python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # from __future__ import annotations # pylint: disable=unused-variable import json import logging from pathlib import Path import time from typing import Dict, List, NewType, Iterable import requests from aistore.sdk.ais_source import AISSource from aistore.sdk.etl_const import DEFAULT_ETL_TIMEOUT from aistore.sdk.object_iterator import ObjectIterator from aistore.sdk.const import ( ACT_COPY_BCK, ACT_CREATE_BCK, ACT_DESTROY_BCK, ACT_ETL_BCK, ACT_EVICT_REMOTE_BCK, ACT_LIST, ACT_MOVE_BCK, ACT_SUMMARY_BCK, HEADER_ACCEPT, HEADER_BUCKET_PROPS, HEADER_BUCKET_SUMM, HTTP_METHOD_DELETE, HTTP_METHOD_GET, HTTP_METHOD_HEAD, HTTP_METHOD_POST, MSGPACK_CONTENT_TYPE, PROVIDER_AIS, QPARAM_BCK_TO, QPARAM_COUNT_REMOTE_OBJS, QPARAM_FLT_PRESENCE, QPARAM_KEEP_REMOTE, QPARAM_NAMESPACE, QPARAM_PROVIDER, URL_PATH_BUCKETS, STATUS_ACCEPTED, STATUS_OK, ) from aistore.sdk.errors import ( InvalidBckProvider, ErrBckAlreadyExists, ErrBckNotFound, UnexpectedHTTPStatusCode, ) from aistore.sdk.multiobj import ObjectGroup, ObjectRange from aistore.sdk.request_client import RequestClient from aistore.sdk.object import Object from aistore.sdk.types import ( ActionMsg, BucketEntry, BucketList, BucketModel, BsummCtrlMsg, Namespace, CopyBckMsg, TransformBckMsg, TCBckMsg, ListObjectsMsg, ) from aistore.sdk.list_object_flag import ListObjectFlag from aistore.sdk.utils import validate_directory, get_file_size Header = NewType("Header", requests.structures.CaseInsensitiveDict) # pylint: disable=unused-variable,too-many-public-methods class Bucket(AISSource): """ A class representing a bucket that contains user data. Args: client (RequestClient): Client for interfacing with AIS cluster name (str): name of bucket provider (str, optional): Provider of bucket (one of "ais", "aws", "gcp", ...), defaults to "ais" namespace (Namespace, optional): Namespace of bucket, defaults to None """ def __init__( self, name: str, client: RequestClient = None, provider: str = PROVIDER_AIS, namespace: Namespace = None, ): self._client = client self._name = name self._provider = provider self._namespace = namespace self._qparam = {QPARAM_PROVIDER: provider} if self.namespace: self._qparam[QPARAM_NAMESPACE] = namespace.get_path() @property def client(self) -> RequestClient: """The client bound to this bucket.""" return self._client @property def qparam(self) -> Dict: """Default query parameters to use with API calls from this bucket.""" return self._qparam @property def provider(self) -> str: """The provider for this bucket.""" return self._provider @property def name(self) -> str: """The name of this bucket.""" return self._name @property def namespace(self) -> Namespace: """The namespace for this bucket.""" return self._namespace def list_urls(self, prefix: str = "", etl_name: str = None) -> Iterable[str]: """ Get an iterator of full URLs to every object in this bucket matching the prefix Args: prefix (str, optional): Limit objects selected by a given string prefix etl_name (str, optional): ETL to include in URLs Returns: Iterator of all object URLs matching the prefix """ for entry in self.list_objects_iter(prefix=prefix, props="name"): yield self.object(entry.name).get_url(etl_name=etl_name) def create(self, exist_ok=False): """ Creates a bucket in AIStore cluster. Can only create a bucket for AIS provider on localized cluster. Remote cloud buckets do not support creation. Args: exist_ok (bool, optional): Ignore error if the cluster already contains this bucket Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore aistore.sdk.errors.InvalidBckProvider: Invalid bucket provider for requested operation requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore """ self._verify_ais_bucket() try: self.make_request(HTTP_METHOD_POST, ACT_CREATE_BCK) except ErrBckAlreadyExists as err: if not exist_ok: raise err return self def delete(self, missing_ok=False): """ Destroys bucket in AIStore cluster. In all cases removes both the bucket's content _and_ the bucket's metadata from the cluster. Note: AIS will _not_ call the remote backend