neural Fourier Operators for _ in range(self.nr_fno_layers): self.spconv_layers.append( layers.SpectralConv3d( self.fno_width, self.fno_width, fno_modes[0], fno_modes[1], fno_modes[2], ) ) self.conv_layers.append(nn.Conv3d(self.fno_width, self.fno_width, 1)) # Padding values for spectral conv if isinstance(padding, int): padding = [padding, padding, padding] padding = padding + [0, 0, 0] # Pad with zeros for smaller lists self.pad = padding[:3] self.ipad = [-pad if pad > 0 else None for pad in self.pad] self.padding_type = padding_type def forward(self, x: Tensor) -> Tensor: if self.coord_features: coord_feat = self.meshgrid(list(x.shape), x.device) x = torch.cat((x, coord_feat), dim=1) x = self.lift_layer(x) # (left, right, top, bottom, front, back) x = F.pad( x, (0, self.pad[0], 0, self.pad[1], 0, self.pad[2]), mode=self.padding_type, ) # Spectral layers for k, conv_w in enumerate(zip(self.conv_layers, self.spconv_layers)): conv, w = conv_w if k < len(self.conv_layers) - 1: x = self.activation_fn( conv(x) + w(x) ) # Spectral Conv + GELU causes JIT issue! else: x = conv(x) + w(x) x = x[..., : self.ipad[2], : self.ipad[1], : self.ipad[0]] return x def meshgrid(self, shape: List[int], device: torch.device): bsize, size_x, size_y, size_z = shape[0], shape[2], shape[3], shape[4] grid_x = torch.linspace(0, 1, size_x, dtype=torch.float32, device=device) grid_y = torch.linspace(0, 1, size_y, dtype=torch.float32, device=device) grid_z = torch.linspace(0, 1, size_z, dtype=torch.float32, device=device) grid_x, grid_y, grid_z = torch.meshgrid(grid_x, grid_y, grid_z, indexing="ij") grid_x = grid_x.unsqueeze(0).unsqueeze(0).repeat(bsize, 1, 1, 1, 1) grid_y = grid_y.unsqueeze(0).unsqueeze(0).repeat(bsize, 1, 1, 1, 1) grid_z = grid_z.unsqueeze(0).unsqueeze(0).repeat(bsize, 1, 1, 1, 1) return torch.cat((grid_x, grid_y, grid_z), dim=1) def grid_to_points1d(vars_dict: Dict[str, Tensor]): for var, value in vars_dict.items(): value = torch.permute(value, (0, 2, 1)) vars_dict[var] = value.reshape(-1, value.size(-1)) return vars_dict def points_to_grid1d(vars_dict: Dict[str, Tensor], shape: List[int]): for var, value in vars_dict.items(): value = value.reshape(shape[0], shape[2], value.size(-1)) vars_dict[var] = torch.permute(value, (0, 2, 1)) return vars_dict def grid_to_points2d(vars_dict: Dict[str, Tensor]): for var, value in vars_dict.items(): value = torch.permute(value, (0, 2, 3, 1)) vars_dict[var] = value.reshape(-1, value.size(-1)) return vars_dict def points_to_grid2d(vars_dict: Dict[str, Tensor], shape: List[int]): for var, value in vars_dict.items(): value = value.reshape(shape[0], shape[2], shape[3], value.size(-1)) vars_dict[var] = torch.permute(value, (0, 3, 1, 2)) return vars_dict def grid_to_points3d(vars_dict: Dict[str, Tensor]): for var, value in vars_dict.items(): value = torch.permute(value, (0, 2, 3, 4, 1)) vars_dict[var] = value.reshape(-1, value.size(-1)) return vars_dict def points_to_grid3d(vars_dict: Dict[str, Tensor], shape: List[int]): for var, value in vars_dict.items(): value = value.reshape(shape[0], shape[2], shape[3], shape[4], value.size(-1)) vars_dict[var] = torch.permute(value, (0, 4, 1, 2, 3)) return vars_dict class FNOArch(Arch): """Fourier neural operator (FNO) model. Note ---- The FNO architecture supports options for 1D, 2D and 3D fields which can be controlled using the `dimension` parameter. Parameters ---------- input_keys : List[Key] Input key list. The key dimension size should equal the variables channel dim. dimension : int Model dimensionality (supports 1, 2, 3). decoder_net : Arch Pointwise decoder network, input key should be the latent variable detach_keys : List[Key], optional List of keys to detach gradients, by default [] nr_fno_layers : int, optional Number of spectral convolution layers, by default 4 fno_modes : Union[int, List[int]], optional Number of Fourier modes with learnable weights, by default 16 padding : int, optional Padding size for FFT calculations, by default 8 padding_type : str, optional Padding type for FFT calculations ('constant', 'reflect', 'replicate' or 'circular'), by default "constant" activation_fn : Activation, optional Activation function, by default Activation.GELU coord_features : bool, optional Use coordinate meshgrid as additional input feature, by default True Variable Shape -------------- Input variable tensor shape: - 1D: :math:`[N, size, W]` - 2D: :math:`[N, size, H, W]` - 3D: :math:`[N, size, D, H, W]` Output variable tensor shape: - 1D: :math:`[N, size, W]` - 2D: :math:`[N, size, H, W]` - 3D: :math:`[N, size, D, H, W]` Example ------- 1D FNO model >>> decoder = FullyConnectedArch([Key("z", size=32)], [Key("y", size=2)]) >>> fno_1d = FNOArch([Key("x", size=2)], dimension=1, decoder_net=decoder) >>> model = fno_1d.make_node() >>> input = {"x": torch.randn(20, 2, 64)} >>> output = model.evaluate(input) 2D FNO model >>> decoder = ConvFullyConnectedArch([Key("z", size=32)], [Key("y", size=2)]) >>> fno_2d = FNOArch([Key("x", size=2)], dimension=2, decoder_net=decoder) >>> model = fno_2d.make_node() >>> input = {"x": torch.randn(20, 2, 64, 64)} >>> output = model.evaluate(input) 3D FNO model >>> decoder = Siren([Key("z", size=32)], [Key("y", size=2)]) >>> fno_3d = FNOArch([Key("x", size=2)], dimension=3, decoder_net=decoder) >>> model = fno_3d.make_node() >>> input = {"x": torch.randn(20, 2, 64, 64, 64)} >>> output = model.evaluate(input) """ def __init__( self, input_keys: List[Key], dimension: int, decoder_net: Arch, detach_keys: List[Key] = [], nr_fno_layers: int = 4, fno_modes: Union[int, List[int]] = 16, padding: int = 8, padding_type: str = "constant", activation_fn: Activation = Activation.GELU, coord_features: bool = True, ) -> None: super().__init__(input_keys=input_keys, output_keys=[], detach_keys=detach_keys) self.dimension = dimension self.nr_fno_layers = nr_fno_layers self.fno_modes = fno_modes self.padding = padding self.padding_type = padding_type self.activation_fn = activation_fn self.coord_features = coord_features # decoder net self.decoder_net = decoder_net self.calc_pino_gradients = False self.output_keys = self.decoder_net.output_keys self.output_key_dict = {str(var): var.size for var in self.output_keys} self.output_scales = {str(k): k.scale for k in self.output_keys} self.latent_key = self.decoder_net.input_keys self.latent_key_dict = {str(var): var.size for var in self.latent_key} assert ( len(self.latent_key) == 1 ), "FNO decoder network should only have a single input key" self.latent_key = str(self.latent_key[0]) in_channels = sum(self.input_key_dict.values()) self.fno_layer_size = sum(self.latent_key_dict.values()) if self.dimension == 1: FNOModel = FNO1DEncoder self.grid_to_points = grid_to_points1d # For JIT self.points_to_grid = points_to_grid1d # For JIT elif self.dimension == 2: FNOModel = FNO2DEncoder self.grid_to_points = grid_to_points2d # For JIT self.points_to_grid = points_to_grid2d # For JIT elif self.dimension == 3: FNOModel = FNO3DEncoder self.grid_to_points = grid_to_points3d # For JIT self.points_to_grid = points_to_grid3d # For JIT else: raise NotImplementedError( "Invalid dimensionality. Only 1D, 2D and 3D FNO implemented" ) self.spec_encoder = FNOModel( in_channels, nr_fno_layers=self.nr_fno_layers, fno_layer_size=self.fno_layer_size, fno_modes=self.fno_modes, padding=self.padding, padding_type=self.padding_type, activation_fn=self.activation_fn, coord_features=self.coord_features, ) def add_pino_gradients( self, derivatives: List[Key], domain_length: List[float] = [1.0, 1.0] ) -> None: """Adds PINO "exact" gradient calculations model outputs. Note ---- This will constraint the FNO decoder to a two layer fully-connected model with Tanh activactions functions. This is done for computational efficiency since gradients calculations are explicit. Auto-diff is far too slow for this method. Parameters ---------- derivatives : List[Key] List of derivative keys domain_length : List[float], optional Domain size of input grid. Needed for calculating the gradients of the latent variables. By default [1.0, 1.0] Raises ------ ValueError If domain length list is not the same size as the FNO model dimenion Note ---- For details on the "exact" gradient calculation refer to section 3.3 in: https://arxiv.org/pdf/2111.03794.pdf """ assert ( len(domain_length) == self.dimension ), "Domain length must be same length as the dimension of the model" self.domain_length = domain_length logger.warning( "Switching decoder to two layer FC model with Tanh activations for PINO" ) self.decoder_net = ConvFullyConnectedArch( input_keys=self.decoder_net.input_keys, output_keys=self.decoder_net.output_keys, layer_size=self.fno_layer_size, nr_layers=1, activation_fn=Activation.TANH, skip_connections=False, adaptive_activations=False, ) self.calc_pino_gradients = True self.first_order_pino = False self.second_order_pino = False self.derivative_keys = [] for var in derivatives: dx_name = str(var).split("__") # Split name to get original var names if len(dx_name) == 2: # First order assert ( dx_name[1] in ["x", "y", "z"][: self.dimension] ), f"Invalid first-order derivative {str(var)} for {self.dimension}d FNO" self.derivative_keys.append(var) self.first_order_pino = True elif len(dx_name) == 3: assert ( dx_name[1] in ["x", "y", "z"][: self.dimension] and dx_name[1] == dx_name[2] ), f"Invalid second-order derivative {str(var)} for {self.dimension}d FNO" self.derivative_keys.append(var) self.second_order_pino = True elif len(dx_name) > 3: raise ValueError( "FNO only supports first order and laplacian second order derivatives" ) # Add derivative keys into output keys self.output_keys_fno = self.output_keys.copy() self.output_key_fno_dict = {str(var): var.size for var in self.output_keys_fno} self.output_keys = self.output_keys + self.derivative_keys self.output_key_dict = {str(var): var.size for var in self.output_keys} def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=1, input_scales=self.input_scales, ) y_latent = self.spec_encoder(x) y_shape = list(y_latent.size()) y_input = {self.latent_key: y_latent} # Reshape to pointwise inputs if not a conv FC model if self.decoder_net.var_dim == -1: y_input = self.grid_to_points(y_input) y = self.decoder_net(y_input) # Convert back into grid if self.decoder_net.var_dim == -1: y = self.points_to_grid(y, y_shape) if self.calc_pino_gradients: output_grads = self.calc_pino_derivatives(y_latent) y.update(output_grads) return y @torch.jit.ignore def calc_pino_derivatives(self, latent: Tensor) -> Dict[str, Tensor]: # Calculate the gradients of latent variables # This is done using FFT and is the reason we need a domain size lat_dx, lat_ddx = calc_latent_derivatives(latent, self.domain_length) # Get weight matrices from decoder weights, biases = self.decoder_net._impl.get_weight_list() outputs = {} # calc first order derivatives if self.first_order_pino: output_dx = first_order_pino_grads( u=latent, ux=lat_dx, weights_1=weights[0], weights_2=weights[1], bias_1=biases[0], ) # Build output dictionary manually (would normally use prepare_output) dims = ["x", "y", "z"] for d in range(len(output_dx)): # Loop through dimensions for k, v in zip( self.output_keys_fno, torch.split( output_dx[d], list(self.output_key_fno_dict.values()), dim=1 ), ): # Loop through variables if f"{k}__{dims[d]}__{dims[d]}" in self.output_key_dict.keys(): out_scale = self.decoder_net.output_scales[str(k)][ 1 ] # Apply out scaling to grads outputs[f"{k}__{dims[d]}"] = v * out_scale # calc first order derivatives if self.second_order_pino: output_dxx = second_order_pino_grads( u=latent, ux=lat_dx, uxx=lat_ddx, weights_1=weights[0], weights_2=weights[1], bias_1=biases[0], ) # Build output dictionary manually (would normally use prepare_output) dims = ["x", "y", "z"] for d in range(len(output_dxx)): # Loop through dimensions for k, v in zip( self.output_keys_fno, torch.split( output_dxx[d], list(self.output_key_fno_dict.values()), dim=1 ), ): # Loop through variables if f"{k}__{dims[d]}__{dims[d]}" in self.output_key_dict.keys(): out_scale = self.decoder_net.output_scales[str(k)][ 1 ] # Apply out scaling to grads outputs[f"{k}__{dims[d]}__{dims[d]}"] = v * out_scale return outputs
modulus-sym-main
modulus/sym/models/fno.py
# ignore_header_test """""" """ Pix2Pix model. This code was modified from, https://github.com/NVIDIA/pix2pixHD The following license is provided from their source, Copyright (C) 2019 NVIDIA Corporation. Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu. BSD License. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. --------------------------- LICENSE FOR pytorch-CycleGAN-and-pix2pix ---------------- Copyright (c) 2017, Jun-Yan Zhu and Taesung Park All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import torch import torch.nn as nn import functools from typing import List, Dict from torch.autograd import Variable import numpy as np from modulus.sym.key import Key import modulus.sym.models.layers as layers from modulus.sym.models.layers import Activation from modulus.sym.models.arch import Arch Tensor = torch.Tensor class Pix2PixModelCore(nn.Module): def __init__( self, in_channels: int, out_channels: int, dimension: int, conv_layer_size: int = 64, n_downsampling: int = 3, n_upsampling: int = 3, n_blocks: int = 3, batch_norm: bool = False, padding_type: str = "reflect", activation_fn: Activation = Activation.RELU, ): assert ( n_blocks >= 0 and n_downsampling >= 0 and n_upsampling >= 0 ), "Invalid arch params" assert padding_type in ["reflect", "zero", "replicate"], "Invalid padding type" super().__init__() activation = layers.get_activation_fn(activation_fn, module=True, inplace=True) # set padding and convolutions if dimension == 1: padding = nn.ReflectionPad1d(3) conv = nn.Conv1d trans_conv = nn.ConvTranspose1d norm = nn.BatchNorm1d elif dimension == 2: padding = nn.ReflectionPad2d(3) conv = nn.Conv2d trans_conv = nn.ConvTranspose2d norm = nn.BatchNorm2d elif dimension == 3: padding = nn.ReflectionPad3d(3) conv = nn.Conv3d trans_conv = nn.ConvTranspose3d norm = nn.BatchNorm3d else: raise ValueError( f"Pix2Pix only supported dimensions 1, 2, 3. Got {dimension}" ) model = [ padding, conv(in_channels, conv_layer_size, kernel_size=7, padding=0), ] if batch_norm: model.append(norm(conv_layer_size)) model.append(activation) ### downsample for i in range(n_downsampling): mult = 2**i model.append( conv( conv_layer_size * mult, conv_layer_size * mult * 2, kernel_size=3, stride=2, padding=1, ) ) if batch_norm: model.append(norm(conv_layer_size * mult * 2)) model.append(activation) ### resnet blocks mult = 2**n_downsampling for i in range(n_blocks): model += [ ResnetBlock( dimension, conv_layer_size * mult, padding_type=padding_type, activation=activation, use_batch_norm=batch_norm, ) ] ### upsample for i in range(n_downsampling): mult = 2 ** (n_downsampling - i) model.append( trans_conv( int(conv_layer_size * mult), int(conv_layer_size * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, ) ) if batch_norm: model.append(norm(int(conv_layer_size * mult / 2))) model.append(activation) # super-resolution layers for i in range(max([0, n_upsampling - n_downsampling])): model.append( trans_conv( int(conv_layer_size), int(conv_layer_size), kernel_size=3, stride=2, padding=1, output_padding=1, ) ) if batch_norm: model.append(norm(conv_layer_size)) model.append(activation) model += [ padding, conv(conv_layer_size, out_channels, kernel_size=7, padding=0), ] self.model = nn.Sequential(*model) def forward(self, input: Tensor) -> Tensor: y = self.model(input) return y # Define a resnet block class ResnetBlock(nn.Module): def __init__( self, dimension: int, channels: int, padding_type: str = "zero", activation: nn.Module = nn.ReLU(True), use_batch_norm: bool = False, use_dropout: bool = False, ): super().__init__() if dimension == 1: conv = nn.Conv1d if padding_type == "reflect": padding = nn.ReflectionPad1d(1) elif padding_type == "replicate": padding = nn.ReplicationPad1d(1) elif padding_type == "zero": padding = 1 norm = nn.BatchNorm1d elif dimension == 2: conv = nn.Conv2d if padding_type == "reflect": padding = nn.ReflectionPad2d(1) elif padding_type == "replicate": padding = nn.ReplicationPad2d(1) elif padding_type == "zero": padding = 1 norm = nn.BatchNorm2d elif dimension == 3: conv = nn.Conv3d if padding_type == "reflect": padding = nn.ReflectionPad3d(1) elif padding_type == "replicate": padding = nn.ReplicationPad3d(1) elif padding_type == "zero": padding = 1 norm = nn.BatchNorm3d conv_block = [] p = 0 if padding_type != "zero": conv_block += [padding] conv_block.append(conv(channels, channels, kernel_size=3, padding=p)) if use_batch_norm: conv_block.append(norm(channels)) conv_block.append(activation) if use_dropout: conv_block += [nn.Dropout(0.5)] if padding_type != "zero": conv_block += [padding] conv_block += [ conv(channels, channels, kernel_size=3, padding=p), ] if use_batch_norm: conv_block.append(norm(channels)) self.conv_block = nn.Sequential(*conv_block) def forward(self, x: Tensor) -> Tensor: out = x + self.conv_block(x) return out class Pix2PixArch(Arch): """Convolutional encoder-decoder based on pix2pix generator models. Note ---- The pix2pix architecture supports options for 1D, 2D and 3D fields which can be constroled using the `dimension` parameter. Parameters ---------- input_keys : List[Key] Input key list. The key dimension size should equal the variables channel dim. output_keys : List[Key] Output key list. The key dimension size should equal the variables channel dim. dimension : int Model dimensionality (supports 1, 2, 3). detach_keys : List[Key], optional List of keys to detach gradients, by default [] conv_layer_size : int, optional Latent channel size after first convolution, by default 64 n_downsampling : int, optional Number of downsampling/upsampling blocks, by default 3 n_blocks : int, optional Number of residual blocks in middle of model, by default 3 scaling_factor : int, optional Scaling factor to increase the output feature size compared to the input (1, 2, 4, or 8), by default 1 activation_fn : Activation, optional Activation function, by default :obj:`Activation.RELU` batch_norm : bool, optional Batch normalization, by default False padding_type : str, optional Padding type ('constant', 'reflect', 'replicate' or 'circular'), by default "reflect" Variable Shape -------------- Input variable tensor shape: - 1D: :math:`[N, size, W]` - 2D: :math:`[N, size, H, W]` - 3D: :math:`[N, size, D, H, W]` Output variable tensor shape: - 1D: :math:`[N, size, W]` - 2D: :math:`[N, size, H, W]` - 3D: :math:`[N, size, D, H, W]` Note ---- Reference: Isola, Phillip, et al. “Image-To-Image translation with conditional adversarial networks” Conference on Computer Vision and Pattern Recognition, 2017. https://arxiv.org/abs/1611.07004 Reference: Wang, Ting-Chun, et al. “High-Resolution image synthesis and semantic manipulation with conditional GANs” Conference on Computer Vision and Pattern Recognition, 2018. https://arxiv.org/abs/1711.11585 Note ---- Based on the implementation: https://github.com/NVIDIA/pix2pixHD """ def __init__( self, input_keys: List[Key], output_keys: List[Key], dimension: int, detach_keys: List[Key] = [], conv_layer_size: int = 64, n_downsampling: int = 3, n_blocks: int = 3, scaling_factor: int = 1, activation_fn: Activation = Activation.RELU, batch_norm: bool = False, padding_type="reflect", ): super().__init__( input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys ) in_channels = sum(self.input_key_dict.values()) out_channels = sum(self.output_key_dict.values()) self.var_dim = 1 # Scaling factor must be 1, 2, 4, or 8 scaling_factor = int(scaling_factor) assert scaling_factor in { 1, 2, 4, 8, }, "The scaling factor must be 1, 2, 4, or 8!" n_upsampling = n_downsampling + int(np.log2(scaling_factor)) self._impl = Pix2PixModelCore( in_channels, out_channels, dimension, conv_layer_size, n_downsampling, n_upsampling, n_blocks, batch_norm, padding_type, activation_fn, ) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: input = self.prepare_input( in_vars, self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=1, input_scales=self.input_scales, ) output = self._impl(input) return self.prepare_output( output, self.output_key_dict, dim=1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/pix2pix.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable from typing import Optional from typing import Union import torch import torch.nn as nn from torch import Tensor from .weight_norm import WeightNormLinear from .activation import Activation, get_activation_fn class DGMLayer(nn.Module): def __init__( self, in_features_1: int, in_features_2: int, out_features: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, weight_norm: bool = False, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__() self.activation_fn = activation_fn self.callable_activation_fn = get_activation_fn(activation_fn) self.weight_norm = weight_norm self.activation_par = activation_par if weight_norm: self.linear_1 = WeightNormLinear(in_features_1, out_features, bias=False) self.linear_2 = WeightNormLinear(in_features_2, out_features, bias=False) else: self.linear_1 = nn.Linear(in_features_1, out_features, bias=False) self.linear_2 = nn.Linear(in_features_2, out_features, bias=False) self.bias = nn.Parameter(torch.empty(out_features)) self.reset_parameters() def exec_activation_fn(self, x: Tensor) -> Tensor: return self.callable_activation_fn(x) def reset_parameters(self) -> None: nn.init.xavier_uniform_(self.linear_1.weight) nn.init.xavier_uniform_(self.linear_2.weight) nn.init.constant_(self.bias, 0) if self.weight_norm: nn.init.constant_(self.linear_1.weight_g, 1.0) nn.init.constant_(self.linear_2.weight_g, 1.0) def forward(self, input_1: Tensor, input_2: Tensor) -> Tensor: x = self.linear_1(input_1) + self.linear_2(input_2) + self.bias if self.activation_fn is not Activation.IDENTITY: if self.activation_par is None: x = self.exec_activation_fn(x) else: x = self.exec_activation_fn(self.activation_par * x) return x
modulus-sym-main
modulus/sym/models/layers/dgm_layers.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from typing import Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor class SpectralConv1d(nn.Module): def __init__(self, in_channels: int, out_channels: int, modes1: int): super().__init__() """ 1D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( torch.empty(in_channels, out_channels, self.modes1, 2) ) self.reset_parameters() # Complex multiplication def compl_mul1d( self, input: Tensor, weights: Tensor, ) -> Tensor: # (batch, in_channel, x ), (in_channel, out_channel, x) -> (batch, out_channel, x) cweights = torch.view_as_complex(weights) return torch.einsum("bix,iox->box", input, cweights) def forward(self, x: Tensor) -> Tensor: bsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfft(x) # Multiply relevant Fourier modes out_ft = torch.zeros( bsize, self.out_channels, x.size(-1) // 2 + 1, device=x.device, dtype=torch.cfloat, ) out_ft[:, :, : self.modes1] = self.compl_mul1d( x_ft[:, :, : self.modes1], self.weights1, ) # Return to physical space x = torch.fft.irfft(out_ft, n=x.size(-1)) return x def reset_parameters(self): self.weights1.data = self.scale * torch.rand(self.weights1.data.shape) class SpectralConv2d(nn.Module): def __init__(self, in_channels, out_channels, modes1, modes2): super().__init__() """ 2D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.modes2 = modes2 self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( torch.empty(in_channels, out_channels, self.modes1, self.modes2, 2) ) self.weights2 = nn.Parameter( torch.empty(in_channels, out_channels, self.modes1, self.modes2, 2) ) self.reset_parameters() # Complex multiplication def compl_mul2d(self, input: Tensor, weights: Tensor) -> Tensor: # (batch, in_channel, x, y), (in_channel, out_channel, x, y) -> (batch, out_channel, x, y) cweights = torch.view_as_complex(weights) return torch.einsum("bixy,ioxy->boxy", input, cweights) def forward(self, x: Tensor) -> Tensor: batchsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfft2(x) # Multiply relevant Fourier modes out_ft = torch.zeros( batchsize, self.out_channels, x.size(-2), x.size(-1) // 2 + 1, dtype=torch.cfloat, device=x.device, ) out_ft[:, :, : self.modes1, : self.modes2] = self.compl_mul2d( x_ft[:, :, : self.modes1, : self.modes2], self.weights1, ) out_ft[:, :, -self.modes1 :, : self.modes2] = self.compl_mul2d( x_ft[:, :, -self.modes1 :, : self.modes2], self.weights2, ) # Return to physical space x = torch.fft.irfft2(out_ft, s=(x.size(-2), x.size(-1))) return x def reset_parameters(self): self.weights1.data = self.scale * torch.rand(self.weights1.data.shape) self.weights2.data = self.scale * torch.rand(self.weights2.data.shape) class SpectralConv3d(nn.Module): def __init__(self, in_channels, out_channels, modes1, modes2, modes3): super().__init__() """ 3D Fourier layer. It does FFT, linear transform, and Inverse FFT. """ self.in_channels = in_channels self.out_channels = out_channels self.modes1 = ( modes1 # Number of Fourier modes to multiply, at most floor(N/2) + 1 ) self.modes2 = modes2 self.modes3 = modes3 self.scale = 1 / (in_channels * out_channels) self.weights1 = nn.Parameter( torch.empty( in_channels, out_channels, self.modes1, self.modes2, self.modes3, 2 ) ) self.weights2 = nn.Parameter( torch.empty( in_channels, out_channels, self.modes1, self.modes2, self.modes3, 2 ) ) self.weights3 = nn.Parameter( torch.empty( in_channels, out_channels, self.modes1, self.modes2, self.modes3, 2 ) ) self.weights4 = nn.Parameter( torch.empty( in_channels, out_channels, self.modes1, self.modes2, self.modes3, 2 ) ) self.reset_parameters() # Complex multiplication def compl_mul3d( self, input: Tensor, weights: Tensor, ) -> Tensor: # (batch, in_channel, x, y, z), (in_channel, out_channel, x, y, z) -> (batch, out_channel, x, y, z) cweights = torch.view_as_complex(weights) return torch.einsum("bixyz,ioxyz->boxyz", input, cweights) def forward(self, x: Tensor) -> Tensor: batchsize = x.shape[0] # Compute Fourier coeffcients up to factor of e^(- something constant) x_ft = torch.fft.rfftn(x, dim=[-3, -2, -1]) # Multiply relevant Fourier modes out_ft = torch.zeros( batchsize, self.out_channels, x.size(-3), x.size(-2), x.size(-1) // 2 + 1, dtype=torch.cfloat, device=x.device, ) out_ft[:, :, : self.modes1, : self.modes2, : self.modes3] = self.compl_mul3d( x_ft[:, :, : self.modes1, : self.modes2, : self.modes3], self.weights1 ) out_ft[:, :, -self.modes1 :, : self.modes2, : self.modes3] = self.compl_mul3d( x_ft[:, :, -self.modes1 :, : self.modes2, : self.modes3], self.weights2 ) out_ft[:, :, : self.modes1, -self.modes2 :, : self.modes3] = self.compl_mul3d( x_ft[:, :, : self.modes1, -self.modes2 :, : self.modes3], self.weights3 ) out_ft[:, :, -self.modes1 :, -self.modes2 :, : self.modes3] = self.compl_mul3d( x_ft[:, :, -self.modes1 :, -self.modes2 :, : self.modes3], self.weights4 ) # Return to physical space x = torch.fft.irfftn(out_ft, s=(x.size(-3), x.size(-2), x.size(-1))) return x def reset_parameters(self): self.weights1.data = self.scale * torch.rand(self.weights1.data.shape) self.weights2.data = self.scale * torch.rand(self.weights2.data.shape) self.weights3.data = self.scale * torch.rand(self.weights3.data.shape) self.weights4.data = self.scale * torch.rand(self.weights4.data.shape) # ========================================== # Utils for PINO exact gradients # ========================================== def fourier_derivatives(x: Tensor, l: List[float]) -> Tuple[Tensor, Tensor]: # check that input shape maches domain length assert len(x.shape) - 2 == len(l), "input shape doesn't match domain dims" # set pi from numpy pi = float(np.pi) # get needed dims batchsize = x.size(0) n = x.shape[2:] dim = len(l) # get device device = x.device # compute fourier transform x_h = torch.fft.fftn(x, dim=list(range(2, dim + 2))) # make wavenumbers k_x = [] for i, nx in enumerate(n): k_x.append( torch.cat( ( torch.arange(start=0, end=nx // 2, step=1, device=device), torch.arange(start=-nx // 2, end=0, step=1, device=device), ), 0, ).reshape((i + 2) * [1] + [nx] + (dim - i - 1) * [1]) ) # compute laplacian in fourier space j = torch.complex( torch.tensor([0.0], device=device), torch.tensor([1.0], device=device) ) # Cuda graphs does not work here wx_h = [j * k_x_i * x_h * (2 * pi / l[i]) for i, k_x_i in enumerate(k_x)] wxx_h = [ j * k_x_i * wx_h_i * (2 * pi / l[i]) for i, (wx_h_i, k_x_i) in enumerate(zip(wx_h, k_x)) ] # inverse fourier transform out wx = torch.cat( [torch.fft.ifftn(wx_h_i, dim=list(range(2, dim + 2))).real for wx_h_i in wx_h], dim=1, ) wxx = torch.cat( [ torch.fft.ifftn(wxx_h_i, dim=list(range(2, dim + 2))).real for wxx_h_i in wxx_h ], dim=1, ) return (wx, wxx) @torch.jit.ignore def calc_latent_derivatives( x: Tensor, domain_length: List[int] = 2 ) -> Tuple[List[Tensor], List[Tensor]]: dim = len(x.shape) - 2 # Compute derivatives of latent variables via fourier methods # Padd domain by factor of 2 for non-periodic domains padd = [(i - 1) // 2 for i in list(x.shape[2:])] # Scale domain length by padding amount domain_length = [ domain_length[i] * (2 * padd[i] + x.shape[i + 2]) / x.shape[i + 2] for i in range(dim) ] padding = padd + padd x_p = F.pad(x, padding, mode="replicate") dx, ddx = fourier_derivatives(x_p, domain_length) # Trim padded domain if len(x.shape) == 3: dx = dx[..., padd[0] : -padd[0]] ddx = ddx[..., padd[0] : -padd[0]] dx_list = torch.split(dx, x.shape[1], dim=1) ddx_list = torch.split(ddx, x.shape[1], dim=1) elif len(x.shape) == 4: dx = dx[..., padd[0] : -padd[0], padd[1] : -padd[1]] ddx = ddx[..., padd[0] : -padd[0], padd[1] : -padd[1]] dx_list = torch.split(dx, x.shape[1], dim=1) ddx_list = torch.split(ddx, x.shape[1], dim=1) else: dx = dx[..., padd[0] : -padd[0], padd[1] : -padd[1], padd[2] : -padd[2]] ddx = ddx[..., padd[0] : -padd[0], padd[1] : -padd[1], padd[2] : -padd[2]] dx_list = torch.split(dx, x.shape[1], dim=1) ddx_list = torch.split(ddx, x.shape[1], dim=1) return dx_list, ddx_list def first_order_pino_grads( u: Tensor, ux: List[Tensor], weights_1: Tensor, weights_2: Tensor, bias_1: Tensor, ) -> Tuple[Tensor]: # dim for einsum dim = len(u.shape) - 2 dim_str = "xyz"[:dim] # compute first order derivatives of input # compute first layer if dim == 1: u_hidden = F.conv1d(u, weights_1, bias_1) elif dim == 2: weights_1 = weights_1.unsqueeze(-1) weights_2 = weights_2.unsqueeze(-1) u_hidden = F.conv2d(u, weights_1, bias_1) elif dim == 3: weights_1 = weights_1.unsqueeze(-1).unsqueeze(-1) weights_2 = weights_2.unsqueeze(-1).unsqueeze(-1) u_hidden = F.conv3d(u, weights_1, bias_1) # compute derivative hidden layer diff_tanh = 1 / torch.cosh(u_hidden) ** 2 # compute diff(f(g)) diff_fg = torch.einsum( "mi" + dim_str + ",bm" + dim_str + ",km" + dim_str + "->bi" + dim_str, weights_1, diff_tanh, weights_2, ) # compute diff(f(g)) * diff(g) vx = [ torch.einsum("bi" + dim_str + ",bi" + dim_str + "->b" + dim_str, diff_fg, w) for w in ux ] vx = [torch.unsqueeze(w, dim=1) for w in vx] return vx def second_order_pino_grads( u: Tensor, ux: Tensor, uxx: Tensor, weights_1: Tensor, weights_2: Tensor, bias_1: Tensor, ) -> Tuple[Tensor]: # dim for einsum dim = len(u.shape) - 2 dim_str = "xyz"[:dim] # compute first order derivatives of input # compute first layer if dim == 1: u_hidden = F.conv1d(u, weights_1, bias_1) elif dim == 2: weights_1 = weights_1.unsqueeze(-1) weights_2 = weights_2.unsqueeze(-1) u_hidden = F.conv2d(u, weights_1, bias_1) elif dim == 3: weights_1 = weights_1.unsqueeze(-1).unsqueeze(-1) weights_2 = weights_2.unsqueeze(-1).unsqueeze(-1) u_hidden = F.conv3d(u, weights_1, bias_1) # compute derivative hidden layer diff_tanh = 1 / torch.cosh(u_hidden) ** 2 # compute diff(f(g)) diff_fg = torch.einsum( "mi" + dim_str + ",bm" + dim_str + ",km" + dim_str + "->bi" + dim_str, weights_1, diff_tanh, weights_2, ) # compute diagonal of hessian # double derivative of hidden layer diff_diff_tanh = -2 * diff_tanh * torch.tanh(u_hidden) # compute diff(g) * hessian(f) * diff(g) vxx1 = [ torch.einsum( "bi" + dim_str + ",mi" + dim_str + ",bm" + dim_str + ",mj" + dim_str + ",bj" + dim_str + "->b" + dim_str, w, weights_1, weights_2 * diff_diff_tanh, weights_1, w, ) for w in ux ] # (b,x,y,t) # compute diff(f) * hessian(g) vxx2 = [ torch.einsum("bi" + dim_str + ",bi" + dim_str + "->b" + dim_str, diff_fg, w) for w in uxx ] vxx = [torch.unsqueeze(a + b, dim=1) for a, b in zip(vxx1, vxx2)] return vxx # @torch.jit.ignore # def calc_derivatives( # self, # x: Tensor, # Latent variables # y: Dict[str, Tensor], # Output vars # x_list: List[Tensor], # dx_list: List[Tensor], # ddx_list: List[Tensor], # dim: int = 2, # ) -> Dict[str, Tensor]: # # Loop through output variables independently # y_out: Dict[str, Tensor] = {} # for key in self.output_key_dict.keys(): # # First-order grads with back-prop # outputs: List[torch.Tensor] = [y[key]] # inputs: List[torch.Tensor] = [x] # grad_outputs: List[Optional[torch.Tensor]] = [ # torch.ones_like(y[key], device=y[key].device) # ] # dydzeta = torch.autograd.grad( # outputs, # inputs, # grad_outputs=grad_outputs, # create_graph=True, # retain_graph=True, # )[0] # for i, axis in enumerate(["x", "y", "z"]): # if f"{key}__{axis}" in self.derivative_key_dict: # # Chain rule: g'(x)*f'(g(x)) # y_out[f"{key}__{axis}"] = torch.sum( # dx_list[i] * dydzeta, dim=1, keepdim=True # ) # # Calc second order if needed # if self.calc_ddx: # y_ddx = self.calc_second_order_derivatives( # x, key, x_list, dx_list, ddx_list, dydzeta, dim # ) # y_out.update(y_ddx) # return y_out # @torch.jit.ignore # def calc_second_order_derivatives( # self, # x: Tensor, # key: str, # x_list: List[Tensor], # dx_list: List[Tensor], # ddx_list: List[Tensor], # dydzeta: Tensor, # dim: int = 2, # ) -> Dict[str, Tensor]: # # Brute force Hessian calc with auto-diff # hessian = torch.zeros( # dydzeta.shape[0], # dydzeta.shape[1], # dydzeta.shape[1], # dydzeta.shape[2], # dydzeta.shape[3], # ).to(x.device) # grad_outputs: List[Optional[torch.Tensor]] = [ # torch.ones_like(dydzeta[:, :1], device=dydzeta.device) # ] # for i in range(dydzeta.shape[1]): # for j in range(i, dydzeta.shape[1]): # dyydzeta = torch.autograd.grad( # dydzeta[:, j : j + 1], # x_list[i], # grad_outputs=grad_outputs, # retain_graph=True, # allow_unused=True, # )[0] # if dyydzeta is not None: # hessian[:, i, j] = dyydzeta.squeeze(1) # hessian[:, j, i] = dyydzeta.squeeze(1) # # Loop through output variables independently # y_out: Dict[str, Tensor] = {} # # Add needed derivatives # for i, axis in enumerate(["x", "y", "z"]): # if f"{key}__{axis}__{axis}" in self.derivative_key_dict: # dim_str = "ijk"[:dim] # # Chain rule: g''(x)*f'(g(x)) + g'(x)*f''(g(x))*g'(x) # y_out[f"{key}__{axis}__{axis}"] = torch.sum( # ddx_list[i] * dydzeta, dim=1, keepdim=True # ) + torch.einsum( # f"bm{dim_str},bmn{dim_str},bn{dim_str}->b{dim_str}", # dx_list[i], # hessian, # dx_list[i], # ).unsqueeze( # 1 # ) # return y_out
modulus-sym-main
modulus/sym/models/layers/spectral_layers.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .activation import Activation, get_activation_fn from .dgm_layers import DGMLayer from .fourier_layers import FourierLayer, FourierFilter, GaborFilter from .fully_connected_layers import FCLayer, Conv1dFCLayer, Conv2dFCLayer, Conv3dFCLayer from .siren_layers import SirenLayer, SirenLayerType from .spectral_layers import SpectralConv1d, SpectralConv2d, SpectralConv3d from .weight_norm import WeightNormLinear
modulus-sym-main
modulus/sym/models/layers/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor class WeightNormLinear(nn.Module): def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None: super().__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.empty((out_features, in_features))) self.weight_g = nn.Parameter(torch.empty((out_features, 1))) if bias: self.bias = nn.Parameter(torch.empty(out_features)) else: self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self) -> None: nn.init.xavier_uniform_(self.weight) nn.init.constant_(self.weight_g, 1.0) if self.bias is not None: nn.init.constant_(self.bias, 0.0) def forward(self, input: Tensor) -> Tensor: norm = self.weight.norm(dim=1, p=2, keepdim=True) weight = self.weight_g * self.weight / norm return F.linear(input, weight, self.bias) def extra_repr(self) -> str: return "in_features={}, out_features={}, bias={}".format( self.in_features, self.out_features, self.bias is not None )
modulus-sym-main
modulus/sym/models/layers/weight_norm.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Callable from typing import Optional from typing import Union import torch.nn as nn from torch import Tensor from .weight_norm import WeightNormLinear from .activation import Activation, get_activation_fn logger = logging.getLogger(__name__) class FCLayer(nn.Module): def __init__( self, in_features: int, out_features: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, weight_norm: bool = False, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__() self.activation_fn = activation_fn self.callable_activation_fn = get_activation_fn( activation_fn, out_features=out_features ) self.weight_norm = weight_norm self.activation_par = activation_par if weight_norm: self.linear = WeightNormLinear(in_features, out_features, bias=True) else: self.linear = nn.Linear(in_features, out_features, bias=True) self.reset_parameters() def exec_activation_fn(self, x: Tensor) -> Tensor: return self.callable_activation_fn(x) def reset_parameters(self) -> None: nn.init.constant_(self.linear.bias, 0) nn.init.xavier_uniform_(self.linear.weight) if self.weight_norm: nn.init.constant_(self.linear.weight_g, 1.0) def forward(self, x: Tensor) -> Tensor: x = self.linear(x) if self.activation_fn is not Activation.IDENTITY: if self.activation_par is None: x = self.exec_activation_fn(x) else: x = self.exec_activation_fn(self.activation_par * x) return x # FC like layer for image channels class ConvFCLayer(nn.Module): def __init__( self, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__() self.activation_fn = activation_fn self.callable_activation_fn = get_activation_fn(activation_fn) self.activation_par = activation_par def exec_activation_fn(self, x: Tensor) -> Tensor: return self.callable_activation_fn(x) def apply_activation(self, x: Tensor) -> Tensor: if self.activation_fn is not Activation.IDENTITY: if self.activation_par is None: x = self.exec_activation_fn(x) else: x = self.exec_activation_fn(self.activation_par * x) return x class Conv1dFCLayer(ConvFCLayer): def __init__( self, in_features: int, out_features: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, weight_norm: bool = False, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__(activation_fn, activation_par) self.in_channels = in_features self.out_channels = out_features self.conv = nn.Conv1d(in_features, out_features, kernel_size=1, bias=True) self.reset_parameters() if weight_norm: logger.warn("Weight norm not supported for Conv FC layers") def reset_parameters(self) -> None: nn.init.constant_(self.conv.bias, 0) nn.init.xavier_uniform_(self.conv.weight) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.apply_activation(x) return x class Conv2dFCLayer(ConvFCLayer): def __init__( self, in_channels: int, out_channels: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__(activation_fn, activation_par) self.in_channels = in_channels self.out_channels = out_channels self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=True) self.reset_parameters() def reset_parameters(self) -> None: nn.init.constant_(self.conv.bias, 0) self.conv.bias.requires_grad = False nn.init.xavier_uniform_(self.conv.weight) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.apply_activation(x) return x class Conv3dFCLayer(ConvFCLayer): def __init__( self, in_channels: int, out_channels: int, activation_fn: Union[ Activation, Callable[[Tensor], Tensor] ] = Activation.IDENTITY, activation_par: Optional[nn.Parameter] = None, ) -> None: super().__init__(activation_fn, activation_par) self.in_channels = in_channels self.out_channels = out_channels self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=1, bias=True) self.reset_parameters() def reset_parameters(self) -> None: nn.init.constant_(self.conv.bias, 0) nn.init.xavier_uniform_(self.conv.weight) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.apply_activation(x) return x
modulus-sym-main
modulus/sym/models/layers/fully_connected_layers.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum from typing import Callable from typing import Union from typing import List import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from modulus.sym.manager import JitManager, JitArchMode class ActivationMeta(enum.EnumMeta): def __getitem__(self, name): try: return super().__getitem__(name.upper()) except (KeyError) as error: raise KeyError(f"Invalid activation function {name}") class Activation(enum.Enum, metaclass=ActivationMeta): ELU = enum.auto() LEAKY_RELU = enum.auto() MISH = enum.auto() RELU = enum.auto() GELU = enum.auto() SELU = enum.auto() PRELU = enum.auto() SIGMOID = enum.auto() SILU = enum.auto() SIN = enum.auto() SQUAREPLUS = enum.auto() SOFTPLUS = enum.auto() TANH = enum.auto() STAN = enum.auto() IDENTITY = enum.auto() def identity(x: Tensor) -> Tensor: return x def squareplus(x: Tensor) -> Tensor: b = 4 return 0.5 * (x + torch.sqrt(x * x + b)) def gelu(x: Tensor) -> Tensor: # Applies GELU approximation, slower than sigmoid but more accurate. See: https://github.com/hendrycks/GELUs # Standard GELU that is present in PyTorch does not JIT compile! return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x))) # return 0.5 * x * (1 + torch.tanh(torch.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3)))) class Stan(nn.Module): """ Self-scalable Tanh (Stan) References: Gnanasambandam, Raghav and Shen, Bo and Chung, Jihoon and Yue, Xubo and others. Self-scalable Tanh (Stan): Faster Convergence and Better Generalization in Physics-informed Neural Networks. arXiv preprint arXiv:2204.12589, 2022. """ def __init__(self, out_features=1): super().__init__() self.beta = nn.Parameter(torch.ones(out_features)) def forward(self, x): if x.shape[-1] != self.beta.shape[-1]: raise ValueError( f"The last dimension of the input must be equal to the dimension of Stan parameters. Got inputs: {x.shape}, params: {self.beta.shape}" ) return torch.tanh(x) * (1.0 + self.beta * x) def get_activation_fn( activation: Union[Activation, Callable[[Tensor], Tensor]], module: bool = False, **kwargs, # Optional parameters ) -> Callable[[Tensor], Tensor]: activation_mapping = { Activation.ELU: F.elu, Activation.LEAKY_RELU: F.leaky_relu, Activation.MISH: F.mish, Activation.RELU: F.relu, Activation.GELU: F.gelu, Activation.SELU: F.selu, Activation.SIGMOID: torch.sigmoid, Activation.SILU: F.silu, Activation.SIN: torch.sin, Activation.SQUAREPLUS: squareplus, Activation.SOFTPLUS: F.softplus, Activation.TANH: torch.tanh, Activation.IDENTITY: identity, } # Some activations have parameters in them thus must # be in a Module before forward call module_activation_mapping = { Activation.ELU: nn.ELU, Activation.LEAKY_RELU: nn.LeakyReLU, Activation.MISH: nn.Mish, Activation.RELU: nn.ReLU, Activation.GELU: nn.GLU, Activation.SELU: nn.SELU, Activation.PRELU: nn.PReLU, Activation.SIGMOID: nn.Sigmoid, Activation.SILU: nn.SiLU, Activation.TANH: nn.Tanh, Activation.STAN: Stan, } if activation in activation_mapping and not module: activation_fn_ = activation_mapping[activation] # wraps the function because torch.sin and F.gelu could not be scripted directly def activation_fn(x: Tensor) -> Tensor: return activation_fn_(x) elif activation in module_activation_mapping: activation_fn = module_activation_mapping[activation](**kwargs) else: activation_fn = activation if JitManager().enabled and JitManager().arch_mode == JitArchMode.ONLY_ACTIVATION: activation_fn = torch.jit.script(activation_fn) return activation_fn
modulus-sym-main
modulus/sym/models/layers/activation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import torch import torch.nn as nn from torch import Tensor class FourierLayer(nn.Module): def __init__( self, in_features: int, frequencies, ) -> None: super().__init__() # To do: Need more robust way for these params if isinstance(frequencies[0], str): if "gaussian" in frequencies[0]: nr_freq = frequencies[2] np_f = ( np.random.normal(0, 1, size=(nr_freq, in_features)) * frequencies[1] ) else: nr_freq = len(frequencies[1]) np_f = [] if "full" in frequencies[0]: np_f_i = np.meshgrid( *[np.array(frequencies[1]) for _ in range(in_features)], indexing="ij", ) np_f.append( np.reshape( np.stack(np_f_i, axis=-1), (nr_freq**in_features, in_features), ) ) if "axis" in frequencies[0]: np_f_i = np.zeros((nr_freq, in_features, in_features)) for i in range(in_features): np_f_i[:, i, i] = np.reshape( np.array(frequencies[1]), (nr_freq) ) np_f.append( np.reshape(np_f_i, (nr_freq * in_features, in_features)) ) if "diagonal" in frequencies[0]: np_f_i = np.reshape(np.array(frequencies[1]), (nr_freq, 1, 1)) np_f_i = np.tile(np_f_i, (1, in_features, in_features)) np_f_i = np.reshape(np_f_i, (nr_freq * in_features, in_features)) np_f.append(np_f_i) np_f = np.concatenate(np_f, axis=-2) else: np_f = frequencies # [nr_freq, in_features] frequencies = torch.tensor(np_f, dtype=torch.get_default_dtype()) frequencies = frequencies.t().contiguous() self.register_buffer("frequencies", frequencies) def out_features(self) -> int: return int(self.frequencies.size(1) * 2) def forward(self, x: Tensor) -> Tensor: x_hat = torch.matmul(x, self.frequencies) x_sin = torch.sin(2.0 * math.pi * x_hat) x_cos = torch.cos(2.0 * math.pi * x_hat) x_i = torch.cat([x_sin, x_cos], dim=-1) return x_i class FourierFilter(nn.Module): def __init__( self, in_features: int, layer_size: int, nr_layers: int, input_scale: float, ) -> None: super().__init__() self.weight_scale = input_scale / math.sqrt(nr_layers + 1) self.frequency = nn.Parameter(torch.empty(in_features, layer_size)) # The shape of phase tensor was supposed to be [1, layer_size], but it has issue # with batched tensor in FuncArch. # We could just rely on broadcast here. self.phase = nn.Parameter(torch.empty(layer_size)) self.reset_parameters() def reset_parameters(self) -> None: nn.init.xavier_uniform_(self.frequency) nn.init.uniform_(self.phase, -math.pi, math.pi) def forward(self, x: Tensor) -> Tensor: frequency = self.weight_scale * self.frequency x_i = torch.sin(torch.matmul(x, 2.0 * math.pi * frequency) + self.phase) return x_i class GaborFilter(nn.Module): def __init__( self, in_features: int, layer_size: int, nr_layers: int, input_scale: float, alpha: float, beta: float, ) -> None: super().__init__() self.layer_size = layer_size self.alpha = alpha self.beta = beta self.weight_scale = input_scale / math.sqrt(nr_layers + 1) self.frequency = nn.Parameter(torch.empty(in_features, layer_size)) self.phase = nn.Parameter(torch.empty(layer_size)) self.mu = nn.Parameter(torch.empty(in_features, layer_size)) self.gamma = nn.Parameter(torch.empty(layer_size)) self.reset_parameters() def reset_parameters(self) -> None: nn.init.xavier_uniform_(self.frequency) nn.init.uniform_(self.phase, -math.pi, math.pi) nn.init.uniform_(self.mu, -1.0, 1.0) with torch.no_grad(): self.gamma.copy_( torch.from_numpy( np.random.gamma(self.alpha, 1.0 / self.beta, (self.layer_size)), ) ) def forward(self, x: Tensor) -> Tensor: frequency = self.weight_scale * (self.frequency * self.gamma.sqrt()) x_c = x.unsqueeze(-1) x_c = x_c - self.mu # The norm dim changed from 1 to -2 to be compatible with BatchedTensor x_c = torch.square(x_c.norm(p=2, dim=-2)) x_c = torch.exp(-0.5 * x_c * self.gamma) x_i = x_c * torch.sin(torch.matmul(x, 2.0 * math.pi * frequency) + self.phase) return x_i
modulus-sym-main
modulus/sym/models/layers/fourier_layers.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import math import torch import torch.nn as nn from torch import Tensor class SirenLayerType(enum.Enum): FIRST = enum.auto() HIDDEN = enum.auto() LAST = enum.auto() class SirenLayer(nn.Module): def __init__( self, in_features: int, out_features: int, layer_type: SirenLayerType = SirenLayerType.HIDDEN, omega_0: float = 30.0, ) -> None: super().__init__() self.in_features = in_features self.layer_type = layer_type self.omega_0 = omega_0 self.linear = nn.Linear(in_features, out_features, bias=True) self.apply_activation = layer_type in { SirenLayerType.FIRST, SirenLayerType.HIDDEN, } self.reset_parameters() def reset_parameters(self) -> None: weight_ranges = { SirenLayerType.FIRST: 1.0 / self.in_features, SirenLayerType.HIDDEN: math.sqrt(6.0 / self.in_features) / self.omega_0, SirenLayerType.LAST: math.sqrt(6.0 / self.in_features), } weight_range = weight_ranges[self.layer_type] nn.init.uniform_(self.linear.weight, -weight_range, weight_range) k_sqrt = math.sqrt(1.0 / self.in_features) nn.init.uniform_(self.linear.bias, -k_sqrt, k_sqrt) def forward(self, x: Tensor) -> Tensor: x = self.linear(x) if self.apply_activation: x = torch.sin(self.omega_0 * x) return x
modulus-sym-main
modulus/sym/models/layers/siren_layers.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Dict, List, Tuple import torch import torch.nn as nn import torch.nn.functional as F import torch.fft from torch import Tensor from modulus.sym.models.arch import Arch from modulus.sym.key import Key class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class AFNO2D(nn.Module): def __init__( self, hidden_size, num_blocks=8, sparsity_threshold=0.01, hard_thresholding_fraction=1, hidden_size_factor=1, ): super().__init__() assert ( hidden_size % num_blocks == 0 ), f"hidden_size {hidden_size} should be divisble by num_blocks {num_blocks}" self.hidden_size = hidden_size self.sparsity_threshold = sparsity_threshold self.num_blocks = num_blocks self.block_size = self.hidden_size // self.num_blocks self.hard_thresholding_fraction = hard_thresholding_fraction self.hidden_size_factor = hidden_size_factor self.scale = 0.02 self.w1 = nn.Parameter( self.scale * torch.randn( 2, self.num_blocks, self.block_size, self.block_size * self.hidden_size_factor, ) ) self.b1 = nn.Parameter( self.scale * torch.randn(2, self.num_blocks, self.block_size * self.hidden_size_factor) ) self.w2 = nn.Parameter( self.scale * torch.randn( 2, self.num_blocks, self.block_size * self.hidden_size_factor, self.block_size, ) ) self.b2 = nn.Parameter( self.scale * torch.randn(2, self.num_blocks, self.block_size) ) def forward(self, x): bias = x dtype = x.dtype x = x.float() B, H, W, C = x.shape x = torch.fft.rfft2(x, dim=(1, 2), norm="ortho") x = x.reshape(B, H, W // 2 + 1, self.num_blocks, self.block_size) o1_real = torch.zeros( [ B, H, W // 2 + 1, self.num_blocks, self.block_size * self.hidden_size_factor, ], device=x.device, ) o1_imag = torch.zeros( [ B, H, W // 2 + 1, self.num_blocks, self.block_size * self.hidden_size_factor, ], device=x.device, ) o2_real = torch.zeros(x.shape, device=x.device) o2_imag = torch.zeros(x.shape, device=x.device) total_modes = H // 2 + 1 kept_modes = int(total_modes * self.hard_thresholding_fraction) o1_real[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ] = F.relu( torch.einsum( "...bi,bio->...bo", x[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ].real, self.w1[0], ) - torch.einsum( "...bi,bio->...bo", x[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ].imag, self.w1[1], ) + self.b1[0] ) o1_imag[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ] = F.relu( torch.einsum( "...bi,bio->...bo", x[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ].imag, self.w1[0], ) + torch.einsum( "...bi,bio->...bo", x[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ].real, self.w1[1], ) + self.b1[1] ) o2_real[:, total_modes - kept_modes : total_modes + kept_modes, :kept_modes] = ( torch.einsum( "...bi,bio->...bo", o1_real[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ], self.w2[0], ) - torch.einsum( "...bi,bio->...bo", o1_imag[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ], self.w2[1], ) + self.b2[0] ) o2_imag[:, total_modes - kept_modes : total_modes + kept_modes, :kept_modes] = ( torch.einsum( "...bi,bio->...bo", o1_imag[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ], self.w2[0], ) + torch.einsum( "...bi,bio->...bo", o1_real[ :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes ], self.w2[1], ) + self.b2[1] ) x = torch.stack([o2_real, o2_imag], dim=-1) x = F.softshrink(x, lambd=self.sparsity_threshold) x = torch.view_as_complex(x) x = x.reshape(B, H, W // 2 + 1, C) x = torch.fft.irfft2(x, s=(H, W), dim=(1, 2), norm="ortho") x = x.type(dtype) return x + bias class Block(nn.Module): def __init__( self, dim, mlp_ratio=4.0, drop=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, double_skip=True, num_blocks=8, sparsity_threshold=0.01, hard_thresholding_fraction=1.0, ): super().__init__() self.norm1 = norm_layer(dim) self.filter = AFNO2D( dim, num_blocks, sparsity_threshold, hard_thresholding_fraction ) # self.drop_path = nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) self.double_skip = double_skip def forward(self, x): residual = x x = self.norm1(x) x = self.filter(x) if self.double_skip: x = x + residual residual = x x = self.norm2(x) x = self.mlp(x) x = x + residual return x class AFNONet(nn.Module): def __init__( self, img_size=(720, 1440), patch_size=(16, 16), in_channels=1, out_channels=1, embed_dim=768, depth=12, mlp_ratio=4.0, drop_rate=0.0, num_blocks=16, sparsity_threshold=0.01, hard_thresholding_fraction=1.0, ) -> None: super().__init__() assert ( img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0 ), f"img_size {img_size} should be divisible by patch_size {patch_size}" self.in_chans = in_channels self.out_chans = out_channels self.img_size = img_size self.patch_size = patch_size self.num_features = self.embed_dim = embed_dim self.num_blocks = num_blocks norm_layer = partial(nn.LayerNorm, eps=1e-6) self.patch_embed = PatchEmbed( img_size=img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) self.h = img_size[0] // self.patch_size[0] self.w = img_size[1] // self.patch_size[1] self.blocks = nn.ModuleList( [ Block( dim=embed_dim, mlp_ratio=mlp_ratio, drop=drop_rate, norm_layer=norm_layer, num_blocks=self.num_blocks, sparsity_threshold=sparsity_threshold, hard_thresholding_fraction=hard_thresholding_fraction, ) for i in range(depth) ] ) self.head = nn.Linear( embed_dim, self.out_chans * self.patch_size[0] * self.patch_size[1], bias=False, ) torch.nn.init.trunc_normal_(self.pos_embed, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): torch.nn.init.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) x = x + self.pos_embed x = self.pos_drop(x) x = x.reshape(B, self.h, self.w, self.embed_dim) for blk in self.blocks: x = blk(x) return x def forward(self, x: Tensor) -> Tensor: x = self.forward_features(x) x = self.head(x) # Correct tensor shape back into [B, C, H, W] # [b h w (p1 p2 c_out)] out = x.view(list(x.shape[:-1]) + [self.patch_size[0], self.patch_size[1], -1]) # [b h w p1 p2 c_out] out = torch.permute(out, (0, 5, 1, 3, 2, 4)) # [b c_out, h, p1, w, p2] out = out.reshape(list(out.shape[:2]) + [self.img_size[0], self.img_size[1]]) # [b c_out, (h*p1), (w*p2)] return out class PatchEmbed(nn.Module): def __init__( self, img_size=(224, 224), patch_size=(16, 16), in_chans=3, embed_dim=768 ): super().__init__() num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) def forward(self, x): B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class AFNOArch(Arch): """Adaptive Fourier neural operator (AFNO) model. Note ---- AFNO is a model that is designed for 2D images only. Parameters ---------- input_keys : List[Key] Input key list. The key dimension size should equal the variables channel dim. output_keys : List[Key] Output key list. The key dimension size should equal the variables channel dim. img_shape : Tuple[int, int] Input image dimensions (height, width) detach_keys : List[Key], optional List of keys to detach gradients, by default [] patch_size : int, optional Size of image patchs, by default 16 embed_dim : int, optional Embedded channel size, by default 256 depth : int, optional Number of AFNO layers, by default 4 num_blocks : int, optional Number of blocks in the frequency weight matrices, by default 4 Variable Shape -------------- - Input variable tensor shape: :math:`[N, size, H, W]` - Output variable tensor shape: :math:`[N, size, H, W]` Example ------- >>> afno = .afno.AFNOArch([Key("x", size=2)], [Key("y", size=2)], (64, 64)) >>> model = afno.make_node() >>> input = {"x": torch.randn(20, 2, 64, 64)} >>> output = model.evaluate(input) """ def __init__( self, input_keys: List[Key], output_keys: List[Key], img_shape: Tuple[int, int], detach_keys: List[Key] = [], patch_size: int = 16, embed_dim: int = 256, depth: int = 4, num_blocks: int = 4, ) -> None: super().__init__(input_keys=input_keys, output_keys=output_keys) self.input_keys = input_keys self.output_keys = output_keys self.detach_keys = detach_keys self.input_key_dict = {var.name: var.size for var in self.input_keys} self.output_key_dict = {var.name: var.size for var in self.output_keys} in_channels = sum(self.input_key_dict.values()) out_channels = sum(self.output_key_dict.values()) self._impl = AFNONet( in_channels=in_channels, out_channels=out_channels, patch_size=(patch_size, patch_size), img_size=img_shape, embed_dim=embed_dim, depth=depth, num_blocks=num_blocks, ) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.prepare_input( in_vars, mask=self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=1, input_scales=self.input_scales, ) y = self._impl(x) return self.prepare_output( y, output_var=self.output_key_dict, dim=1, output_scales=self.output_scales )
modulus-sym-main
modulus/sym/models/afno/afno.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .afno import AFNOArch
modulus-sym-main
modulus/sym/models/afno/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from collections import OrderedDict from copy import Error, deepcopy from numpy.lib.arraypad import pad import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.fft from torch import Tensor from torch.nn.modules.container import Sequential from torch.utils.checkpoint import checkpoint_sequential from typing import Optional, Dict, List, Tuple import math # distributed stuff import torch.distributed as dist from modulus.sym.distributed.manager import DistributedManager from modulus.sym.key import Key from modulus.sym.models.arch import Arch from modulus.sym.models.afno.distributed.mappings import copy_to_matmul_parallel_region from modulus.sym.models.afno.distributed.mappings import ( scatter_to_matmul_parallel_region, gather_from_matmul_parallel_region, ) from modulus.sym.models.afno.distributed.layers import trunc_normal_, DropPath from modulus.sym.models.afno.distributed.layers import ( DistributedPatchEmbed, DistributedMLP, DistributedAFNO2D, ) import logging logger = logging.getLogger(__name__) class DistributedBlock(nn.Module): def __init__( self, h, w, dim, mlp_ratio=4.0, drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, double_skip=True, num_blocks=8, sparsity_threshold=0.01, hard_thresholding_fraction=1.0, input_is_matmul_parallel=False, output_is_matmul_parallel=False, ): super(DistributedBlock, self).__init__() # model parallelism # matmul parallelism self.input_is_matmul_parallel = input_is_matmul_parallel self.output_is_matmul_parallel = output_is_matmul_parallel # norm layer self.norm1 = norm_layer((h, w)) # filter self.filter = DistributedAFNO2D( dim, num_blocks, sparsity_threshold, hard_thresholding_fraction, input_is_matmul_parallel=True, output_is_matmul_parallel=True, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() # norm layer self.norm2 = norm_layer((h, w)) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = DistributedMLP( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, input_is_matmul_parallel=True, output_is_matmul_parallel=True, ) self.double_skip = double_skip def forward(self, x): if not self.input_is_matmul_parallel: x = scatter_to_matmul_parallel_region(x, dim=1) residual = x x = self.norm1(x) x = self.filter(x) if self.double_skip: x = x + residual residual = x x = self.norm2(x) x = self.mlp(x) x = self.drop_path(x) x = x + residual if not self.output_is_matmul_parallel: x = gather_from_matmul_parallel_region(x, dim=1) return x class DistributedAFNONet(nn.Module): def __init__( self, img_size=(720, 1440), patch_size=(16, 16), in_chans=2, out_chans=2, embed_dim=768, depth=12, mlp_ratio=4.0, drop_rate=0.0, drop_path_rate=0.0, num_blocks=16, sparsity_threshold=0.01, hard_thresholding_fraction=1.0, input_is_matmul_parallel=False, output_is_matmul_parallel=False, ): super().__init__() # comm sizes matmul_comm_size = DistributedManager().group_size("model_parallel") self.img_size = img_size self.patch_size = patch_size self.in_chans = in_chans self.out_chans = out_chans self.num_features = self.embed_dim = embed_dim self.num_blocks = num_blocks self.input_is_matmul_parallel = input_is_matmul_parallel self.output_is_matmul_parallel = output_is_matmul_parallel norm_layer = partial(nn.LayerNorm, eps=1e-6) self.patch_embed = DistributedPatchEmbed( img_size=img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=embed_dim, input_is_matmul_parallel=self.input_is_matmul_parallel, output_is_matmul_parallel=True, ) num_patches = self.patch_embed.num_patches # original: x = B, H*W, C # self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) # new: x = B, C, H*W self.embed_dim_local = self.embed_dim // matmul_comm_size self.pos_embed = nn.Parameter(torch.zeros(1, self.embed_dim_local, num_patches)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] self.h = img_size[0] // self.patch_size[0] self.w = img_size[1] // self.patch_size[1] # add blocks blks = [] for i in range(0, depth): input_is_matmul_parallel = True # if i > 0 else False output_is_matmul_parallel = True if i < (depth - 1) else False blks.append( DistributedBlock( h=self.h, w=self.w, dim=embed_dim, mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i], norm_layer=norm_layer, num_blocks=self.num_blocks, sparsity_threshold=sparsity_threshold, hard_thresholding_fraction=hard_thresholding_fraction, input_is_matmul_parallel=input_is_matmul_parallel, output_is_matmul_parallel=output_is_matmul_parallel, ) ) self.blocks = nn.ModuleList(blks) # head if self.output_is_matmul_parallel: self.out_chans_local = ( self.out_chans + matmul_comm_size - 1 ) // matmul_comm_size else: self.out_chans_local = self.out_chans self.head = nn.Conv2d( self.embed_dim, self.out_chans_local * self.patch_size[0] * self.patch_size[1], 1, bias=False, ) self.synchronized_head = False # init weights trunc_normal_(self.pos_embed, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) x = x + self.pos_embed x = self.pos_drop(x) # reshape x = x.reshape(B, self.embed_dim_local, self.h, self.w) for blk in self.blocks: x = blk(x) return x def forward(self, x): # fw pass on features x = self.forward_features(x) # be careful if head is distributed if self.output_is_matmul_parallel: x = copy_to_matmul_parallel_region(x) else: if not self.synchronized_head: # If output is not model parallel, synchronize all GPUs params for head for param in self.head.parameters(): dist.broadcast( param, 0, group=DistributedManager().group("model_parallel") ) self.synchronized_head = True x = self.head(x) # new: B, C, H, W b = x.shape[0] xv = x.view(b, self.patch_size[0], self.patch_size[1], -1, self.h, self.w) xvt = torch.permute(xv, (0, 3, 4, 1, 5, 2)).contiguous() x = xvt.view( b, -1, (self.h * self.patch_size[0]), (self.w * self.patch_size[1]) ) return x class DistributedAFNOArch(Arch): """Distributed Adaptive Fourier neural operator (AFNO) model. Note ---- AFNO is a model that is designed for 2D images only. Parameters ---------- input_keys : List[Key] Input key list. The key dimension size should equal the variables channel dim. output_keys : List[Key] Output key list. The key dimension size should equal the variables channel dim. img_shape : Tuple[int, int] Input image dimensions (height, width) detach_keys : List[Key], optional List of keys to detach gradients, by default [] patch_size : int, optional Size of image patchs, by default 16 embed_dim : int, optional Embedded channel size, by default 256 depth : int, optional Number of AFNO layers, by default 4 num_blocks : int, optional Number of blocks in the frequency weight matrices, by default 4 channel_parallel_inputs : bool, optional Are the inputs sharded along the channel dimension, by default False channel_parallel_outputs : bool, optional Should the outputs be sharded along the channel dimension, by default False Variable Shape -------------- - Input variable tensor shape: :math:`[N, size, H, W]` - Output variable tensor shape: :math:`[N, size, H, W]` Example ------- >>> afno = .afno.DistributedAFNOArch([Key("x", size=2)], [Key("y", size=2)], (64, 64)) >>> model = afno.make_node() >>> input = {"x": torch.randn(20, 2, 64, 64)} >>> output = model(input) """ def __init__( self, input_keys: List[Key], output_keys: List[Key], img_shape: Tuple[int, int], detach_keys: List[Key] = [], patch_size: int = 16, embed_dim: int = 256, depth: int = 4, num_blocks: int = 4, channel_parallel_inputs: bool = False, channel_parallel_outputs: bool = False, ) -> None: super().__init__(input_keys=input_keys, output_keys=output_keys) self.input_keys = input_keys self.output_keys = output_keys self.detach_keys = detach_keys self.input_key_dict = {var.name: var.size for var in self.input_keys} self.output_key_dict = {var.name: var.size for var in self.output_keys} in_channels = sum(self.input_key_dict.values()) out_channels = sum(self.output_key_dict.values()) if DistributedManager().group("model_parallel") is None: raise RuntimeError( "Distributed AFNO needs to have model parallel group created first. Check the MODEL_PARALLEL_SIZE environment variable" ) comm_size = DistributedManager().group_size("model_parallel") if channel_parallel_inputs: assert ( in_channels % comm_size == 0 ), "Error, in_channels needs to be divisible by model_parallel size" self._impl = DistributedAFNONet( img_size=img_shape, patch_size=(patch_size, patch_size), in_chans=in_channels, out_chans=out_channels, embed_dim=embed_dim, depth=depth, num_blocks=num_blocks, input_is_matmul_parallel=False, output_is_matmul_parallel=False, ) def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]: x = self.prepare_input( in_vars, mask=self.input_key_dict.keys(), detach_dict=self.detach_key_dict, dim=1, input_scales=self.input_scales, ) y = self._impl(x) return self.prepare_output( y, output_var=self.output_key_dict, dim=1, output_scales=self.output_scales ) def make_node(self, name: str, jit: bool = False, optimize: bool = True): """ Override make_node method to automatically turn JIT off """ if jit: logger.warning( "JIT compilation not supported for DistributedAFNOArch. Creating node with JIT turned off" ) return super().make_node(name, False, optimize)