provider to delete the corresponding Cloud bucket (iff the bucket in question is, in fact, a Cloud bucket). Args: missing_ok (bool, optional): Ignore error if bucket does not exist Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore aistore.sdk.errors.InvalidBckProvider: Invalid bucket provider for requested operation requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore """ self._verify_ais_bucket() try: self.make_request(HTTP_METHOD_DELETE, ACT_DESTROY_BCK) except ErrBckNotFound as err: if not missing_ok: raise err def rename(self, to_bck_name: str) -> str: """ Renames bucket in AIStore cluster. Only works on AIS buckets. Returns job ID that can be used later to check the status of the asynchronous operation. Args: to_bck_name (str): New bucket name for bucket to be renamed as Returns: Job ID (as str) that can be used to check the status of the operation Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore aistore.sdk.errors.InvalidBckProvider: Invalid bucket provider for requested operation requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore """ self._verify_ais_bucket() params = self.qparam.copy() params[QPARAM_BCK_TO] = Bucket( name=to_bck_name, namespace=self.namespace ).get_path() resp = self.make_request(HTTP_METHOD_POST, ACT_MOVE_BCK, params=params) self._name = to_bck_name return resp.text def evict(self, keep_md: bool = False): """ Evicts bucket in AIStore cluster. NOTE: only Cloud buckets can be evicted. Args: keep_md (bool, optional): If true, evicts objects but keeps the bucket's metadata (i.e., the bucket's name and its properties) Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore aistore.sdk.errors.InvalidBckProvider: Invalid bucket provider for requested operation requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore """ self.verify_cloud_bucket() params = self.qparam.copy() params[QPARAM_KEEP_REMOTE] = str(keep_md) self.make_request(HTTP_METHOD_DELETE, ACT_EVICT_REMOTE_BCK, params=params) def head(self) -> Header: """ Requests bucket properties. Returns: Response header with the bucket properties Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore """ return self.client.request( HTTP_METHOD_HEAD, path=f"{URL_PATH_BUCKETS}/{self.name}", params=self.qparam, ).headers # pylint: disable=too-many-arguments def summary( self, uuid: str = "", prefix: str = "", fast: bool = True, cached: bool = True, present: bool = True, ): """ Returns bucket summary (starts xaction job and polls for results). Args: uuid (str): Identifier for the bucket summary. Defaults to an empty string. prefix (str): Prefix for objects to be included in the bucket summary. Defaults to an empty string (all objects). fast (bool): If True, performs and returns a quick summary. Defaults to True. cached (bool): If True, summary entails cached entities. Defaults to True. present (bool): If True, summary entails present entities. Defaults to True. Raises: requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore aistore.sdk.errors.AISError: All other types of errors with AIStore """ bsumm_ctrl_msg = BsummCtrlMsg( uuid=uuid, prefix=prefix, fast=fast, cached=cached, present=present ) # Start the job and get the job ID resp = self.make_request( HTTP_METHOD_GET, ACT_SUMMARY_BCK, params=self.qparam, value=bsumm_ctrl_msg.dict(), ) # Initial response status code should be 202 if resp.status_code == STATUS_OK: raise UnexpectedHTTPStatusCode([STATUS_ACCEPTED], resp.status_code) job_id = resp.text.strip('"') # Update the uuid in the control message bsumm_ctrl_msg.uuid = job_id # Sleep and request frequency in sec (starts at 200 ms) sleep_time = 0.2 # Poll async task for http.StatusOK completion while True: resp = self.make_request( HTTP_METHOD_GET, ACT_SUMMARY_BCK, params=self.qparam, value=bsumm_ctrl_msg.dict(), ) # If task completed successfully, break the loop if resp.status_code == STATUS_OK: break # If task is still running, wait for some time and try again if resp.status_code == STATUS_ACCEPTED: time.sleep(sleep_time) sleep_time = min( 10, sleep_time * 1.5 ) # Increase sleep_time by 50%, but don't exceed 10 seconds # Otherwise, if status code received is neither STATUS_OK or STATUS_ACCEPTED, raise an exception else: raise UnexpectedHTTPStatusCode( [STATUS_OK, STATUS_ACCEPTED], resp.status_code ) return json.loads(resp.content.decode("utf-8"))[0] def info(self, flt_presence: int = 0, count_remote_objs: bool = True): """ Returns bucket summary and information/properties. Args: count_remote_objs (bool): If True, returned bucket info will entail remote objects as well flt_presence (int): Describes the presence of buckets and objects with respect to their existence or non-existence in the AIS cluster. Defaults to 0. Expected values are: 0 - (object | bucket) exists inside and/or outside cluster 1 - same as 0 but no need to return summary 2 - bucket: is present | object: present and properly located 3 - same as 2 but no need to return summary 4 - objects: present anywhere/anyhow _in_ the cluster as: replica, ec-slices, misplaced 5 - not present - exists _outside_ cluster Raises: requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore ValueError: `flt_presence` is not one of the expected values aistore.sdk.errors.AISError: All other types of errors with AIStore """ if flt_presence not in range(6): raise ValueError("`flt_presence` must be one of 0, 1, 2, 3, 4, or 5.") params = self.qparam.copy() params.update({QPARAM_FLT_PRESENCE: flt_presence}) if count_remote_objs: params.update({QPARAM_COUNT_REMOTE_OBJS: count_remote_objs}) response = self.client.request( HTTP_METHOD_HEAD, path=f"{URL_PATH_BUCKETS}/{self.name}", params=params, ) bucket_props = json.loads(response.headers.get(HEADER_BUCKET_PROPS, "{}")) bucket_summ = json.loads(response.headers.get(HEADER_BUCKET_SUMM, "{}")) return bucket_props, bucket_summ # pylint: disable=too-many-arguments def copy( self, to_bck: Bucket, prefix_filter: str = "", prepend: str = "", dry_run: bool = False, force: bool = False, ) -> str: """ Returns job ID that can be used later to check the status of the asynchronous operation. Args: to_bck (Bucket): Destination bucket prefix_filter (str, optional): Only copy objects with names starting with this prefix prepend (str, optional): Value to prepend to the name of copied objects dry_run (bool, optional): Determines if the copy should actually happen or not force (bool, optional): Override existing destination bucket Returns: Job ID (as str) that can be used to check the status of the operation Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore """ value = CopyBckMsg( prefix=prefix_filter, prepend=prepend, dry_run=dry_run, force=force ).as_dict() params = self.qparam.copy() params[QPARAM_BCK_TO] = to_bck.get_path() return self.make_request( HTTP_METHOD_POST, ACT_COPY_BCK, value=value, params=params ).text # pylint: disable=too-many-arguments def list_objects( self, prefix: str = "", props: str = "", page_size: int = 0, uuid: str = "", continuation_token: str = "", flags: List[ListObjectFlag] = None, target: str = "", ) -> BucketList: """ Returns a structure that contains a page of objects, job ID, and continuation token (to read the next page, if available). Args: prefix (str, optional): Return only objects that start with the prefix props (str, optional): Comma-separated list of object properties to return. Default value is "name,size". Properties: "name", "size", "atime", "version", "checksum", "cached", "target_url", "status", "copies", "ec", "custom", "node". page_size (int, optional): Return at most "page_size" objects. The maximum number of objects in response depends on the bucket backend. E.g, AWS bucket cannot return more than 5,000 objects in a single page. NOTE: If "page_size" is greater than a backend maximum, the backend maximum objects are returned. Defaults to "0" - return maximum number of objects. uuid (str, optional): Job ID, required to get the next page of objects continuation_token (str, optional): Marks the object to start reading the next page flags (List[ListObjectFlag], optional): Optional list of ListObjectFlag enums to include as flags in the request target(str, optional): Only list objects on this specific target node Returns: BucketList: the page of objects in the bucket and the continuation token to get the next page Empty continuation token marks the final page of the object list Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore """ value = ListObjectsMsg( prefix=prefix, page_size=page_size, uuid=uuid, props=props, continuation_token=continuation_token, flags=[] if flags is None else flags, target=target, ).as_dict() action = ActionMsg(action=ACT_LIST, value=value).dict() bucket_list = self.client.request_deserialize( HTTP_METHOD_GET, path=f"{URL_PATH_BUCKETS}/{ self.name }", headers={HEADER_ACCEPT: MSGPACK_CONTENT_TYPE}, res_model=BucketList, json=action, params=self.qparam, ) for entry in bucket_list.entries: entry.object = self.object(entry.name) return bucket_list def list_objects_iter( self, prefix: str = "", props: str = "", page_size: int = 0, flags: List[ListObjectFlag] = None, target: str = "", ) -> ObjectIterator: """ Returns an iterator for all objects in bucket Args: prefix (str, optional): Return only objects that start with the prefix props (str, optional): Comma-separated list of object properties to return. Default value is "name,size". Properties: "name", "size", "atime", "version", "checksum", "cached", "target_url", "status", "copies", "ec", "custom", "node". page_size (int, optional): return at most "page_size" objects The maximum number of objects in response depends on the bucket backend. E.g, AWS bucket cannot return more than 5,000 objects in a single page. NOTE: If "page_size" is greater than a backend maximum, the backend maximum objects are returned. Defaults to "0" - return maximum number objects flags (List[ListObjectFlag], optional): Optional list of ListObjectFlag enums to include as flags in the request target(str, optional): Only list objects on this specific target node Returns: ObjectIterator: object iterator Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore """ def fetch_objects(uuid, token): return self.list_objects( prefix, props, page_size, uuid=uuid, continuation_token=token, flags=flags, target=target, ) return ObjectIterator(fetch_objects) def list_all_objects( self, prefix: str = "", props: str = "", page_size: int = 0, flags: List[ListObjectFlag] = None, target: str = "", ) -> List[BucketEntry]: """ Returns a list of all objects in bucket Args: prefix (str, optional): return only objects that start with the prefix props (str, optional): comma-separated list of object properties to return. Default value is "name,size". Properties: "name", "size", "atime", "version", "checksum", "cached", "target_url", "status", "copies", "ec", "custom", "node". page_size (int, optional): return at most "page_size" objects The maximum number of objects in response depends on the bucket backend. E.g, AWS bucket cannot return more than 5,000 objects in a single page. NOTE: If "page_size" is greater than a backend maximum, the backend maximum objects are returned. Defaults to "0" - return maximum number objects flags (List[ListObjectFlag], optional): Optional list of ListObjectFlag enums to include as flags in the request target(str, optional): Only list objects on this specific target node Returns: List[BucketEntry]: list of objects in bucket Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore """ uuid = "" continuation_token = "" obj_list = None while True: resp = self.list_objects( prefix=prefix, props=props, page_size=page_size, uuid=uuid, continuation_token=continuation_token, flags=flags, target=target, ) if obj_list: obj_list = obj_list + resp.entries obj_list = obj_list or resp.entries if resp.continuation_token == "": break continuation_token = resp.continuation_token uuid = resp.uuid return obj_list # pylint: disable=too-many-arguments def transform( self, etl_name: str, to_bck: Bucket, timeout: str = DEFAULT_ETL_TIMEOUT, prefix_filter: str = "", prepend: str = "", ext: Dict[str, str] = None, force: bool = False, dry_run: bool = False, ) -> str: """ Visits all selected objects in the source bucket and for each object, puts the transformed result to the destination bucket Args: etl_name (str): name