modulus-sym-main
modulus/sym/models/afno/distributed/afno.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .afno import DistributedAFNONet, DistributedAFNOArch
modulus-sym-main
modulus/sym/models/afno/distributed/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings import torch import torch.nn as nn import torch.nn.functional as F from modulus.sym.distributed.manager import DistributedManager from modulus.sym.models.afno.distributed.mappings import copy_to_matmul_parallel_region from modulus.sym.models.afno.distributed.mappings import ( reduce_from_matmul_parallel_region, ) from modulus.sym.models.afno.distributed.mappings import ( scatter_to_matmul_parallel_region, ) from modulus.sym.models.afno.distributed.mappings import ( gather_from_matmul_parallel_region, ) from modulus.sym.distributed.helpers import _transpose from modulus.sym.distributed.helpers import pad_helper from modulus.sym.distributed.helpers import truncate_helper def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) @torch.jit.script def drop_path( x: torch.Tensor, drop_prob: float = 0.0, training: bool = False ) -> torch.Tensor: """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1.0 - drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class DistributedMLP(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, input_is_matmul_parallel=False, output_is_matmul_parallel=False, ): super(DistributedMLP, self).__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.input_is_matmul_parallel = input_is_matmul_parallel self.output_is_matmul_parallel = output_is_matmul_parallel # get effective embedding size: comm_size = DistributedManager().group_size("model_parallel") assert ( hidden_features % comm_size == 0 ), "Error, hidden_features needs to be divisible by matmul_parallel_size" hidden_features_local = hidden_features // comm_size # first set of hp self.w1 = nn.Parameter(torch.ones(hidden_features_local, in_features, 1, 1)) self.b1 = nn.Parameter(torch.zeros(hidden_features_local)) # second set of hp self.w2 = nn.Parameter(torch.ones(out_features, hidden_features_local, 1, 1)) self.b2 = nn.Parameter(torch.zeros(out_features)) self.act = act_layer() self.drop = nn.Dropout(drop) if drop > 0.0 else nn.Identity() # init weights self._init_weights() def _init_weights(self): trunc_normal_(self.w1, std=0.02) nn.init.constant_(self.b1, 0.0) trunc_normal_(self.w2, std=0.02) nn.init.constant_(self.b2, 0.0) def forward(self, x): # gather if input is MP if self.input_is_matmul_parallel: x = gather_from_matmul_parallel_region(x, dim=1) x = copy_to_matmul_parallel_region(x) x = F.conv2d(x, self.w1, bias=self.b1) x = self.act(x) x = self.drop(x) x = F.conv2d(x, self.w2, bias=None) x = reduce_from_matmul_parallel_region(x) x = x + torch.reshape(self.b2, (1, -1, 1, 1)) x = self.drop(x) # scatter if output is MP if self.output_is_matmul_parallel: x = scatter_to_matmul_parallel_region(x, dim=1) return x class DistributedPatchEmbed(nn.Module): def __init__( self, img_size=(224, 224), patch_size=(16, 16), in_chans=3, embed_dim=768, input_is_matmul_parallel=False, output_is_matmul_parallel=True, ): super(DistributedPatchEmbed, self).__init__() # store params self.input_parallel = input_is_matmul_parallel self.output_parallel = output_is_matmul_parallel # get comm sizes: matmul_comm_size = DistributedManager().group_size("model_parallel") # compute parameters num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = (img_size[0], img_size[1]) self.patch_size = patch_size self.num_patches = num_patches if self.input_parallel: assert ( in_chans % matmul_comm_size == 0 ), "Error, the in_chans needs to be divisible by matmul_parallel_size" # get effective embedding size: if self.output_parallel: assert ( embed_dim % matmul_comm_size == 0 ), "Error, the embed_dim needs to be divisible by matmul_parallel_size" out_chans_local = embed_dim // matmul_comm_size else: out_chans_local = embed_dim # the weights of this layer is shared across spatial parallel ranks self.proj = nn.Conv2d( in_chans, out_chans_local, kernel_size=patch_size, stride=patch_size ) # make sure we reduce them across rank self.proj.weight.is_shared_spatial = True self.proj.bias.is_shared_spatial = True def forward(self, x): if self.input_parallel: x = gather_from_matmul_parallel_region(x, dim=1) if self.output_parallel: x = copy_to_matmul_parallel_region(x) B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." # new: B, C, H*W x = self.proj(x).flatten(2) return x @torch.jit.script def compl_mul_add_fwd( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: tmp = torch.einsum("bkixys,kiot->stbkoxy", a, b) res = ( torch.stack( [tmp[0, 0, ...] - tmp[1, 1, ...], tmp[1, 0, ...] + tmp[0, 1, ...]], dim=-1 ) + c ) return res @torch.jit.script def compl_mul_add_fwd_c( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: ac = torch.view_as_complex(a) bc = torch.view_as_complex(b) cc = torch.view_as_complex(c) tmp = torch.einsum("bkixy,kio->bkoxy", ac, bc) res = tmp + cc return torch.view_as_real(res) class DistributedAFNO2D(nn.Module): def __init__( self, hidden_size, num_blocks=8, sparsity_threshold=0.01, hard_thresholding_fraction=1, hidden_size_factor=1, input_is_matmul_parallel=False, output_is_matmul_parallel=False, ): super(DistributedAFNO2D, self).__init__() assert ( hidden_size % num_blocks == 0 ), f"hidden_size {hidden_size} should be divisible by num_blocks {num_blocks}" # get comm sizes: matmul_comm_size = DistributedManager().group_size("model_parallel") self.fft_handle = torch.fft.rfft2 self.ifft_handle = torch.fft.irfft2 self.hidden_size = hidden_size self.sparsity_threshold = sparsity_threshold self.num_blocks = num_blocks assert ( self.num_blocks % matmul_comm_size == 0 ), "Error, num_blocks needs to be divisible by matmul_parallel_size" self.num_blocks_local = self.num_blocks // matmul_comm_size self.block_size = self.hidden_size // self.num_blocks self.hard_thresholding_fraction = hard_thresholding_fraction self.hidden_size_factor = hidden_size_factor self.scale = 0.02 use_complex_mult = False self.mult_handle = ( compl_mul_add_fwd_c if use_complex_mult else compl_mul_add_fwd ) # model parallelism self.input_is_matmul_parallel = input_is_matmul_parallel self.output_is_matmul_parallel = output_is_matmul_parallel # new # these weights need to be synced across all spatial ranks! self.w1 = nn.Parameter( self.scale * torch.randn( self.num_blocks_local, self.block_size, self.block_size * self.hidden_size_factor, 2, ) ) self.b1 = nn.Parameter( self.scale * torch.randn( self.num_blocks_local, self.block_size * self.hidden_size_factor, 1, 1, 2, ) ) self.w2 = nn.Parameter( self.scale * torch.randn( self.num_blocks_local, self.block_size * self.hidden_size_factor, self.block_size, 2, ) ) self.b2 = nn.Parameter( self.scale * torch.randn(self.num_blocks_local, self.block_size, 1, 1, 2) ) # make sure we reduce them across rank self.w1.is_shared_spatial = True self.b1.is_shared_spatial = True self.w2.is_shared_spatial = True self.b2.is_shared_spatial = True def forward(self, x): if not self.input_is_matmul_parallel: # distribute data x = scatter_to_matmul_parallel_region(x, dim=1) # bias bias = x dtype = x.dtype x = x.float() B, C, H, W = x.shape total_modes = H // 2 + 1 kept_modes = int(total_modes * self.hard_thresholding_fraction) x = self.fft_handle(x, (H, W), (-2, -1), "ortho") x = x.view(B, self.num_blocks_local, self.block_size, H, W // 2 + 1) # new x = torch.view_as_real(x) o2 = torch.zeros(x.shape, device=x.device) o1 = F.relu( self.mult_handle( x[ :, :, :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes, :, ], self.w1, self.b1, ) ) o2[ :, :, :, total_modes - kept_modes : total_modes + kept_modes, :kept_modes, : ] = self.mult_handle(o1, self.w2, self.b2) # finalize x = F.softshrink(o2, lambd=self.sparsity_threshold) x = torch.view_as_complex(x) x = x.reshape(B, C, H, W // 2 + 1) x = self.ifft_handle(x, (H, W), (-2, -1), "ortho") x = x.type(dtype) + bias # gather if not self.output_is_matmul_parallel: x = gather_from_matmul_parallel_region(x, dim=1) return x
modulus-sym-main
modulus/sym/models/afno/distributed/layers.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import types import torch import torch.distributed as dist from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from modulus.sym.distributed.manager import DistributedManager from modulus.sym.distributed.helpers import split_tensor_along_dim from modulus.sym.distributed.helpers import _reduce from modulus.sym.distributed.helpers import _split from modulus.sym.distributed.helpers import _gather # matmul parallel class _CopyToMatmulParallelRegion(torch.autograd.Function): """Pass the input to the matmul parallel region.""" @staticmethod def symbolic(graph, input_): return input_ @staticmethod def forward(ctx, input_): return input_ @staticmethod def backward(ctx, grad_output): return _reduce(grad_output, group=DistributedManager().group("model_parallel")) class _ReduceFromMatmulParallelRegion(torch.autograd.Function): """All-reduce the input from the matmul parallel region.""" @staticmethod def symbolic(graph, input_): return _reduce(input_, group=DistributedManager().group("model_parallel")) @staticmethod def forward(ctx, input_): return _reduce(input_, group=DistributedManager().group("model_parallel")) @staticmethod def backward(ctx, grad_output): return grad_output class _ScatterToMatmulParallelRegion(torch.autograd.Function): """Split the input and keep only the corresponding chuck to the rank.""" @staticmethod def symbolic(graph, input_, dim_): return _split(input_, dim_, group=DistributedManager().group("model_parallel")) @staticmethod def forward(ctx, input_, dim_): ctx.dim = dim_ return _split(input_, dim_, group=DistributedManager().group("model_parallel")) @staticmethod def backward(ctx, grad_output): return ( _gather( grad_output, ctx.dim, group=DistributedManager().group("model_parallel") ), None, ) class _GatherFromMatmulParallelRegion(torch.autograd.Function): """Gather the input from matmul parallel region and concatinate.""" @staticmethod def symbolic(graph, input_, dim_): return _gather(input_, dim_, group=DistributedManager().group("model_parallel")) @staticmethod def forward(ctx, input_, dim_): ctx.dim = dim_ return _gather(input_, dim_, group=DistributedManager().group("model_parallel")) @staticmethod def backward(ctx, grad_output): return ( _split( grad_output, ctx.dim, group=DistributedManager().group("model_parallel") ), None, ) class _GatherWithinMatmulParallelRegion(torch.autograd.Function): """Gather the input from matmul parallel region and concatinate.""" @staticmethod def symbolic(graph, input_, dim_): return _gather(input_, dim_, group=DistributedManager().group("model_parallel")) @staticmethod def forward(ctx, input_, dim_): ctx.dim = dim_ return _gather(input_, dim_, group=DistributedManager().group("model_parallel")) @staticmethod def backward(ctx, grad_output): red = _reduce(grad_output, group=DistributedManager().group("model_parallel")) return ( _split(red, ctx.dim, group=DistributedManager().group("model_parallel")), None, ) # ----------------- # Helper functions. # ----------------- # matmul parallel def copy_to_matmul_parallel_region(input_): return _CopyToMatmulParallelRegion.apply(input_) def reduce_from_matmul_parallel_region(input_): return _ReduceFromMatmulParallelRegion.apply(input_) def scatter_to_matmul_parallel_region(input_, dim): return _ScatterToMatmulParallelRegion.apply(input_, dim) def gather_from_matmul_parallel_region(input_, dim): return _GatherFromMatmulParallelRegion.apply(input_, dim) def gather_within_matmul_parallel_region(input_, dim): return _GatherWithinMatmulParallelRegion.apply(input_, dim)
modulus-sym-main
modulus/sym/models/afno/distributed/mappings.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Modulus Neural Differential Equation Solver """ import os import numpy as np from typing import List, Union, Tuple, Callable from omegaconf import DictConfig import warnings from modulus.sym.trainer import Trainer from modulus.sym.domain import Domain from modulus.sym.loss.aggregator import NTK # base class for solver class Solver(Trainer): """ Base solver class for solving single domain. Parameters ---------- cfg : DictConfig Hydra dictionary of configs. domain : Domain Domain to solve for. """ def __init__(self, cfg: DictConfig, domain: Domain): # set domain self.domain = domain super(Solver, self).__init__(cfg) # NTK setup: if cfg.training.ntk.use_ntk: ntk = NTK( run_per_step=cfg.training.ntk.run_freq, save_name=cfg.training.ntk.save_name, ) self.domain.add_ntk(ntk) @property def network_dir(self): return self._network_dir @property def initialization_network_dir(self): return self._initialization_network_dir def compute_losses(self, step: int): return self.domain.compute_losses(step) def get_saveable_models(self): return self.domain.get_saveable_models() def create_global_optimizer_model(self): return self.domain.create_global_optimizer_model() def load_data(self, static: bool = False): self.domain.load_data(static) def load_network(self): return Trainer._load_network( self.initialization_network_dir, self.network_dir, self.saveable_models, self.optimizer, self.aggregator, self.scheduler, self.scaler, self.log, self.manager, self.device, ) def load_optimizer(self): return Trainer._load_optimizer( self.network_dir, self.optimizer, self.aggregator, self.scheduler, self.scaler, self.log, self.device, ) def load_model(self): return Trainer._load_model( self.initialization_network_dir, self.network_dir, self.saveable_models, self.step, self.log, self.device, ) def load_step(self): return Trainer._load_step( self.network_dir, self.device, ) def save_checkpoint(self, step: int): Trainer._save_checkpoint( self.network_dir, self.saveable_models, self.optimizer, self.aggregator, self.scheduler, self.scaler, step, ) def record_constraints(self): self.domain.rec_constraints(self.network_dir) def record_validators(self, step: int): return self.domain.rec_validators( self.network_dir, self.writer, self.save_filetypes, step ) @property def has_validators(self): return bool(self.domain.validators) def record_inferencers(self, step: int): self.domain.rec_inferencers( self.network_dir, self.writer, self.save_filetypes, step ) def record_stream(self, inferencer, name): return self.domain.rec_stream( inferencer, name, self.network_dir, self.step, self.save_results, self.save_filetypes, self.to_cpu, ) @property def has_inferencers(self): return bool(self.domain.inferencers) def record_monitors(self, step: int): return self.domain.rec_monitors(self.network_dir, self.writer, step) @property def has_monitors(self): return bool(self.domain.monitors) def get_num_losses(self): return self.domain.get_num_losses() def solve(self, sigterm_handler=None): if self.cfg.run_mode == "train": self._train_loop(sigterm_handler) elif self.cfg.run_mode == "eval": self._eval() else: raise RuntimeError("Invalid run mode") def train(self, sigterm_handler=None): self._train_loop(sigterm_handler) def eval(self): self._eval() def stream(self, save_results=False, to_cpu=True): self.save_results = save_results self.to_cpu = to_cpu return self._stream()
modulus-sym-main
modulus/sym/solver/solver.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .solver import Solver from .sequential import SequentialSolver from .multidomain import MultiDomainSolver
modulus-sym-main
modulus/sym/solver/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from typing import List, Union, Tuple, Callable from omegaconf import DictConfig import warnings from modulus.sym.distributed.manager import DistributedManager from modulus.sym.trainer import Trainer from modulus.sym.domain import Domain from modulus.sym.loss.aggregator import NTK from .solver import Solver class SequentialSolver(Solver): """ Solver class for solving a sequence of domains. This solver can be used to set up iterative methods like the hFTB conjugate heat transfer method or the moving time window method for transient problems. Parameters ---------- cfg : DictConfig Hydra dictionary of configs. domains : List[Tuple[int, Domain]] List of Domains to sequentially solve. Each domain is given as a tuple where the first element is an int for how many times to solve the domain and the second element is the domain. For example, `domains=[(1, domain_a), (4, domain_b)]` would solve `domain_a` once and then solve `domain_b` 4 times in a row. custom_update_operation : Union[Callable, None] = None A callable function to update any weights in models. This function will be called at the end of every iteration. """ def __init__( self, cfg: DictConfig, domains: List[Tuple[int, Domain]], custom_update_operation: Union[Callable, None] = None, ): # check that domains have different names assert len(set([d.name for _, d in domains])) == len( domains ), "domains need to have unique names, " + str([d.name for _, d in domains]) # check not using ntk with seq solver assert ( not cfg.training.ntk.use_ntk ), "ntk is not supported with SequentialSolver" # set domains self.domains = domains # set update operation after solving each domain self.custom_update_operation = custom_update_operation # load rest of initializations Trainer.__init__(self, cfg) # load current index self.load_iteration_step() def load_iteration_step(self): try: iteration_step_file = open(self._network_dir + "/current_step.txt", "r") contents = iteration_step_file.readlines()[0] domain_index = int(contents.split(" ")[0]) iteration_index = int(contents.split(" ")[1]) except: domain_index = 0 iteration_index = 0 self.domain_index = domain_index self.iteration_index = iteration_index def save_iteration_step(self): iteration_step_file = open(self._network_dir + "/current_step.txt", "w") iteration_step_file.write( str(self.domain_index) + " " + str(self.iteration_index) ) @property def domain(self): return self.domains[self.domain_index][1] @property def network_dir(self): dir_name = self._network_dir + "/" + self.domain.name if self.domains[self.domain_index][0] > 1: dir_name += "_" + str(self.iteration_index).zfill(4) return dir_name def solve(self, sigterm_handler=None): if self.cfg.run_mode == "train": # make directory if doesn't exist if DistributedManager().rank == 0: os.makedirs(self.network_dir, exist_ok=True) # run train loop for each domain and each index # solve for each domain in seq_train_domin for domain_index in range(self.domain_index, len(self.domains)): # solve for number of iterations in train_domain for iteration_index in range( self.iteration_index, self.domains[domain_index][0] ): # set internal domain index and iteration index self.domain_index = domain_index self.iteration_index = iteration_index # save current iteration step self.save_iteration_step() # solve for domain self.log.info( "Solving for Domain " + str(self.domain.name) + ", iteration " + str(self.iteration_index) ) self._train_loop(sigterm_handler) # run user defined custom update operation if self.custom_update_operation is not None: self.custom_update_operation() elif self.cfg.run_mode == "eval": raise NotImplementedError( "eval mode not implemented for sequential training" ) else: raise RuntimeError("Invalid run mode")
modulus-sym-main
modulus/sym/solver/sequential.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from typing import List, Union, Tuple, Callable from omegaconf import DictConfig import warnings from modulus.sym.trainer import Trainer from modulus.sym.domain import Domain from modulus.sym.loss.aggregator import NTK from .solver import Solver class MultiDomainSolver(Solver): """ Solver class for solving multiple domains. NOTE this Solver is currently experimental and not fully supported. """ def __init__(self, cfg: DictConfig, domains: List[Domain]): # warning message for experimental warnings.warn( "This solver is currently experimental and unforeseen errors may occur." ) # check that domains have different names assert len(set([d.name for d in domains])) == len( domains ), "domains need to have unique names, " + str([d.name for _, d in domains]) # check not using ntk with seq solver assert ( not cfg.training.ntk.use_ntk ), "ntk is not supported with MultiDomainSolver" # set number of domains per iteration self.domain_batch_size = cfg["domain_batch_size"] # set domains self.domains = domains # load rest of initializations Trainer.__init__(self, cfg) def compute_losses(self, step: int): batch_index = np.random.choice(len(self.domains), self.domain_batch_size) losses = {} for i in batch_index: # compute losses constraint_losses = self.domains[i].compute_losses(step) # add together losses of like kind for loss_key, value in constraint_losses.items(): if loss_key not in list(losses.keys()): losses[loss_key] = value else: losses[loss_key] += value return losses def get_saveable_models(self): return self.domains[0].get_saveable_models() def create_global_optimizer_model(self): return self.domains[0].create_global_optimizer_model() def get_num_losses(self): return self.domains[0].get_num_losses()
modulus-sym-main
modulus/sym/solver/multidomain.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sympy import Symbol, Abs import numpy as np from .geometry import Geometry, csg_curve_naming from .curve import SympyCurve from .parameterization import Parameterization, Parameter, Bounds from .helper import _sympy_sdf_to_sdf class Point1D(Geometry): """ 1D Point along x-axis Parameters ---------- point : int or float x coordinate of the point parameterization : Parameterization Parameterization of geometry. """ def __init__(self, point, parameterization=Parameterization()): # make sympy symbols to use x = Symbol("x") # curves for each side curve_parameterization = Parameterization({Symbol(csg_curve_naming(0)): (0, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) pt_1 = SympyCurve( functions={"x": point, "normal_x": 1.0}, area=1.0, parameterization=curve_parameterization, ) curves = [pt_1] # calculate SDF sdf = x - point # calculate bounds bounds = Bounds( {Parameter("x"): (point, point)}, parameterization=parameterization ) # initialize super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=1, bounds=bounds, parameterization=parameterization, ) class Line1D(Geometry): """ 1D Line along x-axis Parameters ---------- point_1 : int or float lower bound point of line point_2 : int or float upper bound point of line parameterization : Parameterization Parameterization of geometry. """ def __init__(self, point_1, point_2, parameterization=Parameterization()): # make sympy symbols to use x = Symbol("x") # curves for each side curve_parameterization = Parameterization({Symbol(csg_curve_naming(0)): (0, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) pt1 = SympyCurve( functions={"x": point_1, "normal_x": -1}, area=1.0, parameterization=curve_parameterization, ) pt2 = SympyCurve( functions={"x": point_2, "normal_x": 1}, area=1.0, parameterization=curve_parameterization, ) curves = [pt1, pt2] # calculate SDF dist = point_2 - point_1 center_x = point_1 + dist / 2 sdf = dist / 2 - Abs(x - center_x) # calculate bounds bounds = Bounds( {Parameter("x"): (point_1, point_2)}, parameterization=parameterization ) # initialize super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=1, bounds=bounds, parameterization=parameterization, )
modulus-sym-main
modulus/sym/geometry/primitives_1d.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .geometry import Geometry from .parameterization import Bounds, Parameterization, Parameter
modulus-sym-main
modulus/sym/geometry/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Primitives for 2D geometries see https://www.iquilezles.org/www/articles/distfunctions/distfunctions.html """ import sys from operator import mul from sympy import Symbol, Abs, Max, Min, sqrt, sin, cos, acos, atan2, pi, Heaviside from functools import reduce pi = float(pi) from sympy.vector import CoordSys3D from .curve import SympyCurve from .helper import _sympy_sdf_to_sdf from .geometry import Geometry, csg_curve_naming from .parameterization import Parameterization, Parameter, Bounds class Line(Geometry): """ 2D Line parallel to y-axis Parameters ---------- point_1 : tuple with 2 ints or floats lower bound point of line segment point_2 : tuple with 2 ints or floats upper bound point of line segment normal : int or float normal direction of line (+1 or -1) parameterization : Parameterization Parameterization of geometry. """ def __init__(self, point_1, point_2, normal=1, parameterization=Parameterization()): assert point_1[0] == point_2[0], "Points must have same x-coordinate" # make sympy symbols to use l = Symbol(csg_curve_naming(0)) x = Symbol("x") # curves for each side curve_parameterization = Parameterization({l: (0, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) dist_y = point_2[1] - point_1[1] line_1 = SympyCurve( functions={ "x": point_1[0], "y": point_1[1] + l * dist_y, "normal_x": 1e-10 + normal, # TODO rm 1e-10 "normal_y": 0, }, parameterization=curve_parameterization, area=dist_y, ) curves = [line_1] # calculate SDF sdf = normal * (point_1[0] - x) # calculate bounds bounds = Bounds( { Parameter("x"): (point_1[0], point_2[0]), Parameter("y"): (point_1[1], point_2[1]), }, parameterization=parameterization, ) # initialize Line super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=2, bounds=bounds, parameterization=parameterization, ) class Channel2D(Geometry): """ 2D Channel (no bounding curves in x-direction) Parameters ---------- point_1 : tuple with 2 ints or floats lower bound point of channel point_2 : tuple with 2 ints or floats upper bound point of channel parameterization : Parameterization Parameterization of geometry. """ def __init__(self, point_1, point_2, parameterization=Parameterization()): # make sympy symbols to use l = Symbol(csg_curve_naming(0)) y = Symbol("y") # curves for each side curve_parameterization = Parameterization({l: (0, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) dist_x = point_2[0] - point_1[0] dist_y = point_2[1] - point_1[1] line_1 = SympyCurve( functions={ "x": l * dist_x + point_1[0], "y": point_1[1], "normal_x": 0, "normal_y": -1, }, parameterization=curve_parameterization, area=dist_x, ) line_2 = SympyCurve( functions={ "x": l * dist_x + point_1[0], "y": point_2[1], "normal_x": 0, "normal_y": 1, }, parameterization=curve_parameterization, area=dist_x, ) curves = [line_1, line_2] # calculate SDF center_y = point_1[1] + (dist_y) / 2 y_diff = Abs(y - center_y) - (point_2[1] - center_y) outside_distance = sqrt(Max(y_diff, 0) ** 2) inside_distance = Min(y_diff, 0) sdf = -(outside_distance + inside_distance) # calculate bounds bounds = Bounds( { Parameter("x"): (point_1[0], point_2[0]), Parameter("y"): (point_1[1], point_2[1]), }, parameterization=parameterization, ) # initialize Channel2D super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=2, bounds=bounds, parameterization=parameterization, ) class Rectangle(Geometry): """ 2D Rectangle Parameters ---------- point_1 : tuple with 2 ints or floats lower bound point of rectangle point_2 : tuple with 2 ints or floats upper bound point of rectangle parameterization : Parameterization Parameterization of geometry. """ def __init__(self, point_1, point_2, parameterization=Parameterization()): # make sympy symbols to use l = Symbol(csg_curve_naming(0)) x, y = Symbol("x"), Symbol("y") # curves for each side curve_parameterization = Parameterization({l: (0, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) dist_x = point_2[0] - point_1[0] dist_y = point_2[1] - point_1[1] line_1 = SympyCurve( functions={ "x": l * dist_x + point_1[0], "y": point_1[1], "normal_x": 0, "normal_y": -1, }, parameterization=curve_parameterization, area=dist_x, ) line_2 = SympyCurve( functions={ "x": point_2[0], "y": l * dist_y + point_1[1], "normal_x": 1, "normal_y": 0, }, parameterization=curve_parameterization, area=dist_y, ) line_3 = SympyCurve( functions={ "x": l * dist_x + point_1[0], "y": point_2[1], "normal_x": 0, "normal_y": 1, }, parameterization=curve_parameterization, area=dist_x, ) line_4 = SympyCurve( functions={ "x": point_1[0], "y": -l * dist_y + point_2[1], "normal_x": -1, "normal_y": 0, }, parameterization=curve_parameterization, area=dist_y, ) curves = [line_1, line_2, line_3, line_4] # calculate SDF center_x = point_1[0] + (dist_x) / 2 center_y = point_1[1] + (dist_y) / 2 x_diff = Abs(x - center_x) - (point_2[0] - center_x) y_diff = Abs(y - center_y) - (point_2[1] - center_y) outside_distance = sqrt(Max(x_diff, 0) ** 2 + Max(y_diff, 0) ** 2) inside_distance = Min(Max(x_diff, y_diff), 0) sdf = -(outside_distance + inside_distance) # calculate bounds bounds = Bounds( { Parameter("x"): (point_1[0], point_2[0]), Parameter("y"): (point_1[1], point_2[1]), }, parameterization=parameterization, ) # initialize Rectangle super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=2, bounds=bounds, parameterization=parameterization, ) class Circle(Geometry): """ 2D Circle Parameters ---------- center : tuple with 2 ints or floats center point of circle radius : int or float radius of circle parameterization : Parameterization Parameterization of geometry. """ def __init__(self, center, radius, parameterization=Parameterization()): # make sympy symbols to use theta = Symbol(csg_curve_naming(0)) x, y = Symbol("x"), Symbol("y") # curve for perimeter of the circle curve_parameterization = Parameterization({theta: (0, 2 * pi)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve = SympyCurve( functions={ "x": center[0] + radius * cos(theta), "y": center[1] + radius * sin(theta), "normal_x": 1 * cos(theta), "normal_y": 1 * sin(theta), }, parameterization=curve_parameterization, area=2 * pi * radius, ) curves = [curve] # calculate SDF sdf = radius - sqrt((x - center[0]) ** 2 + (y - center[1]) ** 2) # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - radius, center[0] + radius), Parameter("y"): (center[1] - radius, center[1] + radius), }, parameterization=parameterization, ) # initialize Circle super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=2, bounds=bounds, parameterization=parameterization, ) class Triangle(Geometry): """ 2D Isosceles Triangle Symmetrical axis parallel to y-axis Parameters ---------- center : tuple with 2 ints or floats center of base of triangle base : int or float base of triangle height : int or float height of triangle parameterization : Parameterization Parameterization of geometry. """ def __init__(self, center, base, height, parameterization=Parameterization()): # make sympy symbols to use x, y = Symbol("x"), Symbol("y") t, h = Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)) N = CoordSys3D("N") P = x * N.i + y * N.j O = center[0] * N.i + center[1] * N.j H = center[0] * N.i + (center[1] + height) * N.j B = (center[0] + base / 2) * N.i + center[1] * N.j OP = P - O OH = H - O PH = OH - OP angle = acos(PH.dot(OH) / sqrt(PH.dot(PH)) / sqrt(OH.dot(OH))) apex_angle = atan2(base / 2, height) hypo_sin = sqrt(height**2 + (base / 2) ** 2) * sin(apex_angle) hypo_cos = sqrt(height**2 + (base / 2) ** 2) * cos(apex_angle) dist = sqrt(PH.dot(PH)) * sin(Min(angle - apex_angle, pi / 2)) # curve for each side curve_parameterization = Parameterization({t: (-1, 1), h: (0, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve_1 = SympyCurve( functions={ "x": center[0] + t * base / 2, "y": center[1] + t * 0, "normal_x": 0, "normal_y": -1, }, parameterization=curve_parameterization, area=base, ) curve_2 = SympyCurve( functions={ "x": center[0] + h * hypo_sin, "y": center[1] + height - h * hypo_cos, "normal_x": 1 * cos(apex_angle), "normal_y": 1 * sin(apex_angle), }, parameterization=curve_parameterization, area=sqrt(height**2 + (base / 2) ** 2), ) curve_3 = SympyCurve( functions={ "x": center[0] - h * hypo_sin, "y": center[1] + height - h * hypo_cos, "normal_x": -1 * cos(apex_angle), "normal_y": 1 * sin(apex_angle), }, parameterization=curve_parameterization, area=sqrt(height**2 + (base / 2) ** 2), ) curves = [curve_1, curve_2, curve_3] # calculate SDF outside_distance = 1 * sqrt(Max(0, dist) ** 2 + Max(0, center[1] - y) ** 2) inside_distance = -1 * Min(Abs(Min(0, dist)), Abs(Min(0, center[1] - y))) sdf = -(outside_distance + inside_distance) # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - base / 2, center[0] + base / 2), Parameter("y"): (center[1], center[1] + height), }, parameterization=parameterization, ) # initialize Triangle super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=2, bounds=bounds, parameterization=parameterization, ) class Ellipse(Geometry): """ 2D Ellipse Parameters ---------- center : tuple with 2 ints or floats center point of circle radius : int or float radius of circle parameterization : Parameterization Parameterization of geometry. """ def __init__(self, center, major, minor, parameterization=Parameterization()): # make sympy symbols to use theta = Symbol(csg_curve_naming(0)) x, y = Symbol("x"), Symbol("y") mag = sqrt((minor * cos(theta)) ** 2 + (major * sin(theta)) ** 2) area = pi * ( 3 * (major + minor) - sqrt((3 * minor + major) * (3 * major + minor)) ) try: area = float(area) except: pass # curve for perimeter of the circle curve_parameterization = Parameterization({theta: (0, 2 * pi)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve = SympyCurve( functions={ "x": center[0] + major * cos(theta), "y": center[1] + minor * sin(theta), "normal_x": minor * cos(theta) / mag, "normal_y": major * sin(theta) / mag, }, parameterization=curve_parameterization, area=area, ) curves = [curve] # calculate SDF sdf = 1 - (((x - center[0]) / major) ** 2 + ((y - center[1]) / minor) ** 2) # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - major, center[0] + major), Parameter("y"): (center[1] - minor, center[1] + minor), }, parameterization=parameterization, ) # initialize Ellipse super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=2, bounds=bounds, parameterization=parameterization, ) class Polygon(Geometry): """ 2D Polygon Parameters ---------- points : list of tuple with 2 ints or floats lower bound point of line segment parameterization : Parameterization Parameterization of geometry. """ def __init__(self, points, parameterization=Parameterization()): # make sympy symbols to use s = Symbol(csg_curve_naming(0)) x = Symbol("x") y = Symbol("y") # wrap points wrapted_points = points + [points[0]] # curves for each side curve_parameterization = Parameterization({s: (0, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curves = [] for v1, v2 in zip(wrapted_points[:-1], wrapted_points[1:]): # area dx = v2[0] - v1[0] dy = v2[1] - v1[1] area = (dx**2 + dy**2) ** 0.5 # generate normals normal_x = dy / area normal_y = -dx / area line = SympyCurve( functions={ "x": dx * s + v1[0], "y": dy * s + v1[1], "normal_x": dy / area, "normal_y": -dx / area, }, parameterization=curve_parameterization, area=area, ) curves.append(line) # calculate SDF sdfs = [(x - wrapted_points[0][0]) ** 2 + (y - wrapted_points[0][1]) ** 2] conds = [] for v1, v2 in zip(wrapted_points[:-1], wrapted_points[1:]): # sdf calculation dx = v1[0] - v2[0] dy = v1[1] - v2[1] px = x - v2[0] py = y - v2[1] d_dot_d = dx**2 + dy**2 p_dot_d = px * dx + py * dy max_min = Max(Min(p_dot_d / d_dot_d, 1.0), 0.0) vx = px - dx * max_min vy = py - dy * max_min sdf = vx**2 + vy**2 sdfs.append(sdf) # winding calculation cond_1 = Heaviside(y - v2[1]) cond_2 = Heaviside(v1[1] - y) cond_3 = Heaviside((dx * py) - (dy * px)) all_cond = cond_1 * cond_2 * cond_3 none_cond = (1.0 - cond_1) * (1.0 - cond_2) * (1.0 - cond_3) cond = 1.0 - 2.0 * Min(all_cond + none_cond, 1.0) conds.append(cond) # set inside outside sdf = Min(*sdfs) cond = reduce(mul, conds) sdf = sqrt(sdf) * -cond # calculate bounds min_x = Min(*[p[0] for p in points]) if min_x.is_number: min_x = float(min_x) max_x = Max(*[p[0] for p in points]) if max_x.is_number: max_x = float(max_x) min_y = Min(*[p[1] for p in points]) if min_y.is_number: min_y = float(min_y) max_y = Max(*[p[1] for p in points]) if max_y.is_number: max_y = float(max_y) bounds = Bounds( { Parameter("x"): (min_x, max_x), Parameter("y"): (min_y, max_y), }, parameterization=parameterization, ) # initialize Polygon super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=2, bounds=bounds, parameterization=parameterization, )
modulus-sym-main
modulus/sym/geometry/primitives_2d.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Primitives for 3D geometries see https://www.iquilezles.org/www/articles/distfunctions/distfunctions.html """ from sympy import ( Symbol, Function, Abs, Max, Min, sqrt, pi, sin, cos, atan, atan2, acos, asin, sign, ) from sympy.vector import CoordSys3D import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from .geometry import Geometry, csg_curve_naming from .helper import _sympy_sdf_to_sdf from .curve import SympyCurve, Curve from .parameterization import Parameterization, Parameter, Bounds from ..constants import diff_str class Plane(Geometry): """ 3D Plane perpendicular to x-axis Parameters ---------- point_1 : tuple with 3 ints or floats lower bound point of plane point_2 : tuple with 3 ints or floats upper bound point of plane parameterization : Parameterization Parameterization of geometry. """ def __init__(self, point_1, point_2, normal=1, parameterization=Parameterization()): assert ( point_1[0] == point_2[0] ), "Points must have same coordinate on normal dim" # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") s_1, s_2 = Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)) center = ( point_1[0] + (point_2[0] - point_1[0]) / 2, point_1[1] + (point_2[1] - point_1[1]) / 2, point_1[2] + (point_2[2] - point_1[2]) / 2, ) side_y = point_2[1] - point_1[1] side_z = point_2[2] - point_1[2] # surface of the plane curve_parameterization = Parameterization({s_1: (-1, 1), s_2: (-1, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve_1 = SympyCurve( functions={ "x": center[0], "y": center[1] + 0.5 * s_1 * side_y, "z": center[2] + 0.5 * s_2 * side_z, "normal_x": 1e-10 + normal, # TODO rm 1e-10 "normal_y": 0, "normal_z": 0, }, parameterization=curve_parameterization, area=side_y * side_z, ) curves = [curve_1] # calculate SDF sdf = normal * (center[0] - x) # calculate bounds bounds = Bounds( { Parameter("x"): (point_1[0], point_2[0]), Parameter("y"): (point_1[1], point_2[1]), Parameter("z"): (point_1[2], point_2[2]), }, parameterization=parameterization, ) # initialize Plane super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class Channel(Geometry): """ 3D Channel (no bounding surfaces in x-direction) Parameters ---------- point_1 : tuple with 3 ints or floats lower bound point of channel point_2 : tuple with 3 ints or floats upper bound point of channel parameterization : Parameterization Parameterization of geometry. """ def __init__(self, point_1, point_2, parameterization=Parameterization()): # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") s_1, s_2 = Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)) center = ( point_1[0] + (point_2[0] - point_1[0]) / 2, point_1[1] + (point_2[1] - point_1[1]) / 2, point_1[2] + (point_2[2] - point_1[2]) / 2, ) side_x = point_2[0] - point_1[0] side_y = point_2[1] - point_1[1] side_z = point_2[2] - point_1[2] # surface of the channel curve_parameterization = Parameterization({s_1: (-1, 1), s_2: (-1, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve_1 = SympyCurve( functions={ "x": center[0] + 0.5 * s_1 * side_x, "y": center[1] + 0.5 * s_2 * side_y, "z": center[2] + 0.5 * side_z, "normal_x": 0, "normal_y": 0, "normal_z": 1, }, parameterization=curve_parameterization, area=side_x * side_y, ) curve_2 = SympyCurve( functions={ "x": center[0] + 0.5 * s_1 * side_x, "y": center[1] + 0.5 * s_2 * side_y, "z": center[2] - 0.5 * side_z, "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=side_x * side_y, ) curve_3 = SympyCurve( functions={ "x": center[0] + 0.5 * s_1 * side_x, "y": center[1] + 0.5 * side_y, "z": center[2] + 0.5 * s_2 * side_z, "normal_x": 0, "normal_y": 1, "normal_z": 0, }, parameterization=curve_parameterization, area=side_x * side_z, ) curve_4 = SympyCurve( functions={ "x": center[0] + 0.5 * s_1 * side_x, "y": center[1] - 0.5 * side_y, "z": center[2] + 0.5 * s_2 * side_z, "normal_x": 0, "normal_y": -1, "normal_z": 0, }, parameterization=curve_parameterization, area=side_x * side_z, ) curves = [curve_1, curve_2, curve_3, curve_4] # calculate SDF y_dist = Abs(y - center[1]) - 0.5 * side_y z_dist = Abs(z - center[2]) - 0.5 * side_z outside_distance = sqrt(Max(y_dist, 0) ** 2 + Max(z_dist, 0) ** 2) inside_distance = Min(Max(y_dist, z_dist), 0) sdf = -(outside_distance + inside_distance) # calculate bounds bounds = Bounds( { Parameter("x"): (point_1[0], point_2[0]), Parameter("y"): (point_1[1], point_2[1]), Parameter("z"): (point_1[2], point_2[2]), }, parameterization=parameterization, ) # initialize Channel super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class Box(Geometry): """ 3D Box/Cuboid Parameters ---------- point_1 : tuple with 3 ints or floats lower bound point of box point_2 : tuple with 3 ints or floats upper bound point of box parameterization : Parameterization Parameterization of geometry. """ def __init__(self, point_1, point_2, parameterization=Parameterization()): # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") s_1, s_2 = Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)) center = ( point_1[0] + (point_2[0] - point_1[0]) / 2, point_1[1] + (point_2[1] - point_1[1]) / 2, point_1[2] + (point_2[2] - point_1[2]) / 2, ) side_x = point_2[0] - point_1[0] side_y = point_2[1] - point_1[1] side_z = point_2[2] - point_1[2] # surface of the box curve_parameterization = Parameterization({s_1: (-1, 1), s_2: (-1, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve_1 = SympyCurve( functions={ "x": center[0] + 0.5 * s_1 * side_x, "y": center[1] + 0.5 * s_2 * side_y, "z": center[2] + 0.5 * side_z, "normal_x": 0, "normal_y": 0, "normal_z": 1, }, parameterization=curve_parameterization, area=side_x * side_y, ) curve_2 = SympyCurve( functions={ "x": center[0] + 0.5 * s_1 * side_x, "y": center[1] + 0.5 * s_2 * side_y, "z": center[2] - 0.5 * side_z, "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=side_x * side_y, ) curve_3 = SympyCurve( functions={ "x": center[0] + 0.5 * s_1 * side_x, "y": center[1] + 0.5 * side_y, "z": center[2] + 0.5 * s_2 * side_z, "normal_x": 0, "normal_y": 1, "normal_z": 0, }, parameterization=curve_parameterization, area=side_x * side_z, ) curve_4 = SympyCurve( functions={ "x": center[0] + 0.5 * s_1 * side_x, "y": center[1] - 0.5 * side_y, "z": center[2] + 0.5 * s_2 * side_z, "normal_x": 0, "normal_y": -1, "normal_z": 0, }, parameterization=curve_parameterization, area=side_x * side_z, ) curve_5 = SympyCurve( functions={ "x": center[0] + 0.5 * side_x, "y": center[1] + 0.5 * s_1 * side_y, "z": center[2] + 0.5 * s_2 * side_z, "normal_x": 1, "normal_y": 0, "normal_z": 0, }, parameterization=curve_parameterization, area=side_y * side_z, ) curve_6 = SympyCurve( functions={ "x": center[0] - 0.5 * side_x, "y": center[1] + 0.5 * s_1 * side_y, "z": center[2] + 0.5 * s_2 * side_z, "normal_x": -1, "normal_y": 0, "normal_z": 0, }, parameterization=curve_parameterization, area=side_y * side_z, ) curves = [curve_1, curve_2, curve_3, curve_4, curve_5, curve_6] # calculate SDF x_dist = Abs(x - center[0]) - 0.5 * side_x y_dist = Abs(y - center[1]) - 0.5 * side_y z_dist = Abs(z - center[2]) - 0.5 * side_z outside_distance = sqrt( Max(x_dist, 0) ** 2 + Max(y_dist, 0) ** 2 + Max(z_dist, 0) ** 2 ) inside_distance = Min(Max(x_dist, y_dist, z_dist), 0) sdf = -(outside_distance + inside_distance) # calculate bounds bounds = Bounds( { Parameter("x"): (point_1[0], point_2[0]), Parameter("y"): (point_1[1], point_2[1]), Parameter("z"): (point_1[2], point_2[2]), }, parameterization=parameterization, ) # initialize Box super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class VectorizedBoxes(Geometry): """ Vectorized 3D Box/Cuboid for faster surface and interior sampling. This primitive can be used if many boxes are required and is significantly faster then combining many boxes together with Boolean operations. Parameters ---------- box_bounds : np.ndarray An array specifying the bounds of boxes. Shape of array is `[nr_boxes, 3, 2]` where the last dim stores the lower and upper bounds respectively. dx : float delta x used for SDF derivative calculations. """ def __init__(self, box_bounds, dx=0.0001): # compute box centers and sides once for optimization box_centers = ( box_bounds[:, :, 0] + (box_bounds[:, :, 1] - box_bounds[:, :, 0]) / 2 ) side = box_bounds[:, :, 1] - box_bounds[:, :, 0] # create curves def _sample(box_bounds, box_centers, side): def sample(nr_points, parameterization, quasirandom): # area of all faces face_area = np.concatenate( 2 * [ side[:, 0] * side[:, 1], side[:, 0] * side[:, 2], side[:, 1] * side[:, 2], ] ) # [6 * nr_boxes] # calculate number or points per face face_probabilities = face_area / np.linalg.norm(face_area, ord=1) face_index = np.arange(face_area.shape[0]) points_per_face = np.random.choice( face_index, nr_points, p=face_probabilities ) points_per_face, _ = np.histogram( points_per_face, np.arange(face_area.shape[0] + 1) - 0.5 ) # generate random values to use when sampling faces s_1 = 2.0 * (np.random.rand(nr_points) - 0.5) s_2 = 2.0 * (np.random.rand(nr_points) - 0.5) # repeat side and center for each point repeat_side = np.repeat( np.concatenate(6 * [side], axis=0), points_per_face, axis=0 ) repeat_centers = np.repeat( np.concatenate(6 * [box_centers], axis=0), points_per_face, axis=0 ) repeat_face_area = np.repeat( face_area / points_per_face, points_per_face, axis=0 ) # sample face 1 nr_face_1 = np.sum(points_per_face[0 : box_bounds.shape[0]]) face_1_x = ( repeat_centers[:nr_face_1, 0] + 0.5 * s_1[:nr_face_1] * repeat_side[:nr_face_1, 0] ) face_1_y = ( repeat_centers[:nr_face_1, 1] + 0.5 * s_2[:nr_face_1] * repeat_side[:nr_face_1, 1] ) face_1_z = ( repeat_centers[:nr_face_1, 2] + 0.5 * repeat_side[:nr_face_1, 2] ) face_1_normal_x = np.zeros_like(face_1_x) face_1_normal_y = np.zeros_like(face_1_x) face_1_normal_z = np.ones_like(face_1_x) area_1 = repeat_face_area[:nr_face_1] # sample face 2 nr_face_2 = ( np.sum( points_per_face[box_bounds.shape[0] : 2 * box_bounds.shape[0]] ) + nr_face_1 ) face_2_x = ( repeat_centers[nr_face_1:nr_face_2, 0] + 0.5 * s_1[nr_face_1:nr_face_2] * repeat_side[nr_face_1:nr_face_2, 0] ) face_2_y = ( repeat_centers[nr_face_1:nr_face_2, 1] + 0.5 * repeat_side[nr_face_1:nr_face_2, 1] ) face_2_z = ( repeat_centers[nr_face_1:nr_face_2, 2] + 0.5 * s_2[nr_face_1:nr_face_2] * repeat_side[nr_face_1:nr_face_2, 2] ) face_2_normal_x = np.zeros_like(face_2_x) face_2_normal_y = np.ones_like(face_2_x) face_2_normal_z = np.zeros_like(face_2_x) area_2 = repeat_face_area[nr_face_1:nr_face_2] # sample face 3 nr_face_3 = ( np.sum( points_per_face[ 2 * box_bounds.shape[0] : 3 * box_bounds.shape[0] ] ) + nr_face_2 ) face_3_x = ( repeat_centers[nr_face_2:nr_face_3, 0] + 0.5 * repeat_side[nr_face_2:nr_face_3, 0] ) face_3_y = ( repeat_centers[nr_face_2:nr_face_3, 1] + 0.5 * s_1[nr_face_2:nr_face_3] * repeat_side[nr_face_2:nr_face_3, 1] ) face_3_z = ( repeat_centers[nr_face_2:nr_face_3, 2] + 0.5 * s_2[nr_face_2:nr_face_3] * repeat_side[nr_face_2:nr_face_3, 2] ) face_3_normal_x = np.ones_like(face_3_x) face_3_normal_y = np.zeros_like(face_3_x) face_3_normal_z = np.zeros_like(face_3_x) area_3 = repeat_face_area[nr_face_2:nr_face_3] # sample face 4 nr_face_4 = ( np.sum( points_per_face[ 3 * box_bounds.shape[0] : 4 * box_bounds.shape[0] ] ) + nr_face_3 ) face_4_x = ( repeat_centers[nr_face_3:nr_face_4, 0] + 0.5 * s_1[nr_face_3:nr_face_4] * repeat_side[nr_face_3:nr_face_4, 0] ) face_4_y = ( repeat_centers[nr_face_3:nr_face_4, 1] + 0.5 * s_2[nr_face_3:nr_face_4] * repeat_side[nr_face_3:nr_face_4, 1] ) face_4_z = ( repeat_centers[nr_face_3:nr_face_4, 2] - 0.5 * repeat_side[nr_face_3:nr_face_4, 2] ) face_4_normal_x = np.zeros_like(face_4_x) face_4_normal_y = np.zeros_like(face_4_x) face_4_normal_z = -np.ones_like(face_4_x) area_4 = repeat_face_area[nr_face_3:nr_face_4] # sample face 5 nr_face_5 = ( np.sum( points_per_face[ 4 * box_bounds.shape[0] : 5 * box_bounds.shape[0] ] ) + nr_face_4 ) face_5_x = ( repeat_centers[nr_face_4:nr_face_5, 0] + 0.5 * s_1[nr_face_4:nr_face_5] * repeat_side[nr_face_4:nr_face_5, 0] ) face_5_y = ( repeat_centers[nr_face_4:nr_face_5, 1] - 0.5 * repeat_side[nr_face_4:nr_face_5, 1] ) face_5_z = ( repeat_centers[nr_face_4:nr_face_5, 2] + 0.5 * s_2[nr_face_4:nr_face_5] * repeat_side[nr_face_4:nr_face_5, 2] ) face_5_normal_x = np.zeros_like(face_5_x) face_5_normal_y = -np.ones_like(face_5_x) face_5_normal_z = np.zeros_like(face_5_x) area_5 = repeat_face_area[nr_face_4:nr_face_5] # sample face 6 nr_face_6 = ( np.sum(points_per_face[5 * box_bounds.shape[0] :]) + nr_face_5 ) face_6_x = ( repeat_centers[nr_face_5:nr_face_6, 0] - 0.5 * repeat_side[nr_face_5:nr_face_6, 0] ) face_6_y = ( repeat_centers[nr_face_5:nr_face_6, 1] + 0.5 * s_1[nr_face_5:nr_face_6] * repeat_side[nr_face_5:nr_face_6, 1] ) face_6_z = ( repeat_centers[nr_face_5:nr_face_6, 2] + 0.5 * s_2[nr_face_5:nr_face_6] * repeat_side[nr_face_5:nr_face_6, 2] ) face_6_normal_x = -np.ones_like(face_6_x) face_6_normal_y = np.zeros_like(face_6_x) face_6_normal_z = np.zeros_like(face_6_x) area_6 = repeat_face_area[nr_face_5:nr_face_6] # gather for invar invar = { "x": np.concatenate( [face_1_x, face_2_x, face_3_x, face_4_x, face_5_x, face_6_x], axis=0, )[:, None], "y": np.concatenate( [face_1_y, face_2_y, face_3_y, face_4_y, face_5_y, face_6_y], axis=0, )[:, None], "z": np.concatenate( [face_1_z, face_2_z, face_3_z, face_4_z, face_5_z, face_6_z], axis=0, )[:, None], "normal_x": np.concatenate( [ face_1_normal_x, face_2_normal_x, face_3_normal_x, face_4_normal_x, face_5_normal_x, face_6_normal_x, ], axis=0, )[:, None], "normal_y": np.concatenate( [ face_1_normal_y, face_2_normal_y, face_3_normal_y, face_4_normal_y, face_5_normal_y, face_6_normal_y, ], axis=0, )[:, None], "normal_z": np.concatenate( [ face_1_normal_z, face_2_normal_z, face_3_normal_z, face_4_normal_z, face_5_normal_z, face_6_normal_z, ], axis=0, )[:, None], "area": np.concatenate( [area_1, area_2, area_3, area_4, area_5, area_6], axis=0 )[:, None], } return invar, {} return sample curves = [Curve(_sample(box_bounds, box_centers, side), dims=3)] # create closure for SDF function def _sdf(box_bounds, box_centers, side, dx): def sdf(invar, param_ranges={}, compute_sdf_derivatives=False): # get input and tile for each box xyz = np.stack([invar["x"], invar["y"], invar["z"]], axis=-1) xyz = np.tile(np.expand_dims(xyz, 1), (1, box_bounds.shape[0], 1)) # compute distance outputs = {"sdf": VectorizedBoxes._sdf_box(xyz, box_centers, side)} # compute distance derivatives if needed if compute_sdf_derivatives: for i, d in enumerate(["x", "y", "z"]): # compute sdf plus dx/2 plus_xyz = np.copy(xyz) plus_xyz[..., i] += dx / 2 computed_sdf_plus = VectorizedBoxes._sdf_box( plus_xyz, box_centers, side ) # compute sdf minus dx/2 minus_xyz = np.copy(xyz) minus_xyz[..., i] -= dx / 2 computed_sdf_minus = VectorizedBoxes._sdf_box( minus_xyz, box_centers, side ) # store sdf derivative outputs["sdf" + diff_str + d] = ( computed_sdf_plus - computed_sdf_minus ) / dx return outputs return sdf # create bounds bounds = Bounds( { "x": (np.min(box_bounds[:, 0, 0]), np.max(box_bounds[:, 0, 1])), "y": (np.min(box_bounds[:, 1, 0]), np.max(box_bounds[:, 1, 1])), "z": (np.min(box_bounds[:, 2, 0]), np.max(box_bounds[:, 2, 1])), } ) # initialize geometry Geometry.__init__( self, curves, _sdf(box_bounds, box_centers, side, dx), bounds=bounds, dims=3 ) @staticmethod def _sdf_box(xyz, box_centers, side): xyz_dist = np.abs(xyz - np.expand_dims(box_centers, 0)) - 0.5 * np.expand_dims( side, 0 ) outside_distance = np.sqrt(np.sum(np.maximum(xyz_dist, 0) ** 2, axis=-1)) inside_distance = np.minimum(np.max(xyz_dist, axis=-1), 0) return np.max(-(outside_distance + inside_distance), axis=-1) class Sphere(Geometry): """ 3D Sphere Parameters ---------- center : tuple with 3 ints or floats center of sphere radius : int or float radius of sphere parameterization : Parameterization Parameterization of geometry. """ def __init__(self, center, radius, parameterization=Parameterization()): # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") r_1, r_2, r_3 = ( Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)), Symbol(csg_curve_naming(2)), ) # surface of the sphere curve_parameterization = Parameterization( {r_1: (-1, 1), r_2: (-1, 1), r_3: (-1, 1)} ) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) norm = sqrt(r_1**2 + r_2**2 + r_3**2) curve_1 = SympyCurve( functions={ "x": center[0] + radius * r_1 / norm, # TODO GAUSSIAN DIST "y": center[1] + radius * r_2 / norm, "z": center[2] + radius * r_3 / norm, "normal_x": r_1 / norm, "normal_y": r_2 / norm, "normal_z": r_3 / norm, }, parameterization=curve_parameterization, area=4 * pi * radius**2, ) curves = [curve_1] # calculate SDF sdf = radius - sqrt( (x - center[0]) ** 2 + (y - center[1]) ** 2 + (z - center[2]) ** 2 ) # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - radius, center[0] + radius), Parameter("y"): (center[1] - radius, center[1] + radius), Parameter("z"): (center[2] - radius, center[2] + radius), }, parameterization=parameterization, ) # initialize Sphere super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class Cylinder(Geometry): """ 3D Cylinder Axis parallel to z-axis Parameters ---------- center : tuple with 3 ints or floats center of cylinder radius : int or float radius of cylinder height : int or float height of cylinder parameterization : Parameterization Parameterization of geometry. """ def __init__(self, center, radius, height, parameterization=Parameterization()): # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") h, r = Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)) theta = Symbol(csg_curve_naming(2)) # surface of the cylinder curve_parameterization = Parameterization( {h: (-1, 1), r: (0, 1), theta: (0, 2 * pi)} ) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve_1 = SympyCurve( functions={ "x": center[0] + radius * cos(theta), "y": center[1] + radius * sin(theta), "z": center[2] + 0.5 * h * height, "normal_x": 1 * cos(theta), "normal_y": 1 * sin(theta), "normal_z": 0, }, parameterization=curve_parameterization, area=height * 2 * pi * radius, ) curve_2 = SympyCurve( functions={ "x": center[0] + sqrt(r) * radius * cos(theta), "y": center[1] + sqrt(r) * radius * sin(theta), "z": center[2] + 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": 1, }, parameterization=curve_parameterization, area=pi * radius**2, ) curve_3 = SympyCurve( functions={ "x": center[0] + sqrt(r) * radius * cos(theta), "y": center[1] + sqrt(r) * radius * sin(theta), "z": center[2] - 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=pi * radius**2, ) curves = [curve_1, curve_2, curve_3] # calculate SDF r_dist = sqrt((x - center[0]) ** 2 + (y - center[1]) ** 2) z_dist = Abs(z - center[2]) outside_distance = sqrt( Min(0, radius - r_dist) ** 2 + Min(0, 0.5 * height - z_dist) ** 2 ) inside_distance = -1 * Min( Abs(Min(0, r_dist - radius)), Abs(Min(0, z_dist - 0.5 * height)) ) sdf = -(outside_distance + inside_distance) # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - radius, center[0] + radius), Parameter("y"): (center[1] - radius, center[1] + radius), Parameter("z"): (center[2] - height / 2, center[2] + height / 2), }, parameterization=parameterization, ) # initialize Cylinder super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class Torus(Geometry): """ 3D Torus Parameters ---------- center : tuple with 3 ints or floats center of torus radius : int or float distance from center to center of tube (major radius) radius_tube : int or float radius of tube (minor radius) parameterization : Parameterization Parameterization of geometry. """ def __init__( self, center, radius, radius_tube, parameterization=Parameterization() ): # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") r_1, r_2, r_3 = ( Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)), Symbol(csg_curve_naming(2)), ) N = CoordSys3D("N") P = x * N.i + y * N.j + z * N.k O = center[0] * N.i + center[1] * N.j + center[2] * N.k OP_xy = (x - center[0]) * N.i + (y - center[1]) * N.j + (0) * N.k OR = radius * OP_xy / sqrt(OP_xy.dot(OP_xy)) OP = P - O RP = OP - OR dist = sqrt(RP.dot(RP)) # surface of the torus curve_parameterization = Parameterization( {r_1: (0, 1), r_2: (0, 1), r_3: (0, 1)} ) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) theta = 2 * pi * r_1 phi = 2 * pi * r_2 curve_1 = SympyCurve( functions={ "x": center[0] + (radius + radius_tube * cos(theta)) * cos(phi), "y": center[1] + (radius + radius_tube * cos(theta)) * sin(phi), "z": center[2] + radius_tube * sin(theta), "normal_x": 1 * cos(theta) * cos(phi), "normal_y": 1 * cos(theta) * sin(phi), "normal_z": 1 * sin(theta), }, parameterization=curve_parameterization, area=4 * pi * pi * radius * radius_tube, criteria=radius_tube * Abs(radius + radius_tube * cos(theta)) >= r_3 * radius_tube * (radius + radius_tube), ) curves = [curve_1] # calculate SDF sdf = radius_tube - dist # calculate bounds bounds = Bounds( { Parameter("x"): ( center[0] - radius - radius_tube, center[0] + radius + radius_tube, ), Parameter("y"): ( center[1] - radius - radius_tube, center[1] + radius + radius_tube, ), Parameter("z"): (center[2] - radius_tube, center[2] + radius_tube), }, parameterization=parameterization, ) # initialize Torus super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class Cone(Geometry): """ 3D Cone Axis parallel to z-axis Parameters ---------- center : tuple with 3 ints or floats base center of cone radius : int or float base radius of cone height : int or float height of cone parameterization : Parameterization Parameterization of geometry. """ def __init__(self, center, radius, height, parameterization=Parameterization()): # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") r, t = Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)) theta = Symbol(csg_curve_naming(2)) N = CoordSys3D("N") P = x * N.i + y * N.j + z * N.k O = center[0] * N.i + center[1] * N.j + center[2] * N.k H = center[0] * N.i + center[1] * N.j + (center[2] + height) * N.k R = ( (center[0] + radius * cos(atan2(y, x))) * N.i + (center[1] + radius * sin(atan2(y, x))) * N.j + (center[2]) * N.k ) OP_xy = (x - center[0]) * N.i + (y - center[1]) * N.j + (0) * N.k OR = radius * OP_xy / sqrt(OP_xy.dot(OP_xy)) OP = P - O OH = H - O RP = OP - OR RH = OH - OR PH = OH - OP cone_angle = atan2(radius, height) angle = acos(PH.dot(OH) / sqrt(PH.dot(PH)) / sqrt(OH.dot(OH))) dist = sqrt(PH.dot(PH)) * sin(angle - cone_angle) # surface of the cone curve_parameterization = Parameterization( {r: (0, 1), t: (0, 1), theta: (0, 2 * pi)} ) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve_1 = SympyCurve( functions={ "x": center[0] + (sqrt(t)) * radius * cos(theta), "y": center[1] + (sqrt(t)) * radius * sin(theta), "z": center[2] + (1 - sqrt(t)) * height, "normal_x": 1 * cos(cone_angle) * cos(theta), "normal_y": 1 * cos(cone_angle) * sin(theta), "normal_z": 1 * sin(cone_angle), }, parameterization=curve_parameterization, area=pi * radius * (sqrt(height**2 + radius**2)), ) curve_2 = SympyCurve( functions={ "x": center[0] + sqrt(r) * radius * cos(theta), "y": center[1] + sqrt(r) * radius * sin(theta), "z": center[2], "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=pi * radius**2, ) curves = [curve_1, curve_2] # calculate SDF outside_distance = 1 * sqrt(Max(0, dist) ** 2 + Max(0, center[2] - z) ** 2) inside_distance = -1 * Min(Abs(Min(0, dist)), Abs(Min(0, center[2] - z))) sdf = -(outside_distance + inside_distance) # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - radius, center[0] + radius), Parameter("y"): (center[1] - radius, center[1] + radius), Parameter("z"): (center[2], center[2] + height), }, parameterization=parameterization, ) # initialize Cone super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class TriangularPrism(Geometry): """ 3D Uniform Triangular Prism Axis parallel to z-axis Parameters ---------- center : tuple with 3 ints or floats center of prism side : int or float side of equilateral base height : int or float height of prism parameterization : Parameterization Parameterization of geometry. """ def __init__(self, center, side, height, parameterization=Parameterization()): # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") s_1, s_2, s_3 = ( Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)), Symbol(csg_curve_naming(2)), ) N = CoordSys3D("N") P = x * N.i + y * N.j + z * N.k O = center[0] * N.i + center[1] * N.j + center[2] * N.k OP = P - O OP_xy = OP - OP.dot(1 * N.k) normal_1 = -1 * N.j normal_2 = -sqrt(3) / 2 * N.i + 1 / 2 * N.j normal_3 = sqrt(3) / 2 * N.i + 1 / 2 * N.j r_ins = side / 2 / sqrt(3) distance_side = Min( Abs(r_ins - OP_xy.dot(normal_1)), Abs(r_ins - OP_xy.dot(normal_2)), Abs(r_ins - OP_xy.dot(normal_3)), ) distance_top = Abs(z - center[2]) - 0.5 * height v1 = O + ( -0.5 * side * N.i - 0.5 * sqrt(1 / 3) * side * N.j - height / 2 * side * N.k ) v2 = O + ( 0.5 * side * N.i - 0.5 * sqrt(1 / 3) * side * N.j - height / 2 * side * N.k ) v3 = O + (1 * sqrt(1 / 3) * side * N.j - height / 2 * side * N.k) # surface of the prism curve_parameterization = Parameterization({s_1: (0, 1), s_2: (0, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve_1 = SympyCurve( functions={ "x": v1.dot(1 * N.i) + (v2 - v1).dot(1 * N.i) * s_1, "y": v1.dot(1 * N.j) + (v2 - v1).dot(1 * N.j) * s_1, "z": v1.dot(1 * N.k) + height * s_2, "normal_x": 0, "normal_y": -1, "normal_z": 0, }, parameterization=curve_parameterization, area=side * height, ) curve_2 = SympyCurve( functions={ "x": v1.dot(1 * N.i) + (v3 - v1).dot(1 * N.i) * s_1, "y": v1.dot(1 * N.j) + (v3 - v1).dot(1 * N.j) * s_1, "z": v1.dot(1 * N.k) + height * s_2, "normal_x": -sqrt(3) / 2, "normal_y": 1 / 2, "normal_z": 0, }, parameterization=curve_parameterization, area=side * height, ) curve_3 = SympyCurve( functions={ "x": v2.dot(1 * N.i) + (v3 - v2).dot(1 * N.i) * s_1, "y": v2.dot(1 * N.j) + (v3 - v2).dot(1 * N.j) * s_1, "z": v2.dot(1 * N.k) + height * s_2, "normal_x": sqrt(3) / 2, "normal_y": 1 / 2, "normal_z": 0, }, parameterization=curve_parameterization, area=side * height, ) curve_4 = SympyCurve( functions={ "x": ( ( (1 - sqrt(s_1)) * v1 + (sqrt(s_1) * (1 - s_2)) * v2 + s_2 * sqrt(s_1) * v3 ).dot(1 * N.i) ), "y": ( ( (1 - sqrt(s_1)) * v1 + (sqrt(s_1) * (1 - s_2)) * v2 + s_2 * sqrt(s_1) * v3 ).dot(1 * N.j) ), "z": ( ( (1 - sqrt(s_1)) * v1 + (sqrt(s_1) * (1 - s_2)) * v2 + s_2 * sqrt(s_1) * v3 ).dot(1 * N.k) ), "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=sqrt(3) * side * side / 4, ) curve_5 = SympyCurve( functions={ "x": ( ( (1 - sqrt(s_1)) * v1 + (sqrt(s_1) * (1 - s_2)) * v2 + s_2 * sqrt(s_1) * v3 ).dot(1 * N.i) ), "y": ( ( (1 - sqrt(s_1)) * v1 + (sqrt(s_1) * (1 - s_2)) * v2 + s_2 * sqrt(s_1) * v3 ).dot(1 * N.j) ), "z": ( ( (1 - sqrt(s_1)) * v1 + (sqrt(s_1) * (1 - s_2)) * v2 + s_2 * sqrt(s_1) * v3 ).dot(1 * N.k) + height ), "normal_x": 0, "normal_y": 0, "normal_z": 1, }, parameterization=curve_parameterization, area=sqrt(3) * side * side / 4, ) curves = [curve_1, curve_2, curve_3, curve_4, curve_5] # calculate SDF inside_distance = Max( Min( Max(OP_xy.dot(normal_1), OP_xy.dot(normal_2), OP_xy.dot(normal_3)) - r_ins, 0, ), Min(Abs(z - center[2]) - 0.5 * height, 0), ) outside_distance = sqrt( Min( r_ins - Max(OP_xy.dot(normal_1), OP_xy.dot(normal_2), OP_xy.dot(normal_3)), 0, ) ** 2 + Min(0.5 * height - Abs(z - center[2]), 0) ** 2 ) sdf = -(outside_distance + inside_distance) # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - side / 2, center[0] + side / 2), Parameter("y"): (center[1] - side / 2, center[1] + side / 2), Parameter("z"): (center[2], center[2] + height), }, parameterization=parameterization, ) # initialize TriangularPrism super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class Tetrahedron(Geometry): """ 3D Tetrahedron The 4 symmetrically placed points are on a unit sphere. Centroid of the tetrahedron is at origin and lower face is parallel to x-y plane Reference: https://en.wikipedia.org/wiki/Tetrahedron Parameters ---------- center : tuple with 3 ints or floats centroid of tetrahedron radius : int or float radius of circumscribed sphere parameterization : Parameterization Parameterization of geometry. """ def __init__(self, center, radius, parameterization=Parameterization()): # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") r_1, r_2 = Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)) N = CoordSys3D("N") P = x * N.i + y * N.j + z * N.k O = center[0] * N.i + center[1] * N.j + center[2] * N.k side = sqrt(8 / 3) * radius # vertices of the tetrahedron v1 = ( center[0] + radius * sqrt(8 / 9), center[1] + radius * 0, center[2] + radius * (-1 / 3), ) v2 = ( center[0] - radius * sqrt(2 / 9), center[1] + radius * sqrt(2 / 3), center[2] + radius * (-1 / 3), ) v3 = ( center[0] - radius * sqrt(2 / 9), center[1] - radius * sqrt(2 / 3), center[2] + radius * (-1 / 3), ) v4 = ( center[0] + radius * 0, center[1] + radius * 0, center[2] + radius * 1, ) # apex vector vv1 = v1[0] * N.i + v1[1] * N.j + v1[2] * N.k vv2 = v2[0] * N.i + v2[1] * N.j + v2[2] * N.k vv3 = v3[0] * N.i + v3[1] * N.j + v2[2] * N.k vv4 = v4[0] * N.i + v4[1] * N.j + v4[2] * N.k v4P = P - vv4 # surface of the tetrahedron curve_parameterization = Parameterization({r_1: (-1, 1), r_2: (-1, 1)}) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) # face between v1, v2, v3 normal_1 = ((vv3 - vv1).cross(vv2 - vv1)).normalize() curve_1 = SympyCurve( functions={ "x": ( center[0] + (1 - sqrt(r_1)) * v1[0] + (sqrt(r_1) * (1 - r_2)) * v2[0] + r_2 * sqrt(r_1) * v3[0] ), "y": ( center[1] + (1 - sqrt(r_1)) * v1[1] + (sqrt(r_1) * (1 - r_2)) * v2[1] + r_2 * sqrt(r_1) * v3[1] ), "z": ( center[2] + (1 - sqrt(r_1)) * v1[2] + (sqrt(r_1) * (1 - r_2)) * v2[2] + r_2 * sqrt(r_1) * v3[2] ), "normal_x": normal_1.to_matrix(N)[0], "normal_y": normal_1.to_matrix(N)[1], "normal_z": normal_1.to_matrix(N)[2], }, parameterization=curve_parameterization, area=sqrt(3) * side * side / 4, ) # face between v1, v2, v4 normal_2 = ((vv2 - vv1).cross(vv4 - vv1)).normalize() curve_2 = SympyCurve( functions={ "x": ( center[0] + (1 - sqrt(r_1)) * v1[0] + (sqrt(r_1) * (1 - r_2)) * v2[0] + r_2 * sqrt(r_1) * v4[0] ), "y": ( center[1] + (1 - sqrt(r_1)) * v1[1] + (sqrt(r_1) * (1 - r_2)) * v2[1] + r_2 * sqrt(r_1) * v4[1] ), "z": ( center[2] + (1 - sqrt(r_1)) * v1[2] + (sqrt(r_1) * (1 - r_2)) * v2[2] + r_2 * sqrt(r_1) * v4[2] ), "normal_x": normal_2.to_matrix(N)[0], "normal_y": normal_2.to_matrix(N)[1], "normal_z": normal_2.to_matrix(N)[2], }, parameterization=curve_parameterization, area=sqrt(3) * side * side / 4, ) # face between v1, v4, v3 normal_3 = ((vv4 - vv1).cross(vv3 - vv1)).normalize() curve_3 = SympyCurve( functions={ "x": ( center[0] + (1 - sqrt(r_1)) * v1[0] + (sqrt(r_1) * (1 - r_2)) * v4[0] + r_2 * sqrt(r_1) * v3[0] ), "y": ( center[1] + (1 - sqrt(r_1)) * v1[1] + (sqrt(r_1) * (1 - r_2)) * v4[1] + r_2 * sqrt(r_1) * v3[1] ), "z": ( center[2] + (1 - sqrt(r_1)) * v1[2] + (sqrt(r_1) * (1 - r_2)) * v4[2] + r_2 * sqrt(r_1) * v3[2] ), "normal_x": normal_3.to_matrix(N)[0], "normal_y": normal_3.to_matrix(N)[1], "normal_z": normal_3.to_matrix(N)[2], }, parameterization=curve_parameterization, area=sqrt(3) * side * side / 4, ) # face between v4, v2, v3 normal_4 = ((vv2 - vv4).cross(vv3 - vv4)).normalize() curve_4 = SympyCurve( functions={ "x": ( center[0] + (1 - sqrt(r_1)) * v4[0] + (sqrt(r_1) * (1 - r_2)) * v2[0] + r_2 * sqrt(r_1) * v3[0] ), "y": ( center[1] + (1 - sqrt(r_1)) * v4[1] + (sqrt(r_1) * (1 - r_2)) * v2[1] + r_2 * sqrt(r_1) * v3[1] ), "z": ( center[2] + (1 - sqrt(r_1)) * v4[2] + (sqrt(r_1) * (1 - r_2)) * v2[2] + r_2 * sqrt(r_1) * v3[2] ), "normal_x": normal_4.to_matrix(N)[0], "normal_y": normal_4.to_matrix(N)[1], "normal_z": normal_4.to_matrix(N)[2], }, parameterization=curve_parameterization, area=sqrt(3) * side * side / 4, ) curves = [curve_1, curve_2, curve_3, curve_4] dist = Max( v4P.dot(normal_2) / normal_2.magnitude(), v4P.dot(normal_3) / normal_3.magnitude(), v4P.dot(normal_4) / normal_4.magnitude(), ) # calculate SDF outside_distance = -1 * sqrt(Max(0, dist) ** 2 + Max(0, v1[2] - z) ** 2) inside_distance = Min(Abs(Min(0, dist)), Abs(Min(0, v1[2] - z))) sdf = outside_distance + inside_distance # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - radius, center[0] + radius), Parameter("y"): (center[1] - radius, center[1] + radius), Parameter("z"): (center[2] - radius, center[2] + radius), }, parameterization=parameterization, ) # initialize Tetrahedron super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class IsoTriangularPrism(Geometry): """ 2D Isosceles Triangular Prism Symmetrical axis parallel to y-axis Parameters ---------- center : tuple with 3 ints or floats center of base of triangle base : int or float base of triangle height : int or float height of triangle height_prism : int or float height of triangular prism parameterization : Parameterization Parameterization of geometry. """ def __init__( self, center, base, height, height_prism, parameterization=Parameterization() ): # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") t, h, hz = ( Symbol(csg_curve_naming(0)), Symbol(csg_curve_naming(1)), Symbol(csg_curve_naming(2)), ) N = CoordSys3D("N") P = (x) * N.i + y * N.j + center[2] * N.k Q = x * N.i + y * N.j + center[2] * N.k O = center[0] * N.i + center[1] * N.j + center[2] * N.k H = center[0] * N.i + (center[1] + height) * N.j + center[2] * N.k B = (center[0] + base / 2) * N.i + center[1] * N.j + center[2] * N.k B_p = (center[0] - base / 2) * N.i + center[1] * N.j + center[2] * N.k OP = P - O OH = H - O PH = OH - OP OQ = Q - O QH = OH - OQ HP = OP - OH HB = B - H HB_p = B_p - H norm = ((HB_p).cross(HB)).normalize() norm_HB = (norm.cross(HB)).normalize() hypo = sqrt(height**2 + (base / 2) ** 2) angle = acos(PH.dot(OH) / sqrt(PH.dot(PH)) / sqrt(OH.dot(OH))) apex_angle = asin(base / 2 / hypo) hypo_sin = sqrt(height**2 + (base / 2) ** 2) * sin(apex_angle) hypo_cos = sqrt(height**2 + (base / 2) ** 2) * cos(apex_angle) dist = sqrt(PH.dot(PH)) * sin(Min(angle - apex_angle, pi / 2)) a = (center[0] - base / 2) * N.i + center[1] * N.j + center[2] * N.k b = (center[0] + base / 2) * N.i + center[1] * N.j + center[2] * N.k c = center[0] * N.i + (center[1] + height) * N.j + center[2] * N.k s_1, s_2 = Symbol(csg_curve_naming(3)), Symbol(csg_curve_naming(4)) # curve for each side ranges = {t: (-1, 1), h: (0, 1), hz: (-1, 1), s_1: (0, 1), s_2: (0, 1)} curve_parameterization = Parameterization(ranges) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve_1 = SympyCurve( functions={ "x": center[0] + t * base / 2, "y": center[1] + t * 0, "z": center[2] + 0.5 * hz * height_prism, "normal_x": 0, "normal_y": -1, "normal_z": 0, }, parameterization=curve_parameterization, area=base * height_prism, ) curve_2 = SympyCurve( functions={ "x": center[0] + h * hypo_sin, "y": center[1] + height - h * hypo_cos, "z": center[2] + 0.5 * hz * height_prism, "normal_x": 1 * cos(apex_angle), "normal_y": 1 * sin(apex_angle), "normal_z": 0, }, parameterization=curve_parameterization, area=sqrt(height**2 + (base / 2) ** 2) * height_prism, ) curve_3 = SympyCurve( functions={ "x": center[0] - h * hypo_sin, "y": center[1] + height - h * hypo_cos, "z": center[2] + 0.5 * hz * height_prism, "normal_x": -1 * cos(apex_angle), "normal_y": 1 * sin(apex_angle), "normal_z": 0, }, parameterization=curve_parameterization, area=sqrt(height**2 + (base / 2) ** 2) * height_prism, ) curve_4 = SympyCurve( functions={ "x": ( ( (1 - sqrt(s_1)) * a + (sqrt(s_1) * (1 - s_2)) * b + s_2 * sqrt(s_1) * c ).dot(1 * N.i) ), "y": ( ( (1 - sqrt(s_1)) * a + (sqrt(s_1) * (1 - s_2)) * b + s_2 * sqrt(s_1) * c ).dot(1 * N.j) ), "z": ( ( (1 - sqrt(s_1)) * a + (sqrt(s_1) * (1 - s_2)) * b + s_2 * sqrt(s_1) * c ).dot(1 * N.k) ) - height_prism / 2, "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=0.5 * base * height, ) curve_5 = SympyCurve( functions={ "x": ( ( (1 - sqrt(s_1)) * a + (sqrt(s_1) * (1 - s_2)) * b + s_2 * sqrt(s_1) * c ).dot(1 * N.i) ), "y": ( ( (1 - sqrt(s_1)) * a + (sqrt(s_1) * (1 - s_2)) * b + s_2 * sqrt(s_1) * c ).dot(1 * N.j) ), "z": ( ( (1 - sqrt(s_1)) * a + (sqrt(s_1) * (1 - s_2)) * b + s_2 * sqrt(s_1) * c ).dot(1 * N.k) + height_prism / 2 ), "normal_x": 0, "normal_y": 0, "normal_z": 1, }, parameterization=curve_parameterization, area=0.5 * base * height, ) curves = [curve_1, curve_2, curve_3, curve_4, curve_5] # calculate SDF z_dist = Abs(z - center[2]) outside_distance = 1 * sqrt( sqrt(Max(0, dist) ** 2 + Max(0, center[1] - y) ** 2) ** 2 + Min(0.5 * height_prism - Abs(z - center[2]), 0) ** 2 ) inside_distance = -1 * Min( Abs(Min(0, dist)), Abs(Min(0, center[1] - y)), Abs(Min(Abs(z - center[2]) - 0.5 * height_prism, 0)), ) sdf = -(outside_distance + inside_distance) # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - base / 2, center[0] + base / 2), Parameter("y"): (center[1], center[1] + height), Parameter("z"): (center[2], center[2] + height_prism), }, parameterization=parameterization, ) # initialize IsoTriangularPrism super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, ) class ElliCylinder(Geometry): """ 3D Elliptical Cylinder Axis parallel to z-axis Approximation based on 4-arc ellipse construction https://www.researchgate.net/publication/241719740_Approximating_an_ellipse_with_four_circular_arcs Please manually ensure a>b Parameters ---------- center : tuple with 3 ints or floats center of base of ellipse a : int or float semi-major axis of ellipse b : int or float semi-minor axis of ellipse height : int or float height of elliptical cylinder parameterization : Parameterization Parameterization of geometry. """ def __init__(self, center, a, b, height, parameterization=Parameterization()): # TODO Assertion creates issues while parameterization # assert a > b, "a must be greater than b. To have a ellipse with larger b create a ellipse with flipped a and b and then rotate by pi/2" # make sympy symbols to use x, y, z = Symbol("x"), Symbol("y"), Symbol("z") h = Symbol(csg_curve_naming(0)) r_1, r_2 = Symbol(csg_curve_naming(1)), Symbol(csg_curve_naming(2)) angle = Symbol(csg_curve_naming(3)) phi = asin(b / sqrt(a**2 + b**2)) # phi = atan2(b, a) theta = pi / 2 - phi r1 = (a * sin(theta) + b * cos(theta) - a) / (sin(theta) + cos(theta) - 1) r2 = (a * sin(theta) + b * cos(theta) - b) / (sin(theta) + cos(theta) - 1) # surface of the cylinder ranges = {h: (-1, 1), r_1: (0, 1), r_2: (0, 1), angle: (-1, 1)} curve_parameterization = Parameterization(ranges) curve_parameterization = Parameterization.combine( curve_parameterization, parameterization ) curve_1 = SympyCurve( functions={ "x": center[0] + a - r1 + r1 * cos(angle * theta), "y": center[1] + r1 * sin(angle * theta), "z": center[2] + 0.5 * h * height, "normal_x": 1 * cos(angle * theta), "normal_y": 1 * sin(angle * theta), "normal_z": 0, }, parameterization=curve_parameterization, area=height * 2 * theta * r1, ) curve_2 = SympyCurve( functions={ "x": center[0] + r2 * cos(pi / 2 + angle * phi), "y": center[1] - r2 + b + r2 * sin(pi / 2 + angle * phi), "z": center[2] + 0.5 * h * height, "normal_x": 1 * cos(pi / 2 + angle * phi), "normal_y": 1 * sin(pi / 2 + angle * phi), "normal_z": 0, }, parameterization=curve_parameterization, area=height * 2 * phi * r2, ) curve_3 = SympyCurve( functions={ "x": center[0] - a + r1 + r1 * cos(pi + angle * theta), "y": center[1] + r1 * sin(pi + angle * theta), "z": center[2] + 0.5 * h * height, "normal_x": 1 * cos(pi + angle * theta), "normal_y": 1 * sin(pi + angle * theta), "normal_z": 0, }, parameterization=curve_parameterization, area=height * 2 * theta * r1, ) curve_4 = SympyCurve( functions={ "x": center[0] + r2 * cos(3 * pi / 2 + angle * phi), "y": center[1] + r2 - b + r2 * sin(3 * pi / 2 + angle * phi), "z": center[2] + 0.5 * h * height, "normal_x": 1 * cos(3 * pi / 2 + angle * phi), "normal_y": 1 * sin(3 * pi / 2 + angle * phi), "normal_z": 0, }, parameterization=curve_parameterization, area=height * 2 * phi * r2, ) # Flat surfaces top curve_5 = SympyCurve( functions={ "x": center[0] + a - r1 + sqrt(r_1) * r1 * cos(angle * theta), "y": center[1] + sqrt(r_1) * r1 * sin(angle * theta), "z": center[2] + 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": 1, }, parameterization=curve_parameterization, area=theta * r1**2, ) curve_6 = SympyCurve( functions={ "x": center[0] + sqrt(r_2) * r2 * cos(pi / 2 + angle * phi), "y": center[1] - r2 + b + sqrt(r_2) * r2 * sin(pi / 2 + angle * phi), "z": center[2] + 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": 1, }, parameterization=curve_parameterization, area=phi * r2**2 - 0.5 * (r2 - b) * (a - r1) * 2, criteria=center[1] - r2 + b + sqrt(r_2) * r2 * sin(pi / 2 + angle * phi) > center[1], ) # criteria=(((x-(center[0]+r2-b))**2+y**2)<r2**2)) curve_7 = SympyCurve( functions={ "x": center[0] - a + r1 + sqrt(r_1) * r1 * cos(pi + angle * theta), "y": center[1] + sqrt(r_1) * r1 * sin(pi + angle * theta), "z": center[2] + 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": 1, }, parameterization=curve_parameterization, area=theta * r1**2, ) curve_8 = SympyCurve( functions={ "x": center[0] + sqrt(r_2) * r2 * cos(3 * pi / 2 + angle * phi), "y": center[1] + r2 - b + sqrt(r_2) * r2 * sin(3 * pi / 2 + angle * phi), "z": center[2] + 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": 1, }, parameterization=curve_parameterization, area=phi * r2**2 - 0.5 * (r2 - b) * (a - r1) * 2, criteria=center[1] + r2 - b + sqrt(r_2) * r2 * sin(3 * pi / 2 + angle * phi) < center[1], ) # criteria=(((x-(center[0]-r2+b))**2+y**2)<r2**2)) # Flat surfaces bottom curve_9 = SympyCurve( functions={ "x": center[0] + a - r1 + sqrt(r_1) * r1 * cos(angle * theta), "y": center[1] + sqrt(r_1) * r1 * sin(angle * theta), "z": center[2] - 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=theta * r1**2, ) curve_10 = SympyCurve( functions={ "x": center[0] + sqrt(r_2) * r2 * cos(pi / 2 + angle * phi), "y": center[1] - r2 + b + sqrt(r_2) * r2 * sin(pi / 2 + angle * phi), "z": center[2] - 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=phi * r2**2 - 0.5 * (r2 - b) * (a - r1) * 2, criteria=center[1] - r2 + b + sqrt(r_2) * r2 * sin(pi / 2 + angle * phi) > center[1], ) # criteria=(((x-(center[0]+r2-b))**2+y**2)<r2**2)) curve_11 = SympyCurve( functions={ "x": center[0] - a + r1 + sqrt(r_1) * r1 * cos(pi + angle * theta), "y": center[1] + sqrt(r_1) * r1 * sin(pi + angle * theta), "z": center[2] - 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=theta * r1**2, ) curve_12 = SympyCurve( functions={ "x": center[0] + sqrt(r_2) * r2 * cos(3 * pi / 2 + angle * phi), "y": center[1] + r2 - b + sqrt(r_2) * r2 * sin(3 * pi / 2 + angle * phi), "z": center[2] - 0.5 * height, "normal_x": 0, "normal_y": 0, "normal_z": -1, }, parameterization=curve_parameterization, area=phi * r2**2 - 0.5 * (r2 - b) * (a - r1) * 2, criteria=center[1] + r2 - b + sqrt(r_2) * r2 * sin(3 * pi / 2 + angle * phi) < center[1], ) # criteria=(((x-(center[0]-r2+b))**2+y**2)<r2**2)) curves = [ curve_1, curve_2, curve_3, curve_4, curve_5, curve_6, curve_7, curve_8, curve_9, curve_10, curve_11, curve_12, ] # calculate SDF c1 = (center[0] + (a - r1), center[1], center[2]) c2 = (center[0], center[1] - (r2 - b), center[2]) c3 = (center[0] - (a - r1), center[1], center[2]) c4 = (center[0], center[1] + (r2 - b), center[2]) l1_m = (c1[1] - c2[1]) / (c1[0] - c2[0]) l1_c = c1[1] - l1_m * c1[0] l2_m = (c1[1] - c4[1]) / (c1[0] - c4[0]) l2_c = c1[1] - l2_m * c1[0] l3_m = (c3[1] - c4[1]) / (c3[0] - c4[0]) l3_c = c3[1] - l3_m * c3[0] l4_m = (c3[1] - c2[1]) / (c3[0] - c2[0]) l4_c = c3[1] - l4_m * c3[0] # (sign((x-min)*(max-x))+1)/2 # gives 0 if outside range, 0.5 if on min/max, 1 if inside range # if negative is desired (1-sign(x))/2 # if positive is desired (sign(x)+1)/2 outside_distance_1 = ( Max((sqrt(((x) - c1[0]) ** 2 + ((y) - c1[1]) ** 2) - r1), 0) * ((1 - sign((y) - l1_m * (x) - l1_c)) / 2) * ((sign((y) - l2_m * (x) - l2_c) + 1) / 2) ) outside_distance_2 = ( Max((sqrt(((x) - c2[0]) ** 2 + ((y) - c2[1]) ** 2) - r2), 0) * ((sign((y) - l1_m * (x) - l1_c) + 1) / 2) * ((sign((y) - l4_m * (x) - l4_c) + 1) / 2) ) outside_distance_3 = ( Max((sqrt(((x) - c3[0]) ** 2 + ((y) - c3[1]) ** 2) - r1), 0) * ((sign((y) - l3_m * (x) - l3_c) + 1) / 2) * ((1 - sign((y) - l4_m * (x) - l4_c)) / 2) ) outside_distance_4 = ( Max((sqrt(((x) - c4[0]) ** 2 + ((y) - c4[1]) ** 2) - r2), 0) * ((1 - sign((y) - l2_m * (x) - l2_c)) / 2) * ((1 - sign((y) - l3_m * (x) - l3_c)) / 2) ) curved_outside_distance = ( outside_distance_1 + outside_distance_2 + outside_distance_3 + outside_distance_4 ) flat_outside_distance = Max(Abs(z - center[2]) - 0.5 * height, 0) outside_distance = sqrt( curved_outside_distance**2 + flat_outside_distance**2 ) # (sign((x-min)*(max-x))+1)/2 # gives 0 if outside range, 0.5 if on min/max, 1 if inside range inside_distance_1 = ( Max((r1 - sqrt(((x) - c1[0]) ** 2 + ((y) - c1[1]) ** 2)), 0) * ((1 - sign((y) - l1_m * (x) - l1_c)) / 2) * ((sign((y) - l2_m * (x) - l2_c) + 1) / 2) ) inside_distance_2 = ( Max((r2 - sqrt(((x) - c2[0]) ** 2 + ((y) - c2[1]) ** 2)), 0) * ((sign((y) - l1_m * (x) - l1_c) + 1) / 2) * ((sign((y) - l4_m * (x) - l4_c) + 1) / 2) * ((sign(y - center[1]) + 1) / 2) ) inside_distance_3 = ( Max((r1 - sqrt(((x) - c3[0]) ** 2 + ((y) - c3[1]) ** 2)), 0) * ((sign((y) - l3_m * (x) - l3_c) + 1) / 2) * ((1 - sign((y) - l4_m * (x) - l4_c)) / 2) ) inside_distance_4 = ( Max((r2 - sqrt(((x) - c4[0]) ** 2 + ((y) - c4[1]) ** 2)), 0) * ((1 - sign((y) - l2_m * (x) - l2_c)) / 2) * ((1 - sign((y) - l3_m * (x) - l3_c)) / 2) * ((sign(center[1] - y) + 1) / 2) ) curved_inside_distance = ( inside_distance_1 + inside_distance_2 + inside_distance_3 + inside_distance_4 ) flat_inside_distance = Max(0.5 * height - Abs(z - center[2]), 0) inside_distance = Min(curved_inside_distance, flat_inside_distance) sdf = -outside_distance + inside_distance # calculate bounds bounds = Bounds( { Parameter("x"): (center[0] - a, center[0] + a), Parameter("y"): (center[0] - b, center[0] + b), Parameter("y"): (center[0] - height / 2, center[0] + height / 2), }, parameterization=parameterization, ) # initialize Cylinder super().__init__( curves, _sympy_sdf_to_sdf(sdf), dims=3, bounds=bounds, parameterization=parameterization, )
modulus-sym-main
modulus/sym/geometry/primitives_3d.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Defines base class for all mesh type geometries """ import numpy as np import csv from stl import mesh as np_mesh from sympy import Symbol try: import pysdf.sdf as pysdf except: print( "Error importing pysdf. Make sure 'libsdf.so' is in LD_LIBRARY_PATH and pysdf is installed" ) raise from .geometry import Geometry from .parameterization import Parameterization, Bounds, Parameter from .curve import Curve from modulus.sym.constants import diff_str class Tessellation(Geometry): """ Constructive Tessellation Module that allows sampling on surface and interior of a tessellated geometry. Parameters ---------- mesh : Mesh (numpy-stl) A mesh that defines the surface of the geometry. airtight : bool If the geometry is airtight or not. If false sample everywhere for interior. parameterization : Parameterization Parameterization of geometry. """ def __init__(self, mesh, airtight=True, parameterization=Parameterization()): # make curves def _sample(mesh): def sample( nr_points, parameterization=Parameterization(), quasirandom=False ): # compute required points on per triangle triangle_areas = _area_of_triangles(mesh.v0, mesh.v1, mesh.v2) triangle_probabilities = triangle_areas / np.linalg.norm( triangle_areas, ord=1 ) triangle_index = np.arange(triangle_probabilities.shape[0]) points_per_triangle = np.random.choice( triangle_index, nr_points, p=triangle_probabilities ) points_per_triangle, _ = np.histogram( points_per_triangle, np.arange(triangle_probabilities.shape[0] + 1) - 0.5, ) # go through every triangle and sample it invar = { "x": [], "y": [], "z": [], "normal_x": [], "normal_y": [], "normal_z": [], "area": [], } for index, nr_p in enumerate( points_per_triangle ): # TODO can be more efficent x, y, z = _sample_triangle( mesh.v0[index], mesh.v1[index], mesh.v2[index], nr_p ) invar["x"].append(x) invar["y"].append(y) invar["z"].append(z) normal_scale = np.linalg.norm(mesh.normals[index]) invar["normal_x"].append( np.full(x.shape, mesh.normals[index, 0]) / normal_scale ) invar["normal_y"].append( np.full(x.shape, mesh.normals[index, 1]) / normal_scale ) invar["normal_z"].append( np.full(x.shape, mesh.normals[index, 2]) / normal_scale ) invar["area"].append( np.full(x.shape, triangle_areas[index] / x.shape[0]) ) invar["x"] = np.concatenate(invar["x"], axis=0) invar["y"] = np.concatenate(invar["y"], axis=0) invar["z"] = np.concatenate(invar["z"], axis=0) invar["normal_x"] = np.concatenate(invar["normal_x"], axis=0) invar["normal_y"] = np.concatenate(invar["normal_y"], axis=0) invar["normal_z"] = np.concatenate(invar["normal_z"], axis=0) invar["area"] = np.concatenate(invar["area"], axis=0) # sample from the param ranges params = parameterization.sample(nr_points, quasirandom=quasirandom) return invar, params return sample curves = [Curve(_sample(mesh), dims=3, parameterization=parameterization)] # make sdf function def _sdf(triangles, airtight): def sdf(invar, params, compute_sdf_derivatives=False): # gather points points = np.stack([invar["x"], invar["y"], invar["z"]], axis=1) # normalize triangles and points minx, maxx, miny, maxy, minz, maxz = _find_mins_maxs(points) max_dis = max(max((maxx - minx), (maxy - miny)), (maxz - minz)) store_triangles = np.array(triangles, dtype=np.float64) store_triangles[:, :, 0] -= minx store_triangles[:, :, 1] -= miny store_triangles[:, :, 2] -= minz store_triangles *= 1 / max_dis store_triangles = store_triangles.flatten() points[:, 0] -= minx points[:, 1] -= miny points[:, 2] -= minz points *= 1 / max_dis points = points.astype(np.float64).flatten() # compute sdf values outputs = {} if airtight: sdf_field, sdf_derivative = pysdf.signed_distance_field( store_triangles, points, include_hit_points=True ) sdf_field = -np.expand_dims(max_dis * sdf_field, axis=1) else: sdf_field = np.zeros_like(invar["x"]) outputs["sdf"] = sdf_field # get sdf derivatives if compute_sdf_derivatives: sdf_derivative = -(sdf_derivative - points) sdf_derivative = np.reshape( sdf_derivative, (sdf_derivative.shape[0] // 3, 3) ) sdf_derivative = sdf_derivative / np.linalg.norm( sdf_derivative, axis=1, keepdims=True ) outputs["sdf" + diff_str + "x"] = sdf_derivative[:, 0:1] outputs["sdf" + diff_str + "y"] = sdf_derivative[:, 1:2] outputs["sdf" + diff_str + "z"] = sdf_derivative[:, 2:3] return outputs return sdf # compute bounds bounds = Bounds( { Parameter("x"): ( float(np.min(mesh.vectors[:, :, 0])), float(np.max(mesh.vectors[:, :, 0])), ), Parameter("y"): ( float(np.min(mesh.vectors[:, :, 1])), float(np.max(mesh.vectors[:, :, 1])), ), Parameter("z"): ( float(np.min(mesh.vectors[:, :, 2])), float(np.max(mesh.vectors[:, :, 2])), ), }, parameterization=parameterization, ) # initialize geometry super(Tessellation, self).__init__( curves, _sdf(mesh.vectors, airtight), dims=3, bounds=bounds, parameterization=parameterization, ) @classmethod def from_stl( cls, filename, airtight=True, parameterization=Parameterization(), ): """ makes mesh from STL file Parameters ---------- filename : str filename of mesh. airtight : bool If the geometry is airtight or not. If false sample everywhere for interior. parameterization : Parameterization Parameterization of geometry. """ # read in mesh mesh = np_mesh.Mesh.from_file(filename) return cls(mesh, airtight, parameterization) # helper for sampling triangle def _sample_triangle( v0, v1, v2, nr_points ): # ref https://math.stackexchange.com/questions/18686/uniform-random-point-in-triangle r1 = np.random.uniform(0, 1, size=(nr_points, 1)) r2 = np.random.uniform(0, 1, size=(nr_points, 1)) s1 = np.sqrt(r1) x = v0[0] * (1.0 - s1) + v1[0] * (1.0 - r2) * s1 + v2[0] * r2 * s1 y = v0[1] * (1.0 - s1) + v1[1] * (1.0 - r2) * s1 + v2[1] * r2 * s1 z = v0[2] * (1.0 - s1) + v1[2] * (1.0 - r2) * s1 + v2[2] * r2 * s1 return x, y, z # area of array of triangles def _area_of_triangles( v0, v1, v2 ): # ref https://math.stackexchange.com/questions/128991/how-to-calculate-the-area-of-a-3d-triangle a = np.sqrt( (v0[:, 0] - v1[:, 0]) ** 2 + (v0[:, 1] - v1[:, 1]) ** 2 + (v0[:, 2] - v1[:, 2]) ** 2 + 1e-10 ) b = np.sqrt( (v1[:, 0] - v2[:, 0]) ** 2 + (v1[:, 1] - v2[:, 1]) ** 2 + (v1[:, 2] - v2[:, 2]) ** 2 + 1e-10 ) c = np.sqrt( (v0[:, 0] - v2[:, 0]) ** 2 + (v0[:, 1] - v2[:, 1]) ** 2 + (v0[:, 2] - v2[:, 2]) ** 2 + 1e-10 ) s = (a + b + c) / 2 area = np.sqrt(s * (s - a) * (s - b) * (s - c) + 1e-10) return area # helper for min max def _find_mins_maxs(points): minx = float(np.min(points[:, 0])) miny = float(np.min(points[:, 1])) minz = float(np.min(points[:, 2])) maxx = float(np.max(points[:, 0])) maxy = float(np.max(points[:, 1])) maxz = float(np.max(points[:, 2])) return minx, maxx, miny, maxy, minz, maxz
modulus-sym-main
modulus/sym/geometry/tessellation.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Defines different Curve objects """ import types import numpy as np import sympy import symengine from chaospy.distributions.sampler.sequences.primes import create_primes from chaospy.distributions.sampler.sequences.van_der_corput import ( create_van_der_corput_samples as create_samples, ) from modulus.sym.utils.sympy import np_lambdify from .parameterization import Parameterization, Parameter from .helper import _sympy_func_to_func class Curve: """A Curve object that keeps track of the surface/perimeter of a geometry. The curve object also contains normals and area/length of curve. """ def __init__(self, sample, dims, parameterization=Parameterization()): # store attributes self._sample = sample self._dims = dims self.parameterization = parameterization def sample( self, nr_points, criteria=None, parameterization=None, quasirandom=False ): # use internal parameterization if not given if parameterization is None: parameterization = self.parameterization # continually sample points throwing out points that don't satisfy criteria invar = { key: np.empty((0, 1)) for key in self.dims + ["normal_" + x for x in self.dims] + ["area"] } params = {key: np.empty((0, 1)) for key in parameterization.parameters} total_sampled = 0 total_tried = 0 nr_try = 0 while True: # sample curve local_invar, local_params = self._sample( nr_points, parameterization, quasirandom ) # compute given criteria and remove points if criteria is not None: computed_criteria = criteria(local_invar, local_params) local_invar = { key: value[computed_criteria[:, 0], :] for key, value in local_invar.items() } local_params = { key: value[computed_criteria[:, 0], :] for key, value in local_params.items() } # store invar for key in local_invar.keys(): invar[key] = np.concatenate([invar[key], local_invar[key]], axis=0) # store params for key in local_params.keys(): params[key] = np.concatenate([params[key], local_params[key]], axis=0) # keep track of sampling total_sampled = next(iter(invar.values())).shape[0] total_tried += nr_points nr_try += 1 # break when finished sampling if total_sampled >= nr_points: for key, value in invar.items(): invar[key] = value[:nr_points] for key, value in params.items(): params[key] = value[:nr_points] break # check if couldn't sample if nr_try > 1000 and total_sampled < 1: raise Exception("Unable to sample curve") return invar, params @property def dims(self): """ Returns ------- dims : list of strings output can be ['x'], ['x','y'], or ['x','y','z'] """ return ["x", "y", "z"][: self._dims] def approx_area( self, parameterization=Parameterization(), criteria=None, approx_nr=10000, quasirandom=False, ): """ Parameters ---------- parameterization: dict with of Parameters and their ranges If the curve is parameterized then you can provide ranges for the parameters with this. criteria : None, SymPy boolean exprs Calculate area discarding regions that don't satisfy this criteria. approx_nr : int Area might be difficult to compute if parameterized. In this case the area is approximated by sampling `area`, `approx_nr` number of times. This amounts to monte carlo integration. Returns ------- area : float area of curve """ s, p = self._sample( nr_points=approx_nr, parameterization=parameterization, quasirandom=quasirandom, ) computed_criteria = criteria(s, p) total_area = np.sum(s["area"][computed_criteria[:, 0], :]) return total_area def scale(self, x, parameterization=Parameterization()): """ scale curve Parameters ---------- x : float, SymPy Symbol/Exprs scale factor. """ def _sample(internal_sample, dims, x): if isinstance(x, (float, int)): pass elif isinstance(x, sympy.Basic): x = _sympy_func_to_func(x) else: raise TypeError("Scaling by type " + str(type(x)) + "is not supported") def sample( nr_points, parameterization=Parameterization(), quasirandom=False ): # sample points invar, params = internal_sample( nr_points, parameterization, quasirandom ) # compute scale if needed if isinstance(x, (float, int)): computed_scale = x else: computed_scale = s(params) # scale invar for d in dims: invar[d] *= x invar["area"] *= x ** (len(dims) - 1) return invar, params return sample return Curve( _sample(self._sample, self.dims, x), len(self.dims), self.parameterization.union(parameterization), ) def translate(self, xyz, parameterization=Parameterization()): """ translate curve Parameters ---------- xyz : tuple of floats, ints, SymPy Symbol/Exprs translate curve by these values. """ def _sample(internal_sample, dims, xyz): compiled_xyz = [] for i, x in enumerate(xyz): if isinstance(x, (float, int)): compiled_xyz.append(x) elif isinstance(x, sympy.Basic): compiled_xyz.append(_sympy_func_to_func(x)) else: raise TypeError( "Translate by type " + str(type(x)) + "is not supported" ) def sample( nr_points, parameterization=Parameterization(), quasirandom=False ): # sample points invar, params = internal_sample( nr_points, parameterization, quasirandom ) # compute translation if needed computed_translation = [] for x in compiled_xyz: if isinstance(x, (float, int)): computed_translation.append(x) else: computed_translation.append(x(params)) # translate