of etl to be used for transformations to_bck (str): destination bucket for transformations timeout (str, optional): Timeout of the ETL job (e.g. 5m for 5 minutes) prefix_filter (str, optional): Only transform objects with names starting with this prefix prepend (str, optional): Value to prepend to the name of resulting transformed objects ext (Dict[str, str], optional): dict of new extension followed by extension to be replaced (i.e. {"jpg": "txt"}) dry_run (bool, optional): determines if the copy should actually happen or not force (bool, optional): override existing destination bucket Returns: Job ID (as str) that can be used to check the status of the operation """ value = TCBckMsg( ext=ext, transform_msg=TransformBckMsg(etl_name=etl_name, timeout=timeout), copy_msg=CopyBckMsg( prefix=prefix_filter, prepend=prepend, force=force, dry_run=dry_run ), ).as_dict() params = self.qparam.copy() params[QPARAM_BCK_TO] = to_bck.get_path() return self.make_request( HTTP_METHOD_POST, ACT_ETL_BCK, value=value, params=params ).text def put_files( self, path: str, prefix_filter: str = "", pattern: str = "*", basename: bool = False, prepend: str = None, recursive: bool = False, dry_run: bool = False, verbose: bool = True, ) -> List[str]: """ Puts files found in a given filepath as objects to a bucket in AIS storage. Args: path (str): Local filepath, can be relative or absolute prefix_filter (str, optional): Only put files with names starting with this prefix pattern (str, optional): Regex pattern to filter files basename (bool, optional): Whether to use the file names only as object names and omit the path information prepend (str, optional): Optional string to use as a prefix in the object name for all objects uploaded No delimiter ("/", "-", etc.) is automatically applied between the prepend value and the object name recursive (bool, optional): Whether to recurse through the provided path directories dry_run (bool, optional): Option to only show expected behavior without an actual put operation verbose (bool, optional): Whether to print upload info to standard output Returns: List of object names put to a bucket in AIS Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore ValueError: The path provided is not a valid directory """ validate_directory(path) file_iterator = ( Path(path).rglob(pattern) if recursive else Path(path).glob(pattern) ) obj_names = [] dry_run_prefix = "Dry-run enabled. Proposed action:" if dry_run else "" logger = logging.getLogger(f"{__name__}.put_files") logger.disabled = not verbose for file in file_iterator: if not file.is_file() or not str(file.name).startswith(prefix_filter): continue obj_name = self._get_uploaded_obj_name(file, path, basename, prepend) if not dry_run: self.object(obj_name).put_file(str(file)) logger.info( "%s File '%s' uploaded as object '%s' with size %s", dry_run_prefix, file, obj_name, get_file_size(file), ) obj_names.append(obj_name) logger.info( "%s Specified files from %s uploaded to bucket %s", dry_run_prefix, path, f"{self.provider}://{self.name}", ) return obj_names @staticmethod def _get_uploaded_obj_name(file, root_path, basename, prepend): obj_name = str(file.relative_to(root_path)) if not basename else file.name if prepend: return prepend + obj_name return obj_name def object(self, obj_name: str) -> Object: """ Factory constructor for an object in this bucket. Does not make any HTTP request, only instantiates an object in a bucket owned by the client. Args: obj_name (str): Name of object Returns: The object created. """ return Object( bucket=self, name=obj_name, ) def objects( self, obj_names: list = None, obj_range: ObjectRange = None, obj_template: str = None, ) -> ObjectGroup: """ Factory constructor for multiple objects belonging to this bucket. Args: obj_names (list): Names of objects to include in the group obj_range (ObjectRange): Range of objects to include in the group obj_template (str): String template defining objects to include in the group Returns: The ObjectGroup created """ return ObjectGroup( bck=self, obj_names=obj_names, obj_range=obj_range, obj_template=obj_template, ) def