invar for d, x in zip(dims, computed_translation): invar[d] += x return invar, params return sample return Curve( _sample(self._sample, self.dims, xyz), len(self.dims), self.parameterization.union(parameterization), ) def rotate(self, angle, axis, parameterization=Parameterization()): """ rotate curve Parameters ---------- x : float, SymPy Symbol/Exprs scale factor. """ def _sample(internal_sample, dims, angle, axis): if isinstance(angle, (float, int)): pass elif isinstance(angle, sympy.Basic): angle = _sympy_func_to_func(angle) else: raise TypeError( "Scaling by type " + str(type(angle)) + "is not supported" ) def sample( nr_points, parameterization=Parameterization(), quasirandom=False ): # sample points invar, params = internal_sample( nr_points, parameterization, quasirandom ) # compute translation if needed if isinstance(angle, (float, int)): computed_angle = angle else: computed_angle = angle(params) # angle invar rotated_invar = {**invar} rotated_dims = [key for key in self.dims if key != axis] rotated_invar[rotated_dims[0]] = ( np.cos(computed_angle) * invar[rotated_dims[0]] - np.sin(computed_angle) * invar[rotated_dims[1]] ) rotated_invar["normal_" + rotated_dims[0]] = ( np.cos(computed_angle) * invar["normal_" + rotated_dims[0]] - np.sin(computed_angle) * invar["normal_" + rotated_dims[1]] ) rotated_invar[rotated_dims[1]] = ( np.sin(computed_angle) * invar[rotated_dims[0]] + np.cos(computed_angle) * invar[rotated_dims[1]] ) rotated_invar["normal_" + rotated_dims[1]] = ( np.sin(computed_angle) * invar["normal_" + rotated_dims[0]] + np.cos(computed_angle) * invar["normal_" + rotated_dims[1]] ) return rotated_invar, params return sample return Curve( _sample(self._sample, self.dims, angle, axis), len(self.dims), self.parameterization.union(parameterization), ) def invert_normal(self): def _sample(internal_sample, dims): def sample( nr_points, parameterization=Parameterization(), quasirandom=False ): s, p = internal_sample(nr_points, parameterization, quasirandom) for d in dims: s["normal_" + d] = -s["normal_" + d] return s, p return sample return Curve( _sample(self._sample, self.dims), len(self.dims), self.parameterization ) class SympyCurve(Curve): """Curve defined by sympy functions Parameters ---------- functions : dictionary of SymPy Exprs Parameterized curve in 1, 2 or 3 dimensions. For example, a circle might have:: functions = {'x': cos(theta), \t'y': sin(theta), \t'normal_x': cos(theta), \t'normal_y': sin(theta)} TODO: refactor to remove normals. ranges : dictionary of Sympy Symbols and ranges This gives the ranges for the parameters in the parameterized curve. For example, a circle might have `ranges = {theta: (0, 2*pi)}`. area : float, int, SymPy Exprs The surface area/perimeter of the curve. criteria : SymPy Boolean Function If this boolean expression is false then we do not sample their on curve. This can be used to enforce uniform sample probability. """ def __init__(self, functions, parameterization, area, criteria=None): # lambdify functions lambdify_functions = {} for key, func in functions.items(): try: func = float(func) except: pass if isinstance(func, float): lambdify_functions[key] = float(func) elif isinstance(func, (sympy.Basic, symengine.Basic, Parameter)): lambdify_functions[key] = _sympy_func_to_func(func) else: raise TypeError("function type not supported: " + str(type(func))) # lambdify area function try: area = float(area) except: pass if isinstance(area, float): area_fn = float(area) elif isinstance(area, (sympy.Basic, symengine.Basic, Parameter)): area_fn = _sympy_func_to_func(area) else: raise TypeError("area type not supported: " + str(type(area))) lambdify_functions["area"] = area_fn # lambdify criteria function if criteria is not None: criteria = _sympy_func_to_func(criteria) # create closure for sample function def _sample(lambdify_functions, criteria, internal_parameterization): def sample( nr_points, parameterization=Parameterization(), quasirandom=False ): # use internal parameterization if not given i_parameterization = internal_parameterization.copy() for key, value in parameterization.param_ranges.items(): i_parameterization.param_ranges[key] = value # continually sample points throwing out points that don't satisfy criteria invar = { str(key): np.empty((0, 1)) for key in lambdify_functions.keys() } params = { str(key): np.empty((0, 1)) for key in parameterization.param_ranges.keys() } total_sampled = 0 total_tried = 0 nr_try = 0 while True: # sample parameter ranges local_params = i_parameterization.sample(nr_points, quasirandom) # compute curve points from functions local_invar = {} for key, func in lambdify_functions.items(): if isinstance(func, (float, int)): local_invar[key] = np.full_like( next(iter(local_params.values())), func ) else: local_invar[key] = func(local_params) local_invar["area"] /= next(iter(local_params.values())).shape[0] # remove points that don't satisfy curve criteria if needed if criteria is not None: # compute curve criteria computed_criteria = criteria(local_params).astype(bool) # remove elements points based on curve criteria local_invar = { key: value[computed_criteria[:, 0], :] for key, value in local_invar.items() } local_params = { key: value[computed_criteria[:, 0], :] for key, value in local_params.items() } # only store external parameters for key in list(local_params.keys()): if key not in parameterization.parameters: local_params.pop(key) # store invar for key in local_invar.keys(): invar[key] = np.concatenate( [invar[key], local_invar[key]], axis=0 ) # store params for key in local_params.keys(): params[key] = np.concatenate( [params[key], local_params[key]], axis=0 ) # keep track of sampling total_sampled = next(iter(invar.values())).shape[0] total_tried += next(iter(local_invar.values())).shape[0] nr_try += 1 # break when finished sampling if total_sampled >= nr_points: for key, value in invar.items(): invar[key] = value[:nr_points] for key, value in params.items(): params[key] = value[:nr_points] break # check if couldn't sample if nr_try > 10000 and total_sampled < 1: raise Exception("Unable to sample curve") return invar, params return sample # initialize curve Curve.__init__( self, _sample(lambdify_functions, criteria, parameterization), len(functions) // 2, parameterization=parameterization, )
modulus-sym-main
modulus/sym/geometry/curve.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Defines base class for all geometries """ import copy import numpy as np import itertools import sympy from typing import Callable, Union, List from modulus.sym.utils.sympy import np_lambdify from modulus.sym.constants import diff_str from .parameterization import Parameterization, Bounds from .helper import ( _concat_numpy_dict_list, _sympy_sdf_to_sdf, _sympy_criteria_to_criteria, _sympy_func_to_func, ) def csg_curve_naming(index): return "PRIMITIVE_PARAM_" + str(index).zfill(5) class Geometry: """ Base class for all geometries """ def __init__( self, curves, sdf, dims, bounds, parameterization=Parameterization(), interior_epsilon=1e-6, ): # store attributes self.curves = curves self.sdf = sdf self._dims = dims self.bounds = bounds self.parameterization = parameterization self.interior_epsilon = interior_epsilon # to check if in domain or outside @property def dims(self): """ Returns ------- dims : List[srt] output can be ['x'], ['x','y'], or ['x','y','z'] """ return ["x", "y", "z"][: self._dims] def scale( self, x: Union[float, sympy.Basic], parameterization: Parameterization = Parameterization(), ): """ Scales geometry. Parameters ---------- x : Union[float, sympy.Basic] Scale factor. Can be a sympy expression if parameterizing. parameterization : Parameterization Parameterization if scale factor is parameterized. """ # create scaled sdf function def _scale_sdf(sdf, dims, x): if isinstance(x, (float, int)): pass elif isinstance(x, sympy.Basic): x = _sympy_func_to_func(x) else: raise TypeError("Scaling by type " + str(type(x)) + "is not supported") def scale_sdf(invar, params, compute_sdf_derivatives=False): # compute scale if needed if isinstance(x, (float, int)): computed_scale = x else: computed_scale = x(params) # scale input to sdf function scaled_invar = {**invar} for key in dims: scaled_invar[key] = scaled_invar[key] / computed_scale # compute sdf computed_sdf = sdf(scaled_invar, params, compute_sdf_derivatives) # scale output sdf values if isinstance(x, (float, int)): computed_sdf["sdf"] *= x else: computed_sdf["sdf"] *= x(params) return computed_sdf return scale_sdf new_sdf = _scale_sdf(self.sdf, self.dims, x) # add parameterization new_parameterization = self.parameterization.union(parameterization) # scale bounds new_bounds = self.bounds.scale(x, parameterization) # scale curves new_curves = [c.scale(x, parameterization) for c in self.curves] # return scaled geometry return Geometry( new_curves, new_sdf, len(self.dims), new_bounds, new_parameterization, interior_epsilon=self.interior_epsilon, ) def translate( self, xyz: List[Union[float, sympy.Basic]], parameterization: Parameterization = Parameterization(), ): """ Translates geometry. Parameters ---------- xyz : List[Union[float, sympy.Basic]] Translation. Can be a sympy expression if parameterizing. parameterization : Parameterization Parameterization if translation is parameterized. """ # create translated sdf function def _translate_sdf(sdf, dims, xyx): compiled_xyz = [] for i, x in enumerate(xyz): if isinstance(x, (float, int)): compiled_xyz.append(x) elif isinstance(x, sympy.Basic): compiled_xyz.append(_sympy_func_to_func(x)) else: raise TypeError( "Translate by type " + str(type(x)) + "is not supported" ) def translate_sdf(invar, params, compute_sdf_derivatives=False): # compute translation if needed computed_translation = [] for x in compiled_xyz: if isinstance(x, (float, int)): computed_translation.append(x) else: computed_translation.append(x(params)) # translate input to sdf function translated_invar = {**invar} for i, key in enumerate(dims): translated_invar[key] = ( translated_invar[key] - computed_translation[i] ) # compute sdf computed_sdf = sdf(translated_invar, params, compute_sdf_derivatives) return computed_sdf return translate_sdf new_sdf = _translate_sdf(self.sdf, self.dims, xyz) # add parameterization new_parameterization = self.parameterization.union(parameterization) # translate bounds new_bounds = self.bounds.translate(xyz, parameterization) # translate curves new_curves = [c.translate(xyz, parameterization) for c in self.curves] # return translated geometry return Geometry( new_curves, new_sdf, len(self.dims), new_bounds, new_parameterization, interior_epsilon=self.interior_epsilon, ) def rotate( self, angle: Union[float, sympy.Basic], axis: str = "z", center: Union[None, List[float]] = None, parameterization=Parameterization(), ): """ Rotates geometry. Parameters ---------- angle : Union[float, sympy.Basic] Angle of rotate in radians. Can be a sympy expression if parameterizing. axis : str Axis of rotation. Default is `"z"`. center : Union[None, List[Union[float, sympy.Basic]]] = None If given then center the rotation around this point. parameterization : Parameterization Parameterization if translation is parameterized. """ # create rotated sdf function def _rotate_sdf(sdf, dims, angle, axis, center): if isinstance(angle, (float, int)): pass elif isinstance(angle, sympy.Basic): angle = _sympy_func_to_func(angle) else: raise TypeError( "Scaling by type " + str(type(angle)) + "is not supported" ) def rotate_sdf(invar, params, compute_sdf_derivatives=False): # compute translation if needed if isinstance(angle, (float, int)): computed_angle = angle else: computed_angle = angle(params) # rotate input to sdf function rotated_invar = {**invar} if center is not None: for i, key in enumerate(dims): rotated_invar[key] = rotated_invar[key] - center[i] _rotated_invar = {**rotated_invar} rotated_dims = [key for key in dims if key != axis] _rotated_invar[rotated_dims[0]] = ( np.cos(computed_angle) * rotated_invar[rotated_dims[0]] + np.sin(computed_angle) * rotated_invar[rotated_dims[1]] ) _rotated_invar[rotated_dims[1]] = ( -np.sin(computed_angle) * rotated_invar[rotated_dims[0]] + np.cos(computed_angle) * rotated_invar[rotated_dims[1]] ) if center is not None: for i, key in enumerate(dims): _rotated_invar[key] = _rotated_invar[key] + center[i] # compute sdf computed_sdf = sdf(_rotated_invar, params, compute_sdf_derivatives) return computed_sdf return rotate_sdf new_sdf = _rotate_sdf(self.sdf, self.dims, angle, axis, center) # add parameterization new_parameterization = self.parameterization.union(parameterization) # rotate bounds if center is not None: new_bounds = self.bounds.translate([-x for x in center]) new_bounds = new_bounds.rotate(angle, axis, parameterization) new_bounds = new_bounds.translate(center) else: new_bounds = self.bounds.rotate(angle, axis, parameterization) # rotate curves new_curves = [] for c in self.curves: if center is not None: new_c = c.translate([-x for x in center]) new_c = new_c.rotate(angle, axis, parameterization) new_c = new_c.translate(center) else: new_c = c.rotate(angle, axis, parameterization) new_curves.append(new_c) # return rotated geometry return Geometry( new_curves, new_sdf, len(self.dims), new_bounds, new_parameterization, interior_epsilon=self.interior_epsilon, ) def repeat( self, spacing: float, repeat_lower: List[int], repeat_higher: List[int], center: Union[None, List[float]] = None, ): """ Finite Repetition of geometry. Parameters ---------- spacing : float Spacing between each repetition. repeat_lower : List[int] How many repetitions going in negative direction. repeat_upper : List[int] How many repetitions going in positive direction. center : Union[None, List[Union[float, sympy.Basic]]] = None If given then center the rotation around this point. """ # create repeated sdf function def _repeat_sdf( sdf, dims, spacing, repeat_lower, repeat_higher, center ): # TODO make spacing, repeat_lower, and repeat_higher parameterizable def repeat_sdf(invar, params, compute_sdf_derivatives=False): # clamp position values clamped_invar = {**invar} if center is not None: for i, key in enumerate(dims): clamped_invar[key] = clamped_invar[key] - center[i] for d, rl, rh in zip(dims, repeat_lower, repeat_higher): clamped_invar[d] = clamped_invar[d] - spacing * np.minimum( np.maximum(np.around(clamped_invar[d] / spacing), rl), rh ) if center is not None: for i, key in enumerate(dims): clamped_invar[key] = clamped_invar[key] + center[i] # compute sdf computed_sdf = sdf(clamped_invar, params, compute_sdf_derivatives) return computed_sdf return repeat_sdf new_sdf = _repeat_sdf( self.sdf, self.dims, spacing, repeat_lower, repeat_higher, center ) # repeat bounds and curves new_bounds = self.bounds.copy() new_curves = [] for t in itertools.product( *[list(range(rl, rh + 1)) for rl, rh in zip(repeat_lower, repeat_higher)] ): new_bounds = new_bounds.union( self.bounds.translate([spacing * a for a in t]) ) new_curves += [c.translate([spacing * a for a in t]) for c in self.curves] # return repeated geometry return Geometry( new_curves, new_sdf, len(self.dims), new_bounds, self.parameterization.copy(), interior_epsilon=self.interior_epsilon, ) def copy(self): return copy.deepcopy(self) def boundary_criteria(self, invar, criteria=None, params={}): # check if moving in or out of normal direction changes SDF invar_normal_plus = {**invar} invar_normal_minus = {**invar} for key in self.dims: invar_normal_plus[key] = ( invar_normal_plus[key] + self.interior_epsilon * invar_normal_plus["normal_" + key] ) invar_normal_minus[key] = ( invar_normal_minus[key] - self.interior_epsilon * invar_normal_minus["normal_" + key] ) sdf_normal_plus = self.sdf( invar_normal_plus, params, compute_sdf_derivatives=False )["sdf"] sdf_normal_minus = self.sdf( invar_normal_minus, params, compute_sdf_derivatives=False )["sdf"] on_boundary = np.greater_equal(0, sdf_normal_plus * sdf_normal_minus) # check if points satisfy the criteria function if criteria is not None: # convert sympy criteria if needed satify_criteria = criteria(invar, params) # update on_boundary on_boundary = np.logical_and(on_boundary, satify_criteria) return on_boundary def sample_boundary( self, nr_points: int, criteria: Union[sympy.Basic, None] = None, parameterization: Union[Parameterization, None] = None, quasirandom: bool = False, ): """ Samples the surface or perimeter of the geometry. Parameters ---------- nr_points : int number of points to sample on boundary. criteria : Union[sympy.Basic, None] Only sample points that satisfy this criteria. parameterization : Union[Parameterization, None], optional If the geometry is parameterized then you can provide ranges for the parameters with this. By default the sampling will be done with the internal parameterization. quasirandom : bool If true then sample the points using the Halton sequences. Default is False. Returns ------- points : Dict[str, np.ndarray] Dictionary contain a point cloud sampled uniformly. For example in 2D it would be ``` points = {'x': np.ndarray (N, 1), 'y': np.ndarray (N, 1), 'normal_x': np.ndarray (N, 1), 'normal_y': np.ndarray (N, 1), 'area': np.ndarray (N, 1)} ``` The `area` value can be used for Monte Carlo integration like the following, `total_area = np.sum(points['area'])` """ # compile criteria from sympy if needed if criteria is not None: if isinstance(criteria, sympy.Basic): criteria = _sympy_criteria_to_criteria(criteria) elif isinstance(criteria, Callable): pass else: raise TypeError( "criteria type is not supported: " + str(type(criteria)) ) # use internal parameterization if not given if parameterization is None: parameterization = self.parameterization elif isinstance(parameterization, dict): parameterization = Parameterization(parameterization) # create boundary criteria closure def _boundary_criteria(criteria): def boundary_criteria(invar, params): return self.boundary_criteria(invar, criteria=criteria, params=params) return boundary_criteria closed_boundary_criteria = _boundary_criteria(criteria) # compute required points on each curve curve_areas = np.array( [ curve.approx_area(parameterization, criteria=closed_boundary_criteria) for curve in self.curves ] ) assert np.sum(curve_areas) > 0, "Geometry has no surface" curve_probabilities = curve_areas / np.linalg.norm(curve_areas, ord=1) curve_index = np.arange(len(self.curves)) points_per_curve = np.random.choice( curve_index, nr_points, p=curve_probabilities ) points_per_curve, _ = np.histogram( points_per_curve, np.arange(len(self.curves) + 1) - 0.5 ) # continually sample each curve until reached desired number of points list_invar = [] list_params = [] for n, a, curve in zip(points_per_curve, curve_areas, self.curves): if n > 0: i, p = curve.sample( n, criteria=closed_boundary_criteria, parameterization=parameterization, ) i["area"] = np.full_like(i["area"], a / n) list_invar.append(i) list_params.append(p) invar = _concat_numpy_dict_list(list_invar) params = _concat_numpy_dict_list(list_params) invar.update(params) return invar def sample_interior( self, nr_points: int, bounds: Union[Bounds, None] = None, criteria: Union[sympy.Basic, None] = None, parameterization: Union[Parameterization, None] = None, compute_sdf_derivatives: bool = False, quasirandom: bool = False, ): """ Samples the interior of the geometry. Parameters ---------- nr_points : int number of points to sample. bounds : Union[Bounds, None] Bounds to sample points from. For example, `bounds = Bounds({Parameter('x'): (0, 1), Parameter('y'): (0, 1)})`. By default the internal bounds will be used. criteria : Union[sympy.Basic, None] Only sample points that satisfy this criteria. parameterization: Union[Parameterization, None] If the geometry is parameterized then you can provide ranges for the parameters with this. compute_sdf_derivatives : bool Compute sdf derivatives if true. quasirandom : bool If true then sample the points using the Halton sequences. Default is False. Returns ------- points : Dict[str, np.ndarray] Dictionary contain a point cloud sampled uniformly. For example in 2D it would be ``` points = {'x': np.ndarray (N, 1), 'y': np.ndarray (N, 1), 'sdf': np.ndarray (N, 1), 'area': np.ndarray (N, 1)} ``` The `area` value can be used for Monte Carlo integration like the following, `total_area = np.sum(points['area'])` """ # compile criteria from sympy if needed if criteria is not None: if isinstance(criteria, sympy.Basic): criteria = _sympy_criteria_to_criteria(criteria) elif isinstance(criteria, Callable): pass else: raise TypeError( "criteria type is not supported: " + str(type(criteria)) ) # use internal bounds if not given if bounds is None: bounds = self.bounds elif isinstance(bounds, dict): bounds = Bounds(bounds) # use internal parameterization if not given if parameterization is None: parameterization = self.parameterization elif isinstance(parameterization, dict): parameterization = Parameterization(parameterization) # continually sample until reached desired number of points invar = {} params = {} total_tried = 0 nr_try = 0 while True: # sample invar and params local_invar = bounds.sample(nr_points, parameterization, quasirandom) local_params = parameterization.sample(nr_points, quasirandom) # evaluate SDF function on points local_invar.update( self.sdf( local_invar, local_params, compute_sdf_derivatives=compute_sdf_derivatives, ) ) # remove points outside of domain criteria_index = np.greater(local_invar["sdf"], 0) if criteria is not None: criteria_index = np.logical_and( criteria_index, criteria(local_invar, local_params) ) for key in local_invar.keys(): local_invar[key] = local_invar[key][criteria_index[:, 0], :] for key in local_params.keys(): local_params[key] = local_params[key][criteria_index[:, 0], :] # add sampled points to list for key in local_invar.keys(): if key not in invar.keys(): # TODO this can be condensed invar[key] = local_invar[key] else: invar[key] = np.concatenate([invar[key], local_invar[key]], axis=0) for key in local_params.keys(): if key not in params.keys(): # TODO this can be condensed params[key] = local_params[key] else: params[key] = np.concatenate( [params[key], local_params[key]], axis=0 ) # check if finished total_sampled = next(iter(invar.values())).shape[0] total_tried += nr_points nr_try += 1 if total_sampled >= nr_points: for key, value in invar.items(): invar[key] = value[:nr_points] for key, value in params.items(): params[key] = value[:nr_points] break # report error if could not sample if nr_try > 100 and total_sampled < 1: raise RuntimeError( "Could not sample interior of geometry. Check to make sure non-zero volume" ) # compute area value for monte carlo integration volume = (total_sampled / total_tried) * bounds.volume(parameterization) invar["area"] = np.full_like(next(iter(invar.values())), volume / nr_points) # add params to invar invar.update(params) return invar @staticmethod def _convert_criteria(criteria): return criteria def __add__(self, other): def _add_sdf(sdf_1, sdf_2, dims): def add_sdf(invar, params, compute_sdf_derivatives=False): computed_sdf_1 = sdf_1(invar, params, compute_sdf_derivatives) computed_sdf_2 = sdf_2(invar, params, compute_sdf_derivatives) computed_sdf = {} computed_sdf["sdf"] = np.maximum( computed_sdf_1["sdf"], computed_sdf_2["sdf"] ) if compute_sdf_derivatives: for d in dims: computed_sdf["sdf" + diff_str + d] = np.where( computed_sdf_1["sdf"] > computed_sdf_2["sdf"], computed_sdf_1["sdf" + diff_str + d], computed_sdf_2["sdf" + diff_str + d], ) return computed_sdf return add_sdf new_sdf = _add_sdf(self.sdf, other.sdf, self.dims) new_parameterization = self.parameterization.union(other.parameterization) new_bounds = self.bounds.union(other.bounds) return Geometry( self.curves + other.curves, new_sdf, len(self.dims), new_bounds, new_parameterization, interior_epsilon=self.interior_epsilon, ) def __sub__(self, other): def _sub_sdf(sdf_1, sdf_2, dims): def sub_sdf(invar, params, compute_sdf_derivatives=False): computed_sdf_1 = sdf_1(invar, params, compute_sdf_derivatives) computed_sdf_2 = sdf_2(invar, params, compute_sdf_derivatives) computed_sdf = {} computed_sdf["sdf"] = np.minimum( computed_sdf_1["sdf"], -computed_sdf_2["sdf"] ) if compute_sdf_derivatives: for d in dims: computed_sdf["sdf" + diff_str + d] = np.where( computed_sdf_1["sdf"] < -computed_sdf_2["sdf"], computed_sdf_1["sdf" + diff_str + d], -computed_sdf_2["sdf" + diff_str + d], ) return computed_sdf return sub_sdf new_sdf = _sub_sdf(self.sdf, other.sdf, self.dims) new_parameterization = self.parameterization.union(other.parameterization) new_bounds = self.bounds.union(other.bounds) new_curves = self.curves + [c.invert_normal() for c in other.curves] return Geometry( new_curves, new_sdf, len(self.dims), new_bounds, new_parameterization, interior_epsilon=self.interior_epsilon, ) def __invert__(self): def _invert_sdf(sdf, dims): def invert_sdf(invar, params, compute_sdf_derivatives=False): computed_sdf = sdf(invar, params, compute_sdf_derivatives) computed_sdf["sdf"] = -computed_sdf["sdf"] if compute_sdf_derivatives: for d in dims: computed_sdf["sdf" + diff_str + d] = -computed_sdf[ "sdf" + diff_str + d ] return computed_sdf return invert_sdf new_sdf = _invert_sdf(self.sdf, self.dims) new_parameterization = self.parameterization.copy() new_bounds = self.bounds.copy() new_curves = [c.invert_normal() for c in self.curves] return Geometry( new_curves, new_sdf, len(self.dims), new_bounds, new_parameterization, interior_epsilon=self.interior_epsilon, ) def __and__(self, other): def _and_sdf(sdf_1, sdf_2, dims): def and_sdf(invar, params, compute_sdf_derivatives=False): computed_sdf_1 = sdf_1(invar, params, compute_sdf_derivatives) computed_sdf_2 = sdf_2(invar, params, compute_sdf_derivatives) computed_sdf = {} computed_sdf["sdf"] = np.minimum( computed_sdf_1["sdf"], computed_sdf_2["sdf"] ) if compute_sdf_derivatives: for d in dims: computed_sdf["sdf" + diff_str + d] = np.where( computed_sdf_1["sdf"] < computed_sdf_2["sdf"], computed_sdf_1["sdf" + diff_str + d], computed_sdf_2["sdf" + diff_str + d], ) return computed_sdf return and_sdf new_sdf = _and_sdf(self.sdf, other.sdf, self.dims) new_parameterization = self.parameterization.union(other.parameterization) new_bounds = self.bounds.union(other.bounds) new_curves = self.curves + other.curves return Geometry( new_curves, new_sdf, len(self.dims), new_bounds, new_parameterization, interior_epsilon=self.interior_epsilon, )
modulus-sym-main
modulus/sym/geometry/geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import sympy import itertools from modulus.sym.utils.sympy import np_lambdify from modulus.sym.constants import diff_str def _concat_numpy_dict_list(numpy_dict_list): concat_variable = {} for key in numpy_dict_list[0].keys(): concat_variable[key] = np.concatenate([x[key] for x in numpy_dict_list], axis=0) return concat_variable def _sympy_sdf_to_sdf(sdf, dx=0.0001): sdf_inputs = list(set([str(x) for x in sdf.free_symbols])) fn_sdf = np_lambdify(sdf, sdf_inputs) def _sdf(fn_sdf, sdf_inputs, dx): def sdf(invar, params, compute_sdf_derivatives=False): # get inputs to sdf sympy expression inputs = {} for key, value in itertools.chain(invar.items(), params.items()): if key in sdf_inputs: inputs[key] = value # compute sdf computed_sdf = fn_sdf(**inputs) outputs = {"sdf": computed_sdf} # compute sdf derivatives if needed if compute_sdf_derivatives: for d in [x for x in invar.keys() if x in ["x", "y", "z"]]: # If primative is function of this direction if d in sdf_inputs: # compute sdf plus dx/2 inputs_plus = {**inputs} inputs_plus[d] = inputs_plus[d] + (dx / 2) computed_sdf_plus = fn_sdf(**inputs_plus) # compute sdf minus dx/2 inputs_minus = {**inputs} inputs_minus[d] = inputs_minus[d] - (dx / 2) computed_sdf_minus = fn_sdf(**inputs_minus) # store sdf derivative outputs["sdf" + diff_str + d] = ( computed_sdf_plus - computed_sdf_minus ) / dx else: # Fill deriv with zeros for compatibility outputs["sdf" + diff_str + d] = np.zeros_like(computed_sdf) return outputs return sdf return _sdf(fn_sdf, sdf_inputs, dx) def _sympy_criteria_to_criteria(criteria): criteria_inputs = list(set([str(x) for x in criteria.free_symbols])) fn_criteria = np_lambdify(criteria, criteria_inputs) def _criteria(fn_criteria, criteria_inputs): def criteria(invar, params): # get inputs to criteria sympy expression inputs = {} for key, value in itertools.chain(invar.items(), params.items()): if key in criteria_inputs: inputs[key] = value # compute criteria return fn_criteria(**inputs) return criteria return _criteria(fn_criteria, criteria_inputs) def _sympy_func_to_func(func): func_inputs = list( set([str(x) for x in func.free_symbols]) ) # TODO set conversion is hacky fix fn_func = np_lambdify(func, func_inputs) def _func(fn_func, func_inputs): def func(params): # get inputs to sympy expression inputs = {} for key, value in params.items(): if key in func_inputs: inputs[key] = value # compute func return fn_func(**inputs) return func return _func(fn_func, func_inputs)
modulus-sym-main
modulus/sym/geometry/helper.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import numpy as np from typing import Dict, List, Union, Tuple, Callable, Optional import sympy from typing import Callable from chaospy.distributions.sampler.sequences.primes import create_primes from chaospy.distributions.sampler.sequences.van_der_corput import ( create_van_der_corput_samples as create_samples, ) from modulus.sym.utils.sympy import np_lambdify class Parameter(sympy.Symbol): """A Symbolic object used to parameterize geometries. Currently this only overloads the Sympy Symbol class however capabilities may be expanded in the future. Parameters ---------- name : str Name given to parameter. """ def __new__(cls, name: str): obj = sympy.Symbol.__new__(cls, name) return obj class Parameterization: """A object used to store parameterization information about geometries. Parameters ---------- param_ranges : Dict[Parameter, Union[float, Tuple[float, float], np.ndarray (N, 1)] Dictionary of Parameters and their ranges. The ranges can be one of the following types, :obj: Float will sample the parameter equal to this value. :obj: Tuple of two float as the bounding range to sample parameter from. :obj: `np.ndarray` as a discrete list of possible values for the parameter. """ def __init__( self, param_ranges: Dict[ Parameter, Union[float, Tuple[float, float], np.ndarray] ] = {}, ): # store param ranges self.param_ranges = param_ranges @property def parameters(self): return [str(x) for x in self.param_ranges.keys()] def sample(self, nr_points: int, quasirandom: bool = False): """Sample parameterization values. Parameters ---------- nr_points : int Number of points sampled from parameterization. quasirandom : bool If true then sample the points using Halton sequences. Default is False. """ return { str(key): value for key, value in _sample_ranges( nr_points, self.param_ranges, quasirandom ).items() } def union(self, other): new_param_ranges = self.param_ranges.copy() for key, value in other.param_ranges.items(): new_param_ranges[key] = value return Parameterization(new_param_ranges) @classmethod def combine(cls, p1, p2): assert len(set(p1.parameters).intersection(set(p2.parameters))) == 0, ( "Combining parameterizations when they have overlapping parameters: p1 " + str(p1) + ", p2 " + str(p2) ) new_param_ranges = p1.param_ranges.copy() new_param_ranges.update(p2.param_ranges.copy()) return cls(new_param_ranges) def copy(self): return Parameterization(self.param_ranges.copy()) def __str__(self): return str(self.param_ranges) class OrderedParameterization(Parameterization): """A object used to store ordered parameterization information about user-specified keys. Parameters ---------- param_ranges : Dict[Parameter, Union[float, Tuple[float, float], np.ndarray (N, 1)] Dictionary of Parameters and their ranges. The ranges can be one of the following types, :obj: Float will sample the parameter equal to this value. :obj: Tuple of two float as the bounding range to sample parameter from. :obj: `np.ndarray` as a discrete list of possible values for the parameter. """ def __init__(self, param_ranges, key): super().__init__(param_ranges) self.key = key def sample( self, nr_points: int, quasirandom: bool = False, sort: Optional = "ascending" ): """Sample ordered parameterization values. Parameters ---------- nr_points : int Number of points sampled from parameterization. quasirandom : bool If true then sample the points using Halton sequences. Default is False. sort : None or {'ascending','descending'} If 'ascending' then sample the sorted points in ascending order. If 'descending' then sample the sorted points in descending order. Default is 'ascending'. """ sample_dict = {} for key, value in _sample_ranges( nr_points, self.param_ranges, quasirandom ).items(): # sort the samples for the given key if key == self.key: if sort == "ascending": value = np.sort(value, axis=0) elif sort == "descending": value = np.sort(value, axis=0)[::-1] else: raise ValueError( "Sort must be one of None, 'ascending', or 'descending' (got {})".format( str(sort) ) ) sample_dict[str(key)] = value return sample_dict class Bounds: """A object used to store bounds for geometries. Parameters ---------- bound_ranges : Dict[Parameter, Tuple[Union[float, sympy.Basic], Union[float, sympy.Basic]] Dictionary of Parameters with names `"x"`, `"y"`, or `"z"`. The value given for each of these is a tuple of the lower and upper bound. Sympy expressions can be used to define these upper and lower bounds. parameterization : Parameterization A Parameterization object used when the upper and lower bounds are parameterized. """ def __init__( self, bound_ranges: Dict[ Parameter, Tuple[Union[float, sympy.Basic], Union[float, sympy.Basic]] ], parameterization: Parameterization = Parameterization(), ): # store internal parameterization self.parameterization = parameterization # store bounds self.bound_ranges = bound_ranges @property def dims(self): """ Returns ------- dims : list of strings output can be ['x'], ['x','y'], or ['x','y','z'] """ return [str(x) for x in self.bound_ranges.keys()] def sample( self, nr_points: int, parameterization: Union[None, Parameterization] = None, quasirandom: bool = False, ): """Sample points in Bounds. Parameters ---------- nr_points : int Number of points sampled from parameterization. parameterization : Parameterization Given if sampling bounds with different parameterization then the internal one stored in Bounds. Default is to not use this. quasirandom : bool If true then sample the points using Halton sequences. Default is False. """ if parameterization is not None: parameterization = self.parameterization computed_bound_ranges = self._compute_bounds(parameterization) return { str(key): value for key, value in _sample_ranges( nr_points, computed_bound_ranges, quasirandom ).items() } def volume(self, parameterization: Union[None, Parameterization] = None): """Compute volume of bounds. Parameters ---------- parameterization : Parameterization Given if sampling bounds with different parameterization then the internal one stored in Bounds. Default is to not use this. """ # compute bounds from parameterization computed_bound_ranges = self._compute_bounds(parameterization) return np.prod( [value[1] - value[0] for value in computed_bound_ranges.values()] ) def union(self, other): new_parameterization = self.parameterization.union(other.parameterization) new_bound_ranges = {} for (key, (lower_1, upper_1)), (lower_2, upper_2) in zip( self.bound_ranges.items(), other.bound_ranges.values() ): # compute new lower bound if isinstance(lower_1, sympy.Basic) or isinstance(lower_2, sympy.Basic): new_lower = sympy.Min(lower_1, lower_2) elif isinstance(lower_1, (float, int)): new_lower = min(lower_1, lower_2) # compute new upper bound if isinstance(upper_1, sympy.Basic) or isinstance(upper_2, sympy.Basic): new_upper = sympy.Max(upper_1, upper_2) elif isinstance(upper_1, (float, int)): new_upper = max(upper_1, upper_2) # add to list of bound ranges new_bound_ranges[key] = (new_lower, new_upper) return Bounds(new_bound_ranges, new_parameterization) def intersection(self, other): new_parameterization = self.parameterization.union(other.parameterization) new_bound_ranges = {} for (key, (lower_1, upper_1)), (lower_2, upper_2) in zip( self.bound_ranges.items(), other.bound_ranges.values() ): # compute new lower bound if isinstance(lower_1, sympy.Basic) or isinstance(lower_2, sympy.Basic): new_lower = sympy.Max(lower_1, lower_2) elif isinstance(lower_1, (float, int)): new_lower = max(lower_1, lower_2) # compute new upper bound if isinstance(upper_1, sympy.Basic) or isinstance(upper_2, sympy.Basic): new_upper = sympy.Min(upper_1, upper_2) elif isinstance(upper_1, (float, int)): new_upper = min(upper_1, upper_2) # add to list of bound ranges new_bound_ranges[key] = (new_lower, new_upper) return Bounds(new_bound_ranges, new_parameterization) def scale(self, x, parameterization=Parameterization()): scaled_bound_ranges = { key: (lower * x, upper * x) for key, (lower, upper) in self.bound_ranges.items() } return Bounds( scaled_bound_ranges, self.parameterization.union(parameterization) ) def translate(self, xyz, parameterization=Parameterization()): translated_bound_ranges = { key: (lower + x, upper + x) for (key, (lower, upper)), x in zip(self.bound_ranges.items(), xyz) } return Bounds( translated_bound_ranges, self.parameterization.union(parameterization) ) def rotate(self, angle, axis, parameterization=Parameterization()): # rotate bounding box rotated_dims = [Parameter(key) for key in self.dims if key != axis] bounding_points = itertools.product( *[value for value in self.bound_ranges.values()] ) rotated_bounding_points = [] for p in bounding_points: p = {Parameter(key): value for key, value in zip(self.dims, p)} rotated_p = {**p} rotated_p[rotated_dims[0]] = ( sympy.cos(angle) * p[rotated_dims[0]] - sympy.sin(angle) * p[rotated_dims[1]] ) rotated_p[rotated_dims[1]] = ( sympy.sin(angle) * p[rotated_dims[0]] + sympy.cos(angle) * p[rotated_dims[1]] ) rotated_bounding_points.append(rotated_p) # find new bounds from rotated bounds rotated_bound_ranges = {**self.bound_ranges} for d in self.dims: # find upper and lower bound a = [p[Parameter(d)] for p in rotated_bounding_points] lower = sympy.Min(*a) upper = sympy.Max(*a) if lower.is_number: lower = float(lower) if upper.is_number: upper = float(upper) rotated_bound_ranges[Parameter(d)] = (lower, upper) return Bounds( rotated_bound_ranges, self.parameterization.union(parameterization) ) def copy(self): return Bounds(self.bound_ranges.copy(), self.parameterization.copy()) def _compute_bounds(self, parameterization=None, nr_sample=10000): # TODO this currently guesses the bounds by randomly sampling parameterization. This can be improved in the future. # get new parameterization if provided if parameterization is not None: parameterization = self.parameterization # set bound ranges computed_bound_ranges = {} for key, (lower, upper) in self.bound_ranges.items(): # compute lower if isinstance(lower, (float, int)): computed_lower = lower elif isinstance(lower, sympy.Basic): fn_lower = np_lambdify(lower, parameterization.parameters) computed_lower = np.min(fn_lower(**parameterization.sample(nr_sample))) else: raise ValueError( "Bound has non numeric or sympy values: " + str(self.bound_ranges) ) # compute upper if isinstance(upper, (float, int)): computed_upper = upper elif isinstance(upper, sympy.Basic): fn_upper = np_lambdify(upper, parameterization.parameters) computed_upper = np.max(fn_upper(**parameterization.sample(nr_sample))) else: raise ValueError( "Bound has non numeric or sympy values: " + str(self.bound_ranges) ) # store new range computed_bound_ranges[key] = (computed_lower, computed_upper) return computed_bound_ranges def __str__(self): return ( "bound_ranges: " + str(self.bound_ranges) + " param_ranges: " + str(self.parameterization) ) def _sample_ranges(batch_size, ranges, quasirandom=False): parameterization = {} if quasirandom: prime_index = 0 primes = create_primes(1000) for key, value in ranges.items(): # sample parameter if isinstance(value, tuple): if quasirandom: indices = [idx for idx in range(batch_size)] rand_param = ( value[0] + (value[1] - value[0]) * create_samples(indices, number_base=primes[prime_index]).reshape( -1, 1 ) ).astype(float) prime_index += 1 else: rand_param = np.random.uniform(value[0], value[1], size=(batch_size, 1)) elif isinstance(value, (float, int)): rand_param = np.zeros((batch_size, 1)) + value elif isinstance(value, np.ndarray): np_index = np.random.choice(value.shape[0], batch_size) rand_param = value[np_index, :] elif isinstance(value, Callable): rand_param = value(batch_size) else: raise ValueError( "range type: " + str(type(value)) + " not supported, try (tuple, or np.ndarray)" ) # if dependent sample break up parameter if isinstance(key, tuple): for i, k in enumerate(key): parameterization[k] = rand_param[:, i : i + 1] else: parameterization[key] = rand_param return parameterization
modulus-sym-main
modulus/sym/geometry/parameterization.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Defines a Discrete geometry """ import numpy as np import csv from stl import mesh as np_mesh from sympy import Symbol from .geometry import Geometry from .parameterization import Parameterization, Bounds, Parameter from modulus.sym.constants import diff_str class DiscreteGeometry(Geometry): """ Constructs a geometry for a discrete list of geometries """ def __init__( self, geometries, parameterization=Parameterization(), interior_epsilon=1e-6 ): # make sdf function def _sdf(list_sdf, discrete_parameterization, dims): def sdf(invar, params, compute_sdf_derivatives=False): # make output array to gather sdf values outputs = {"sdf": np.full_like(next(iter(invar.values())), np.nan)} if compute_sdf_derivatives: for d in dims: outputs["sdf" + diff_str + d] = np.full_like( next(iter(invar.values())), -1000 ) # compute sdf values for given parameterizations for i, f in enumerate(list_sdf): # get sdf index for each point evaluating on sdf_index = np.full_like( next(iter(invar.values())), True ) # TODO this could be simplified for key in discrete_parameterization.parameters: expanded_d = np.tile( discrete_parameterization.param_ranges[Parameter(key)][ i : i + 1 ], (params[key].shape[0], 1), ) sdf_index = np.logical_and( sdf_index, (params[key] == expanded_d) ) # compute sdf values on indexed sdf function sdf_indexed_invar = { key: value[sdf_index[:, 0], :] for key, value in invar.items() } sdf_indexed_params = { key: value[sdf_index[:, 0], :] for key, value in params.items() } computed_sdf = f( sdf_indexed_invar, sdf_indexed_params, compute_sdf_derivatives ) # update output values for key, value in computed_sdf.items(): outputs[key][sdf_index[:, 0], :] = value return outputs return sdf new_sdf = _sdf( [g.sdf for g in geometries], parameterization, geometries[0].dims ) # compute bounds bounds = geometries[0].bounds for g in geometries[1:]: bounds = bounds.union(g.bounds) # make curves new_curves = [] for g in geometries: new_curves += g.curves # initialize geometry super().__init__( new_curves, new_sdf, dims=len(geometries[0].dims), bounds=bounds, parameterization=parameterization, ) class DiscreteCurve: def __init__(self, curves, discrete_parameterization=Parameterization()): # store attributes self.curves = curves self._dims = len(curves[0].dims) self.discrete_parameterization = discrete_parameterization def sample( self, nr_points, criteria=None, parameterization=None, quasirandom=False ): # use internal parameterization if not given if parameterization is None: parameterization = self.parameterization # continually sample points throwing out points that don't satisfy criteria invar = { key: np.empty((0, 1)) for key in self.dims + ["normal_" + x for x in self.dims] + ["area"] } params = {key: np.empty((0, 1)) for key in parameterization.parameters} total_sampled = 0 total_tried = 0 nr_try = 0 while True: # sample curve local_invar, local_params = self._sample( nr_points, parameterization, quasirandom ) # compute given criteria and remove points if criteria is not None: computed_criteria = criteria(local_invar, local_params) local_invar = { key: value[computed_criteria[:, 0], :] for key, value in local_invar.items() } local_params = { key: value[computed_criteria[:, 0], :] for key, value in local_params.items() } # store invar for key in local_invar.keys(): invar[key] = np.concatenate([invar[key], local_invar[key]], axis=0) # store params for key in local_params.keys(): params[key] = np.concatenate([params[key], local_params[key]], axis=0) # keep track of sampling total_sampled = next(iter(invar.values())).shape[0] total_tried += nr_points nr_try += 1 # break when finished sampling if total_sampled >= nr_points: for key, value in invar.items(): invar[key] = value[:nr_points] for key, value in params.items(): params[key] = value[:nr_points] break # check if couldn't sample if nr_try > 1000 and total_sampled < 1: raise Exception("Unable to sample curve") return invar, params
modulus-sym-main
modulus/sym/geometry/discrete_geometry.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from typing import List, Tuple, Dict class ADF(torch.nn.Module): """ Used for hard imposition of boundary conditions. Currently supports 2d geometries and Dirichlet boundary conditions. Contributors: M. A. Nabian, R. Gladstone, H. Meidani, N. Sukumar, A. Srivastava Reference: "Sukumar, N. and Srivastava, A., 2021. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and Engineering, p.114333." """ def __init__(self): super().__init__() self.mu: float = 2.0 self.m: float = 2.0 self.eps: float = 1e-8 def forward(self, invar): raise RuntimeError("No forward method was defined for ADF or its child class") @staticmethod def r_equivalence(omegas: List[torch.Tensor], m: float = 2.0) -> torch.Tensor: """ Computes the R-equivalence of a collection of approximate distance functions Parameters ---------- omegas : List[torch.Tensor] List of ADFs used to compute the R-equivalence. m: float Normalization order Returns ------- omega_E : torch.Tensor R-equivalence distance """ omega_E = torch.zeros_like(omegas[0]) for omega in omegas: omega_E += 1.0 / omega**m omega_E = 1.0 / omega_E ** (1.0 / m) return omega_E @staticmethod def transfinite_interpolation( bases: List[torch.Tensor], indx: int, eps: float = 1e-8 ) -> torch.Tensor: """ Performs transfinite interpolation of the boundary conditions Parameters ---------- bases: List[torch.Tensor] List of ADFs used for the transfinite interpolation. indx: int index of the interpolation basis eps: float Small value to avoid division by zero Returns ------- w : torch.Tensor Interpolation basis corresponding to the input index """ bases_reduced = [bases[i] for i in range(len(bases)) if i != indx] numerator = torch.prod(torch.stack(bases_reduced), dim=0) denominator = 0.0 for j in range(len(bases)): denom_term = [bases[i] for i in range(len(bases)) if i != j] denominator += torch.prod(torch.stack(denom_term), dim=0) w = torch.div(numerator, denominator + eps) return w @staticmethod def infinite_line_adf( points: Tuple[torch.Tensor], point_1: Tuple[float], point_2: Tuple[float] ) -> torch.Tensor: """ Computes the pointwise approximate distance for an infinite line Parameters ---------- points: Tuple[torch.Tensor] ADF will be computed on these points point_1: Tuple[float] One of the two points that form the infinite line point_2: Tuple[float] One of the two points that form the infinite line Returns ------- omega : torch.Tensor pointwise approximate distance """ L = ADF._distance(point_1, point_2) omega = ( (points[0] - point_1[0]) * (point_2[1] - point_1[1]) - (points[1] - point_1[1]) * (point_2[0] - point_1[0]) ) / L return omega @staticmethod def line_segment_adf( points: Tuple[torch.Tensor], point_1: Tuple[float], point_2: Tuple[float] ) -> torch.Tensor: """ Computes the pointwise approximate distance for a line segment Parameters ---------- points: Tuple[torch.Tensor] ADF will be computed on these points point_1: Tuple[float] Point on one end of the line segment point_2: Tuple[float] Point on the other ned of the line segment Returns ------- omega : torch.Tensor pointwise approximate distance """ L = ADF._distance(point_1, point_2) center = ADF._center(point_1, point_2) f = ADF.infinite_line_adf(points, point_1, point_2) t = ADF.circle_adf(points, L / 2, center) phi = torch.sqrt(t**2 + f**4) omega = torch.sqrt(f**2 + ((phi - t) / 2) ** 2) return omega @staticmethod def circle_adf( points: Tuple[torch.Tensor], radius: float, center: Tuple[float] ) -> torch.Tensor: """ Computes the pointwise approximate distance for a circle Parameters ---------- points: Tuple[torch.Tensor] ADF will be computed on these points radius: float Radius of the circle center: Tuple[float] Center of the circle Returns ------- omega : torch.Tensor pointwise approximate distance """ omega = ( radius**2 - ((points[0] - center[0]) ** 2 + (points[1] - center[1]) ** 2) ) / (2 * radius) return omega @staticmethod def trimmed_circle_adf( points: Tuple[torch.Tensor], point_1: Tuple[float], point_2: Tuple[float], sign: int, radius: float, center: float, ) -> torch.Tensor: """ Computes the pointwise approximate distance of a trimmed circle Parameters ---------- points: Tuple[torch.Tensor] ADF will be computed on these points point_1: Tuple[float] One of the two points that form the trimming infinite line point_2: Tuple[float] One of the two points that form the trimming infinite line sign: int Specifies the trimming side radius: float Radius of the circle center: Tuple[float] Center of the circle Returns ------- omega : torch.Tensor pointwise approximate distance """ assert sign != 0, "sign should be non-negative" f = ADF.circle_adf(points, radius, center) t = np.sign(sign) * ADF.infinite_line_adf(points, point_1, point_2) phi = torch.sqrt(t**2 + f**4) omega = torch.sqrt(f**2 + ((phi - t) / 2) ** 2) return omega @staticmethod def _distance(point_1: Tuple[float], point_2: Tuple[float]) -> torch.Tensor: """ Computes the distance between two points point_1: Tuple[float] The first point point_2: Tuple[float] The second point Returns ------- distance : torch.Tensor distance between the two points """ distance = np.sqrt( (point_2[0] - point_1[0]) ** 2 + (point_2[1] - point_1[1]) ** 2 ) return distance @staticmethod def _center(point_1: Tuple[float], point_2: Tuple[float]) -> Tuple[float]: """ Computes the center of the two points point_1: Tuple[float] The first point point_2: Tuple[float] The second point Returns ------- center : torch.Tensor Center the two points """ center = ((point_1[0] + point_2[0]) / 2, (point_1[1] + point_2[1]) / 2) return center
modulus-sym-main
modulus/sym/geometry/adf.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Domain """ import torch import torch.nn as nn from torch.utils.tensorboard import SummaryWriter import itertools import os from modulus.sym.domain.validator import Validator from modulus.sym.domain.inferencer import Inferencer from modulus.sym.domain.monitor import Monitor from modulus.sym.loss.aggregator import NTK from modulus.sym.models.arch import FuncArch class Domain: """ Domain object that contains all needed information about constraints, validators, inferencers, and monitors. Parameters ---------- name : str Unique name for domain. encoding : Union[np.ndarray, None] Possible encoding vector for domain. Currently not in use. """ def __init__(self, name: str = "domain", encoding=None): super().__init__() self.name = name self.encoding = encoding self.constraints = {} self.validators = {} self.inferencers = {} self.monitors = {} self.ntk = None def rec_constraints(self, base_dir: str): constraint_data_dir = base_dir + "/constraints/" # exist_ok=True to handle race conditions os.makedirs(constraint_data_dir, exist_ok=True) for key, constraint in self.constraints.items(): constraint.save_batch(constraint_data_dir + key) def rec_validators( self, base_dir: str, writer: SummaryWriter, save_filetypes: str, step: int ): """Run and save results of validator nodes""" validator_data_dir = base_dir + "/validators/" # exist_ok=True to handle race conditions os.makedirs(validator_data_dir, exist_ok=True) metrics = {} for key, validator in self.validators.items(): valid_losses = validator.save_results( key, validator_data_dir, writer, save_filetypes, step ) # If validator returned add to metrics if isinstance(valid_losses, dict): metrics.update(valid_losses) return metrics def rec_inferencers( self, base_dir: str, writer: SummaryWriter, save_filetypes: str, step: int ): """Run and save results of inferencer nodes""" inferencer_data_dir = base_dir + "/inferencers/" # exist_ok=True to handle race conditions os.makedirs(inferencer_data_dir, exist_ok=True) for key, inferencer in self.inferencers.items(): inferencer.save_results( key, inferencer_data_dir, writer, save_filetypes, step ) def rec_stream( self, inferencer, name, base_dir: str, step: int, save_results: bool, save_filetypes: str, to_cpu: bool, ): """Run and save results of stream""" inferencer_data_dir = base_dir + "/inferencers/" if save_results: # exist_ok=True to handle race conditions os.makedirs(inferencer_data_dir, exist_ok=True) return inferencer.save_stream( name, inferencer_data_dir, None, step, save_results, save_filetypes, to_cpu, ) def rec_monitors(self, base_dir: str, writer: SummaryWriter, step: int): """Run and save results of monitor nodes""" monitor_data_dir = base_dir + "/monitors/" # exist_ok=True to handle race conditions os.makedirs(monitor_data_dir, exist_ok=True) metrics = {} for key, monitor in self.monitors.items(): metrics.update(monitor.save_results(key, writer, step, monitor_data_dir)) return metrics def get_num_losses(self): return len( set(itertools.chain(*[c.output_names for c in self.constraints.values()])) ) def load_data(self, static: bool = False): for key, constraint in self.constraints.items(): if static: constraint.load_data_static() else: constraint.load_data() def compute_losses(self, step: int): losses = {} if self.ntk is None: for key, constraint in self.constraints.items(): # TODO: Test streaming here torch.cuda.nvtx.range_push(f"Constraint Forward: {key}") constraint.forward() torch.cuda.nvtx.range_pop() for key, constraint in self.constraints.items(): for loss_key, value in constraint.loss(step).items(): if loss_key not in list(losses.keys()): losses[loss_key] = value else: losses[loss_key] += value else: losses, self.ntk_weights = self.ntk( self.constraints, self.ntk_weights, step ) return losses def get_saveable_models(self): models = [] for c in self.constraints.values(): # strip DDP specific module layer if hasattr(c.model, "module"): model = c.model.module else: model = c.model for m in model.evaluation_order: # For FuncArch, we only need to save the wrapped Arch model if isinstance(m, FuncArch): m = m.arch if (m not in models) and m.saveable: models.append(m) models = sorted(models, key=lambda x: x.name) assert len(set([m.name for m in models])) == len( models ), "Every model in graph needs a unique name: " + str([m.name for m in models]) return models def create_global_optimizer_model(self): models = [] # TODO: Add aggregator parameters into module list here for c in self.constraints.values(): # strip DDP specific module layer if hasattr(c.model, "module"): model = c.model.module else: model = c.model for m in model.optimizer_list: if isinstance(m, FuncArch): m = m.arch if m not in models: models.append(m) models = sorted(models, key=lambda x: x.name) assert len(set([m.name for m in models])) == len( models ), "Every model in graph needs a unique name: " + str([m.name for m in models]) models = nn.ModuleList(models) return models def add_constraint( self, constraint, name: str = None, ): """ Method to add a constraint to domain. Parameters ---------- constraint : Constraint Constraint to be added to domain. name : str Unique name of constraint. If duplicate is found then name is iterated to avoid duplication. """ # add constraint to list name = Domain._iterate_name(name, "pointwise_bc", list(self.constraints.keys())) self.constraints[name] = constraint def add_validator( self, validator: Validator, name: str = None, ): """ Method to add a validator to domain. Parameters ---------- validator : Validator Validator to be added to domain. name : str Unique name of validator. If duplicate is found then name is iterated to avoid duplication. """ # add validator name = Domain._iterate_name(name, "validator", list(self.validators.keys())) self.validators[name] = validator def add_inferencer( self, inferencer: Inferencer, name: str = None, ): """ Method to add a inferencer to domain. Parameters ---------- inferencer : Inferencer Inferencer to be added to domain. name : str Unique name of inferencer. If duplicate is found then name is iterated to avoid duplication. """ # add inferencer name = Domain._iterate_name(name, "inferencer", list(self.inferencers.keys())) self.inferencers[name] = inferencer def add_monitor( self, monitor: Monitor, name: str = None, ): """ Method to add a monitor to domain. Parameters ---------- monitor : Monitor Monitor to be added to domain. name : str Unique name of monitor. If duplicate is found then name is iterated to avoid duplication. """ # add monitor name = Domain._iterate_name(name, "monitor", list(self.monitors.keys())) self.monitors[name] = monitor def add_ntk(self, ntk: NTK): self.ntk = ntk self.ntk_weights = {} @staticmethod def _iterate_name(input_name, default_name, current_names): if input_name is None: name = default_name else: name = input_name if name in current_names: i = 2 while True: if name + "_" + str(i) not in current_names: name = name + "_" + str(i) break i += 1 return name
modulus-sym-main
modulus/sym/domain/domain.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .domain import Domain
modulus-sym-main
modulus/sym/domain/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Monitor: """ Monitor base class """ def save_results(self, name, writer, step, data_dir): raise NotImplementedError("Subclass of Monitor needs to implement this")
modulus-sym-main
modulus/sym/domain/monitor/monitor.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .monitor import Monitor from .pointwise import PointwiseMonitor
modulus-sym-main
modulus/sym/domain/monitor/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Monitor for Solver class """ import numpy as np from modulus.sym.domain.monitor import Monitor from modulus.sym.domain.constraint import Constraint from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.constants import TF_SUMMARY from modulus.sym.distributed import DistributedManager from modulus.sym.utils.io import dict_to_csv, csv_to_dict class PointwiseMonitor(Monitor): """ Pointwise Inferencer that allows inferencing on pointwise data Parameters ---------- invar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays as input. output_names : List[str] List of outputs needed for metric. metrics : Dict[str, Callable] Dictionary of pytorch functions whose input is a dictionary torch tensors whose keys are the `output_names`. The keys to `metrics` will be used to label the metrics in tensorboard/csv outputs. nodes : List[Node] List of Modulus Nodes to unroll graph with. requires_grad : bool = False If automatic differentiation is needed for computing results. """ def __init__(self, invar, output_names, metrics, nodes, requires_grad=False): # construct model from nodes self.requires_grad = requires_grad self.model = Graph( nodes, Key.convert_list(invar.keys()), Key.convert_list(output_names) ) self.manager = DistributedManager() self.device = self.manager.device self.model.to(self.device) # set metrics self.metrics = metrics self.monitor_outvar_store = {} # set invar self.invar = Constraint._set_device(invar, device=self.device) def save_results(self, name, writer, step, data_dir): # run forward inference invar = Constraint._set_device( self.invar, device=self.device, requires_grad=self.requires_grad ) outvar = self.model(invar) metrics = {key: func({**invar, **outvar}) for key, func in self.metrics.items()} for k, m in metrics.items(): # add tensorboard scalars if TF_SUMMARY: writer.add_scalar("monitor/" + name + "/" + k, m, step, new_style=True) else: writer.add_scalar("Monitors/" + name + "/" + k, m, step, new_style=True) # write csv files if k not in self.monitor_outvar_store.keys(): try: self.monitor_outvar_store[k] = csv_to_dict(data_dir + k + ".csv") except: self.monitor_outvar_store[k] = { "step": np.array([[step]]), k: m.detach().cpu().numpy().reshape(-1, 1), } else: monitor_outvar = { "step": np.array([[step]]), k: m.detach().cpu().numpy().reshape(-1, 1), } self.monitor_outvar_store[k] = { key: np.concatenate([value_1, value_2], axis=0) for (key, value_1), (key, value_2) in zip( self.monitor_outvar_store[k].items(), monitor_outvar.items() ) } dict_to_csv(self.monitor_outvar_store[k], filename=data_dir + k + ".csv") return metrics
modulus-sym-main
modulus/sym/domain/monitor/pointwise.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch class Validator: """ Validator base class """ def forward_grad(self, invar): pred_outvar = self.model(invar) return pred_outvar def forward_nograd(self, invar): with torch.no_grad(): pred_outvar = self.model(invar) return pred_outvar def save_results(self, name, results_dir, writer, save_filetypes, step): raise NotImplementedError("Subclass of Validator needs to implement this") @staticmethod def _l2_relative_error(true_var, pred_var): # TODO replace with metric classes new_var = {} for key in true_var.keys(): new_var["l2_relative_error_" + str(key)] = torch.sqrt( torch.mean(torch.square(true_var[key] - pred_var[key])) / torch.var(true_var[key]) ) return new_var
modulus-sym-main
modulus/sym/domain/validator/validator.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List import torch import numpy as np from modulus.sym.domain.validator import Validator from modulus.sym.domain.constraint import Constraint from modulus.sym.utils.io.vtk import grid_to_vtk from modulus.sym.utils.io import GridValidatorPlotter, DeepONetValidatorPlotter from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.constants import TF_SUMMARY from modulus.sym.distributed import DistributedManager from modulus.sym.dataset import Dataset, DictGridDataset class GridValidator(Validator): """Data-driven grid field validator Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. dataset: Dataset dataset which contains invar and true outvar examples batch_size : int, optional Batch size used when running validation, by default 100 plotter : GridValidatorPlotter Modulus plotter for showing results in tensorboard. requires_grad : bool = False If automatic differentiation is needed for computing results. num_workers : int, optional Number of dataloader workers, by default 0 """ def __init__( self, nodes: List[Node], dataset: Dataset, batch_size: int = 100, plotter: GridValidatorPlotter = None, requires_grad: bool = False, num_workers: int = 0, ): # get dataset and dataloader self.dataset = dataset self.dataloader = Constraint.get_dataloader( dataset=self.dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers, distributed=False, infinite=False, ) # construct model from nodes self.model = Graph( nodes, Key.convert_list(self.dataset.invar_keys), Key.convert_list(self.dataset.outvar_keys), ) self.manager = DistributedManager() self.device = self.manager.device self.model.to(self.device) # set foward method self.requires_grad = requires_grad self.forward = self.forward_grad if requires_grad else self.forward_nograd # set plotter self.plotter = plotter def save_results(self, name, results_dir, writer, save_filetypes, step): invar_cpu = {key: [] for key in self.dataset.invar_keys} true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader): # Move data to device (may need gradients in future, if so requires_grad=True) invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) true_outvar = Constraint._set_device( true_outvar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward(invar) # Collect minibatch info into cpu dictionaries invar_cpu = { key: value + [invar[key].cpu().detach()] for key, value in invar_cpu.items() } true_outvar_cpu = { key: value + [true_outvar[key].cpu().detach()] for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: value + [pred_outvar[key].cpu().detach()] for key, value in pred_outvar_cpu.items() } # Concat mini-batch tensors invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()} true_outvar_cpu = { key: torch.cat(value) for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: torch.cat(value) for key, value in pred_outvar_cpu.items() } # compute losses on cpu losses = GridValidator._l2_relative_error(true_outvar_cpu, pred_outvar_cpu) # convert to numpy arrays invar = {k: v.numpy() for k, v in invar_cpu.items()} true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()} pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()} # save batch to vtk file TODO clean this up after graph unroll stuff named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()} named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()} # save batch to vtk/npz file TODO clean this up after graph unroll stuff if "np" in save_filetypes: np.savez( results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar} ) if "vtk" in save_filetypes: grid_to_vtk( {**invar, **named_true_outvar, **named_pred_outvar}, results_dir + name ) # add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Validators", name, results_dir, writer, step, invar, true_outvar, pred_outvar, ) # add tensorboard scalars for k, loss in losses.items(): if TF_SUMMARY: writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True) else: writer.add_scalar( "Validators/" + name + "/" + k, loss, step, new_style=True ) return losses class _DeepONet_Validator(Validator): def __init__( self, nodes: List[Node], invar_branch: Dict[str, np.array], invar_trunk: Dict[str, np.array], true_outvar: Dict[str, np.array], batch_size: int, plotter: DeepONetValidatorPlotter, requires_grad: bool, ): # TODO: add support for other datasets? # get dataset and dataloader self.dataset = DictGridDataset(invar=invar_branch, outvar=true_outvar) self.dataloader = Constraint.get_dataloader( dataset=self.dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=0, distributed=False, infinite=False, ) # construct model from nodes self.model = Graph( nodes, Key.convert_list(invar_branch.keys()) + Key.convert_list(invar_trunk.keys()), Key.convert_list(true_outvar.keys()), ) self.manager = DistributedManager() self.device = self.manager.device self.model.to(self.device) # set foward method self.requires_grad = requires_grad self.forward = self.forward_grad if requires_grad else self.forward_nograd # set plotter self.plotter = plotter class DeepONet_Physics_Validator(_DeepONet_Validator): """ DeepONet Validator """ def __init__( self, nodes: List[Node], invar_branch: Dict[str, np.array], invar_trunk: Dict[str, np.array], true_outvar: Dict[str, np.array], batch_size: int = 100, plotter: DeepONetValidatorPlotter = None, requires_grad: bool = False, tile_trunk_input: bool = True, ): super().__init__( nodes=nodes, invar_branch=invar_branch, invar_trunk=invar_trunk, true_outvar=true_outvar, batch_size=batch_size, plotter=plotter, requires_grad=requires_grad, ) if tile_trunk_input: for k, v in invar_trunk.items(): invar_trunk[k] = np.tile(v, (batch_size, 1)) self.invar_trunk = invar_trunk self.batch_size = batch_size def save_results(self, name, results_dir, writer, save_filetypes, step): invar_cpu = {key: [] for key in self.dataset.invar_keys} invar_trunk_gpu = Constraint._set_device( self.invar_trunk, device=self.device, requires_grad=self.requires_grad ) true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader): # Move data to device (may need gradients in future, if so requires_grad=True) invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) true_outvar = Constraint._set_device( true_outvar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward({**invar, **invar_trunk_gpu}) # Collect minibatch info into cpu dictionaries invar_cpu = { key: value + [invar[key].cpu().detach()] for key, value in invar_cpu.items() } true_outvar_cpu = { key: value + [true_outvar[key].cpu().detach()] for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: value + [pred_outvar[key].cpu().detach()] for key, value in pred_outvar_cpu.items() } # Concat mini-batch tensors invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()} true_outvar_cpu = { key: torch.cat(value) for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: torch.cat(value) for key, value in pred_outvar_cpu.items() } # compute losses on cpu losses = DeepONet_Physics_Validator._l2_relative_error( true_outvar_cpu, pred_outvar_cpu ) # convert to numpy arrays invar = {k: v.numpy() for k, v in invar_cpu.items()} true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()} pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()} # save batch to vtk file TODO clean this up after graph unroll stuff named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()} named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()} # save batch to vtk/npz file TODO clean this up after graph unroll stuff if "np" in save_filetypes: np.savez( results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar} ) ndim = next(iter(self.invar_trunk.values())).shape[-1] invar_plotter = dict() true_outvar_plotter = dict() pred_outvar_plotter = dict() for k, v in self.invar_trunk.items(): invar_plotter[k] = self.invar_trunk[k].reshape((self.batch_size, -1, ndim)) for k, v in true_outvar.items(): true_outvar_plotter[k] = true_outvar[k].reshape((self.batch_size, -1)) for k, v in pred_outvar.items(): pred_outvar_plotter[k] = pred_outvar[k].reshape((self.batch_size, -1)) # add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Validators", name, results_dir, writer, step, invar_plotter, true_outvar_plotter, pred_outvar_plotter, ) # add tensorboard scalars for k, loss in losses.items(): if TF_SUMMARY: writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True) else: writer.add_scalar( "Validators/" + name + "/" + k, loss, step, new_style=True ) return losses @staticmethod def _l2_relative_error(true_var, pred_var): # TODO replace with metric classes new_var = {} for key in true_var.keys(): new_var["l2_relative_error_" + str(key)] = torch.sqrt( torch.mean( torch.square(torch.reshape(true_var[key], (-1, 1)) - pred_var[key]) ) / torch.var(true_var[key]) ) return new_var class DeepONet_Data_Validator(_DeepONet_Validator): """ DeepONet Validator """ def __init__( self, nodes: List[Node], invar_branch: Dict[str, np.array], invar_trunk: Dict[str, np.array], true_outvar: Dict[str, np.array], batch_size: int = 100, plotter: DeepONetValidatorPlotter = None, requires_grad: bool = False, ): super().__init__( nodes=nodes, invar_branch=invar_branch, invar_trunk=invar_trunk, true_outvar=true_outvar, batch_size=batch_size, plotter=plotter, requires_grad=requires_grad, ) self.invar_trunk_plotter = dict() ndim = next(iter(invar_trunk.values())).shape[-1] for k, v in invar_trunk.items(): self.invar_trunk_plotter[k] = np.tile(v, (batch_size, 1)).reshape( (batch_size, -1, ndim) ) self.invar_trunk = invar_trunk def save_results(self, name, results_dir, writer, save_filetypes, step): invar_cpu = {key: [] for key in self.dataset.invar_keys} invar_trunk_gpu = Constraint._set_device( self.invar_trunk, device=self.device, requires_grad=self.requires_grad ) true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader): # Move data to device (may need gradients in future, if so requires_grad=True) invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) true_outvar = Constraint._set_device( true_outvar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward({**invar, **invar_trunk_gpu}) # Collect minibatch info into cpu dictionaries invar_cpu = { key: value + [invar[key].cpu().detach()] for key, value in invar_cpu.items() } true_outvar_cpu = { key: value + [true_outvar[key].cpu().detach()] for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: value + [pred_outvar[key].cpu().detach()] for key, value in pred_outvar_cpu.items() } # Concat mini-batch tensors invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()} true_outvar_cpu = { key: torch.cat(value) for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: torch.cat(value) for key, value in pred_outvar_cpu.items() } # compute losses on cpu losses = DeepONet_Data_Validator._l2_relative_error( true_outvar_cpu, pred_outvar_cpu ) # convert to numpy arrays invar = {k: v.numpy() for k, v in invar_cpu.items()} true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()} pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()} # save batch to vtk file TODO clean this up after graph unroll stuff named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()} named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()} # save batch to vtk/npz file TODO clean this up after graph unroll stuff if "np" in save_filetypes: np.savez( results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar} ) # add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Validators", name, results_dir, writer, step, self.invar_trunk_plotter, true_outvar, pred_outvar, ) # add tensorboard scalars for k, loss in losses.items(): if TF_SUMMARY: writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True) else: writer.add_scalar( "Validators/" + name + "/" + k, loss, step, new_style=True ) return losses
modulus-sym-main
modulus/sym/domain/validator/discrete.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .validator import Validator from .continuous import PointwiseValidator, PointVTKValidator from .discrete import GridValidator, DeepONet_Physics_Validator, DeepONet_Data_Validator
modulus-sym-main
modulus/sym/domain/validator/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from typing import List, Dict from pathlib import Path from modulus.sym.domain.validator import Validator from modulus.sym.domain.constraint import Constraint from modulus.sym.utils.io.vtk import var_to_polyvtk, VTKBase from modulus.sym.utils.io import ValidatorPlotter from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.constants import TF_SUMMARY from modulus.sym.dataset import DictPointwiseDataset from modulus.sym.distributed import DistributedManager class PointwiseValidator(Validator): """ Pointwise Validator that allows walidating on pointwise data Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. invar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays as input. true_outvar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays used to validate against validation. batch_size : int, optional Batch size used when running validation, by default 1024 plotter : ValidatorPlotter Modulus plotter for showing results in tensorboard. requires_grad : bool = False If automatic differentiation is needed for computing results. """ def __init__( self, nodes: List[Node], invar: Dict[str, np.array], true_outvar: Dict[str, np.array], batch_size: int = 1024, plotter: ValidatorPlotter = None, requires_grad: bool = False, ): # TODO: add support for other datasets? # get dataset and dataloader self.dataset = DictPointwiseDataset(invar=invar, outvar=true_outvar) self.dataloader = Constraint.get_dataloader( dataset=self.dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=0, distributed=False, infinite=False, ) # construct model from nodes self.model = Graph( nodes, Key.convert_list(self.dataset.invar_keys), Key.convert_list(self.dataset.outvar_keys), ) self.manager = DistributedManager() self.device = self.manager.device self.model.to(self.device) # set foward method self.requires_grad = requires_grad self.forward = self.forward_grad if requires_grad else self.forward_nograd # set plotter self.plotter = plotter def save_results(self, name, results_dir, writer, save_filetypes, step): invar_cpu = {key: [] for key in self.dataset.invar_keys} true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader): # Move data to device (may need gradients in future, if so requires_grad=True) invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) true_outvar = Constraint._set_device( true_outvar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward(invar) # Collect minibatch info into cpu dictionaries invar_cpu = { key: value + [invar[key].cpu().detach()] for key, value in invar_cpu.items() } true_outvar_cpu = { key: value + [true_outvar[key].cpu().detach()] for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: value + [pred_outvar[key].cpu().detach()] for key, value in pred_outvar_cpu.items() } # Concat mini-batch tensors invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()} true_outvar_cpu = { key: torch.cat(value) for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: torch.cat(value) for key, value in pred_outvar_cpu.items() } # compute losses on cpu # TODO add metrics specific for validation # TODO: add potential support for lambda_weighting losses = PointwiseValidator._l2_relative_error(true_outvar_cpu, pred_outvar_cpu) # convert to numpy arrays invar = {k: v.numpy() for k, v in invar_cpu.items()} true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()} pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()} # save batch to vtk file TODO clean this up after graph unroll stuff named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()} named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()} # save batch to vtk/npz file TODO clean this up after graph unroll stuff if "np" in save_filetypes: np.savez( results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar} ) if "vtk" in save_filetypes: var_to_polyvtk( {**invar, **named_true_outvar, **named_pred_outvar}, results_dir + name ) # add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Validators", name, results_dir, writer, step, invar, true_outvar, pred_outvar, ) # add tensorboard scalars for k, loss in losses.items(): if TF_SUMMARY: writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True) else: writer.add_scalar( "Validators/" + name + "/" + k, loss, step, new_style=True ) return losses class PointVTKValidator(PointwiseValidator): """ Pointwise validator using mesh points of VTK object Parameters ---------- vtk_obj : VTKBase Modulus VTK object to use point locations from nodes : List[Node] List of Modulus Nodes to unroll graph with. input_vtk_map : Dict[str, List[str]] Dictionary mapping from Modulus input variables to VTK variable names {"modulus.sym.name": ["vtk name"]}. Use colons to denote components of multi-dimensional VTK arrays ("name":# ) true_vtk_map : Dict[str, List[str]] Dictionary mapping from Modulus target variables to VTK variable names {"modulus.sym.name": ["vtk name"]}. invar : Dict[str, np.array], optional Dictionary of additional numpy arrays as input, by default {} true_outvar : Dict[str, np.array], optional Dictionary of additional numpy arrays used to validate against validation, by default {} batch_size : int Batch size used when running validation. plotter : ValidatorPlotter Modulus plotter for showing results in tensorboard. requires_grad : bool, optional If automatic differentiation is needed for computing results., by default True log_iter : bool, optional Save results to different file each call, by default False """ def __init__( self, vtk_obj: VTKBase, nodes: List[Node], input_vtk_map: Dict[str, List[str]], true_vtk_map: Dict[str, List[str]], invar: Dict[str, np.array] = {}, # Additional inputs true_outvar: Dict[str, np.array] = {}, # Additional targets batch_size: int = 1024, plotter: ValidatorPlotter = None, requires_grad: bool = False, log_iter: bool = False, ): # Set VTK file save dir and file name self.vtk_obj = vtk_obj self.vtk_obj.file_dir = "./validators" self.vtk_obj.file_name = "validator" # Set up input/output names invar_vtk = self.vtk_obj.get_data_from_map(input_vtk_map) invar.update(invar_vtk) # Extract true vars from VTK true_vtk = self.vtk_obj.get_data_from_map(true_vtk_map) true_outvar.update(true_vtk) # set plotter self.plotter = plotter self.log_iter = log_iter # initialize inferencer super().__init__( nodes=nodes, invar=invar, true_outvar=true_outvar, batch_size=batch_size, plotter=plotter, requires_grad=requires_grad, ) def save_results(self, name, results_dir, writer, save_filetypes, step): invar_cpu = {key: [] for key in self.dataset.invar_keys} true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader): # Move data to device (may need gradients in future, if so requires_grad=True) invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) true_outvar = Constraint._set_device( true_outvar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward(invar) # Collect minibatch info into cpu dictionaries invar_cpu = { key: value + [invar[key].cpu().detach()] for key, value in invar_cpu.items() } true_outvar_cpu = { key: value + [true_outvar[key].cpu().detach()] for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: value + [pred_outvar[key].cpu().detach()] for key, value in pred_outvar_cpu.items() } # Concat mini-batch tensors invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()} true_outvar_cpu = { key: torch.cat(value) for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: torch.cat(value) for key, value in pred_outvar_cpu.items() } # compute losses on cpu # TODO add metrics specific for validation # TODO: add potential support for lambda_weighting losses = PointwiseValidator._l2_relative_error(true_outvar_cpu, pred_outvar_cpu) # convert to numpy arrays invar = {k: v.numpy() for k, v in invar_cpu.items()} true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()} pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()} # save batch to vtk file TODO clean this up after graph unroll stuff named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()} named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()} # save batch to vtk/npz file TODO clean this up after graph unroll stuff self.vtk_obj.file_dir = Path(results_dir) self.vtk_obj.file_name = Path(name).stem if "np" in save_filetypes: np.savez( results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar} ) if "vtk" in save_filetypes: if self.log_iter: self.vtk_obj.var_to_vtk(data_vars={**pred_outvar}, step=step) else: self.vtk_obj.var_to_vtk(data_vars={**pred_outvar}) # add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Validators", name, results_dir, writer, step, invar, true_outvar, pred_outvar, ) # add tensorboard scalars for k, loss in losses.items(): if TF_SUMMARY: writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True) else: writer.add_scalar( "Validators/" + name + "/" + k, loss, step, new_style=True ) return losses
modulus-sym-main
modulus/sym/domain/validator/continuous.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import logging import tarfile import torch import numpy as np import gc from typing import Dict, List, Union, Callable, Tuple from pathlib import Path from io import BytesIO from modulus.sym.domain.inferencer import Inferencer from modulus.sym.domain.constraint import Constraint from modulus.sym.graph import Graph from modulus.sym.key import Key from modulus.sym.node import Node from modulus.sym.models.arch import Arch from modulus.sym.distributed import DistributedManager from modulus.sym.dataset import DictInferencePointwiseDataset logger = logging.getLogger("__name__") class OVVoxelInferencer(Inferencer): """Voxel inferencer for Omniverse extension. Includes some additional utilities for OV inference control. Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. input_keys : List[Key] Input key list output_keys : List[Key] Output key list mask_value : float, optional Value to assign masked points, by default np.nan requires_grad : bool, optional If automatic differentiation is needed for computing results, by default False eco : bool, optional Economy mode, will off load model from GPU after inference, by default False progress_bar : ModulusOVProgressBar, optional Modulus OV Extension progress bar for displaying inference progress, by default None """ def __init__( self, nodes: List[Node], input_keys: List[Key], output_keys: List[Key], mask_value: float = np.nan, requires_grad: bool = False, eco: bool = False, progress_bar=None, ): self.requires_grad = requires_grad self._eco = eco self.mask_value = mask_value self.mask_index = None self.input_names = [key.name for key in input_keys] self.output_names = [key.name for key in output_keys] self.progress_bar = progress_bar # construct model from nodes self.model = Graph( nodes, input_keys, output_keys, ) self.manager = DistributedManager() self.device = self.manager.device def setup_voxel_domain( self, bounds: List[List[int]], npoints: List[int], invar: Dict[str, np.array] = {}, # Additional inputs batch_size: int = 1024, mask_fn: Union[Callable, None] = None, ) -> None: """Set up voxel domain for inference Parameters ---------- bounds : List[List[int]] List of domain bounds to form uniform rectangular domain npoints : List[int] Resolution of voxels in each domain invar : Dict[str, np.array], optional Additional input features, by default {} batch_size: int, optional Inference batch size, by default 1024 mask_fn : Union[Callable, None], optional Masking function to remove points from inferencing, by default None """ # Start by setting up the assert len(bounds) == len( npoints ), f"Bounds and npoints must be same length {len(bounds)}, {len(npoints)}" assert 0 < len(bounds) < 4, "Only 1, 2, 3 grid dimensionality allowed" # Pad for missing dimensions self.npoints = np.array(npoints + [1, 1])[:3] self.bounds = np.array(bounds + [[0, 0], [0, 0]])[:3] dx = np.linspace(self.bounds[0][0], self.bounds[0][1], self.npoints[0]) dy = np.linspace(self.bounds[1][0], self.bounds[1][1], self.npoints[1]) dz = np.linspace(self.bounds[2][0], self.bounds[2][1], self.npoints[2]) # Get coordinate arrays (i,j format [x,y,z]) xx, yy, zz = np.meshgrid(dx, dy, dz, indexing="ij") invar.update( { "x": np.reshape(xx, (-1, 1)), "y": np.reshape(yy, (-1, 1)), "z": np.reshape(zz, (-1, 1)), } ) # If mask set up mask indexes if mask_fn is not None: args, *_ = inspect.getargspec(mask_fn) # Fall back np_lambdify does not supply arguement names # Ideally np_lambdify should allow input names to be queried if len(args) == 0: args = list(invar.keys()) # Hope your inputs all go into the mask mask_input = {key: invar[key] for key in args if key in invar} mask = np.squeeze(mask_fn(**mask_input).astype(np.bool)) # True points get masked while False get kept, flip for index self.mask_index = np.logical_not(mask) # Mask out to only masked points (only inference here) for key, value in invar.items(): invar[key] = value[self.mask_index] # get dataset and dataloader self.dataset = DictInferencePointwiseDataset( invar=invar, output_names=self.output_names ) self.dataloader = Constraint.get_dataloader( dataset=self.dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=0, distributed=False, infinite=False, ) def query(self, memory_fraction: float = 1.0) -> Tuple[Dict[str, np.array]]: """Query the inference model Parameters ---------- memory_fraction : float, optional Fraction of GPU memory to let PyTorch allocate, by default 1.0 Returns: Tuple[Dict[str, np.array]]: Dictionary of input and output arrays """ torch.cuda.set_per_process_memory_fraction(memory_fraction) invar_cpu = {key: [] for key in self.dataset.invar_keys} predvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Eco mode on/off loads model every query if self.eco or not next(self.model.parameters()).is_cuda: self.model = self.model.to(self.device) # Loop through mini-batches for i, (invar0,) in enumerate(self.dataloader): # Move data to device invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) if self.requires_grad: pred_outvar = self.model.forward(invar) else: with torch.no_grad(): pred_outvar = self.model.forward(invar) invar_cpu = {key: value + [invar0[key]] for key, value in invar_cpu.items()} predvar_cpu = { key: value + [pred_outvar[key].cpu().detach().numpy()] for key, value in predvar_cpu.items() } # Update progress bar if provided if self.progress_bar: self.progress_bar.inference_step(float(i + 1) / len(self.dataloader)) # Eco mode on/off loads model every query if self.eco: logger.info("Eco inference on, moving model off GPU") self.model.cpu() # Concat mini-batch arrays invar = {key: np.concatenate(value) for key, value in invar_cpu.items()} predvar = {key: np.concatenate(value) for key, value in predvar_cpu.items()} # Mask outputs invar, predvar = self._mask_results(invar, predvar) # Finally reshape back into grid for key, value in invar.items(): shape = list(self.npoints) + [value.shape[1]] invar[key] = np.reshape(value, (shape)) for key, value in predvar.items(): shape = list(self.npoints) + [value.shape[1]] predvar[key] = np.reshape(value, (shape)) # Clean up gc.collect() torch.cuda.empty_cache() torch.cuda.synchronize() return invar, predvar def _mask_results(self, invar, predvar): # Reconstruct full array if mask was applied for key, value in invar.items(): full_array = np.full( (self.mask_index.shape[0], value.shape[1]), self.mask_value, dtype=value.dtype, ) full_array[self.mask_index] = value invar[key] = full_array for key, value in predvar.items(): full_array = np.full( (self.mask_index.shape[0], value.shape[1]), self.mask_value, dtype=value.dtype, ) full_array[self.mask_index] = value predvar[key] = full_array return invar, predvar def save_results(self, name, results_dir, writer, save_filetypes, step): logger.warn( "OVoxInferencer is not designed to be used inside of Modulus solver" ) pass def load_models(self, checkpoint_dir: str): logging.info(f"Loading model checkpoint at {checkpoint_dir}") for m in self.model.evaluation_order: if m.saveable: m.load(str(checkpoint_dir)) @property def eco(self): return self._eco @eco.setter def eco(self, e: bool): self._eco = e if e == False: self.model.to(self.device) else: self.model.cpu() class OVFourCastNetInferencer(Inferencer): """FourCastNet inferencer for Omniverse extension. Includes some additional utilities for OV inference control. Parameters ---------- afno_model : Union[Arch, torch.nn.Module] AFNO model object n_channels : int Number of input channels / fields img_shape : Tuple[int, int], optional Input field shape, by default (720, 1440) eco : bool, optional Economy mode, will off load model from GPU after inference, by default False progress_bar : ModulusOVProgressBar, optional Modulus OV Extension progress bar for displaying inference progress, by default None """ def __init__( self, afno_model: Union[Arch, torch.nn.Module], n_channels: int, img_shape: Tuple[int, int] = (720, 1440), eco: bool = False, progress_bar=None, ): self._eco = eco self.n_channels = n_channels self.img_shape = img_shape self.progress_bar = progress_bar self.mu = None self.std = None # Get PyTorch model out of node if a Modulus Node if hasattr(afno_model, "_impl"): self.model = afno_model._impl else: self.model = afno_model self.manager = DistributedManager() self.device = self.manager.device def load_initial_state_npy( self, file_path: str, tar_file_path: Union[str, None] = None, ) -> None: """Loads a FCN initial state into CPU memory stored in a npy file Dimensionality of the .npz file should be [in_channels, height, width] Parameters ---------- file_path : str File path to .npy file tar_file_path : Union[str, None], optional Optional tar ball with .npy file inside, by default None """ if tar_file_path is None: file_path = Path(file_path) assert file_path.is_file(), f"Invalid npy file path {file_path}" init_np = np.load(file_path) else: init_np = self.get_array_from_tar(tar_file_path, file_path) logger.info(f"Initial condition loaded with shape {init_np.shape}") # Run dimension checks assert init_np.ndim == 3, f"Initial state should have 3 dimensions" assert ( init_np.shape[0] == self.n_channels ), f"Incorrect channel size; expected {self.n_channels}, got {init_np.shape[0]}" assert ( init_np.shape[1] == self.img_shape[0] and init_np.shape[2] == self.img_shape[1] ), "Incorrect field/image shape" self.init_state = torch.Tensor(init_np).unsqueeze(0) def load_stats_npz( self, file_path: str, tar_file_path: Union[str, None] = None, ) -> None: """Loads mean and standard deviation normalization stats from npz file Dimensionality of stats in .npz file should be [in_channels, 1, 1]. Npz file should have two arrays: "mu" and "std" Parameters ---------- file_path : str File path to .npz file tar_file_path : Union[str, None], optional Optional tar ball with .npy file inside, by default None """ if tar_file_path is None: file_path = Path(file_path) assert file_path.is_file(), f"Invalid npz file path {file_path}" stat_npz = np.load(file_path) else: stat_npz = self.get_array_from_tar(tar_file_path, file_path) mu = stat_npz["mu"] std = stat_npz["std"] logger.info(f"Mu array loaded with shape {mu.shape}") logger.info(f"Std array loaded with shape {std.shape}") # Run dimension checks assert mu.ndim == 3 and std.ndim == 3, f"Mu and Std should have 3 dimensions" assert ( mu.shape[0] == self.n_channels ), f"Incorrect channel size; expected {self.n_channels}, got {mu.shape[0]}" assert ( std.shape[0] == self.n_channels ), f"Incorrect channel size; expected {self.n_channels}, got {std.shape[0]}" self.mu = torch.Tensor(mu).unsqueeze(0) self.std = torch.Tensor(std).unsqueeze(0) @torch.no_grad() def query(self, tsteps: int, memory_fraction: float = 1.0) -> np.array: """Query the inference model, only a batch size of 1 is supported Parameters ---------- tsteps : int Number of timesteps to forecast memory_fraction : float, optional Fraction of GPU memory to let PyTorch allocate, by default 1.0 Returns ------- np.array [tsteps+1, channels, height, width] output prediction fields """ torch.cuda.set_per_process_memory_fraction(memory_fraction) # Create ouput prediction tensor [Tsteps, C, H, W] shape = self.init_state.shape outputs = torch.zeros(shape[0] + tsteps, shape[1], shape[2], shape[3]) outputs[0] = (self.init_state - self.mu) / self.std # Eco mode on/off loads model every query if self.eco or not next(self.model.parameters()).is_cuda: self.model = self.model.to(self.device) # Loop through time-steps for t in range(tsteps): # Get input time-step invar = outputs[t : t + 1].to(self.device) # Predict outvar = self.model.forward(invar) # Store outputs[t + 1] = outvar[0].detach().cpu() # Update progress bar if present if self.progress_bar: self.progress_bar.inference_step(float(t + 1) / tsteps) # Eco mode on/off loads model every query if self.eco: logger.info("Eco inference on, moving model off GPU") self.model.cpu() outputs = self.std * outputs + self.mu outputs = outputs.numpy() # Clean up gc.collect() torch.cuda.empty_cache() torch.cuda.synchronize() return outputs def get_array_from_tar(self, tar_file_path: str, np_file_path: str): """Loads a numpy array from tar ball, will load entire numpy array into memory Based on workaround: https://github.com/numpy/numpy/issues/7989 Parameters ---------- tar_file_path : str File path to tar ball np_file_path : str Local path of numpy file inside of tar file Returns ------- np.array Extracted numpy array """ tar_file_path = Path(tar_file_path) assert tar_file_path.is_file(), f"Invalid tar file path {tar_file_path}" # Open tarball with tarfile.open(tar_file_path, "r:gz") as tar: logging.info(f"Loaded tar.gz with files:") tar.list() array_file = BytesIO() array_file.write(tar.extractfile(np_file_path).read()) array_file.seek(0) return np.load(array_file) def save_results(self, name, results_dir, writer, save_filetypes, step): logger.warn( "OVFourCastNetInferencer is not designed to be used inside of Modulus solver" ) pass @property def eco(self): return self._eco @eco.setter def eco(self, e: bool): self._eco = e if e == False: self.model.to(self.device) else: self.model.cpu()
modulus-sym-main
modulus/sym/domain/inferencer/ov.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch class Inferencer: """ Inferencer base class """ def forward_grad(self, invar): pred_outvar = self.model(invar) return pred_outvar def forward_nograd(self, invar): with torch.no_grad(): pred_outvar = self.model(invar) return pred_outvar def save_results(self, name, results_dir, writer, save_filetypes, step): raise NotImplementedError("Subclass of Inferencer needs to implement this")
modulus-sym-main
modulus/sym/domain/inferencer/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .inferencer import Inferencer from .pointwise import PointwiseInferencer from .vtkpointwise import PointVTKInferencer from .voxel import VoxelInferencer from .ov import OVVoxelInferencer, OVFourCastNetInferencer
modulus-sym-main
modulus/sym/domain/inferencer/__init__.py