make_request( self, method: str, action: str, value: dict = None, params: dict = None, ) -> requests.Response: """ Use the bucket's client to make a request to the bucket endpoint on the AIS server Args: method (str): HTTP method to use, e.g. POST/GET/DELETE action (str): Action string used to create an ActionMsg to pass to the server value (dict): Additional value parameter to pass in the ActionMsg params (dict, optional): Optional parameters to pass in the request Returns: Response from the server """ if self._client is None: raise ValueError( "Bucket requires a client to use functions. Try defining a client and accessing this bucket with " "client.bucket()" ) json_val = ActionMsg(action=action, value=value).dict() return self._client.request( method, path=f"{URL_PATH_BUCKETS}/{self.name}", json=json_val, params=params if params else self.qparam, ) def _verify_ais_bucket(self): """ Verify the bucket provider is AIS """ if self.provider is not PROVIDER_AIS: raise InvalidBckProvider(self.provider) def verify_cloud_bucket(self): """ Verify the bucket provider is a cloud provider """ if self.provider is PROVIDER_AIS: raise InvalidBckProvider(self.provider) def get_path(self) -> str: """ Get the path representation of this bucket """ namespace_path = self.namespace.get_path() if self.namespace else "@#" return f"{ self.provider }/{ namespace_path }/{ self.name }/" def as_model(self) -> BucketModel: """ Return a data-model of the bucket Returns: BucketModel representation """ return BucketModel( name=self.name, namespace=self.namespace, provider=self.provider )
aistore-master
python/aistore/sdk/bucket.py
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # from io import BufferedWriter from typing import NewType, Iterable import requests from aistore.sdk.ais_source import AISSource from aistore.sdk.const import ( DEFAULT_CHUNK_SIZE, HTTP_METHOD_DELETE, HTTP_METHOD_GET, HTTP_METHOD_HEAD, HTTP_METHOD_PUT, QPARAM_ARCHPATH, QPARAM_ETL_NAME, ACT_PROMOTE, HTTP_METHOD_POST, URL_PATH_OBJECTS, ) from aistore.sdk.object_reader import ObjectReader from aistore.sdk.types import ActionMsg, PromoteAPIArgs from aistore.sdk.utils import read_file_bytes, validate_file Header = NewType("Header", requests.structures.CaseInsensitiveDict) # pylint: disable=consider-using-with,unused-variable class Object(AISSource): """ A class representing an object of a bucket bound to a client. Args: bucket (Bucket): Bucket to which this object belongs name (str): name of object """ def __init__(self, bucket: "Bucket", name: str): self._bucket = bucket self._client = bucket.client self._bck_name = bucket.name self._qparams = bucket.qparam self._name = name self._object_path = f"{URL_PATH_OBJECTS}/{ self._bck_name}/{ self.name }" @property def bucket(self): """Bucket containing this object""" return self._bucket @property def name(self): """Name of this object""" return self._name def list_urls(self, prefix: str = "", etl_name: str = None) -> Iterable[str]: yield self.get_url(etl_name=etl_name) def head(self) -> Header: """ Requests object properties. Returns: Response header with the object properties. Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore requests.exceptions.HTTPError(404): The object does not exist """ return self._client.request( HTTP_METHOD_HEAD, path=self._object_path, params=self._qparams, ).headers def get( self, archpath: str = "", chunk_size: int = DEFAULT_CHUNK_SIZE, etl_name: str = None, writer: BufferedWriter = None, ) -> ObjectReader: """ Reads an object Args: archpath (str, optional): If the object is an archive, use `archpath` to extract a single file from the archive chunk_size (int, optional): chunk_size to use while reading from stream etl_name (str, optional): Transforms an object based on ETL with etl_name writer (BufferedWriter, optional): User-provided writer for writing content output. User is responsible for closing the writer Returns: The stream of bytes to read an object or a file inside an archive. Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore """ params = self._qparams.copy() params[QPARAM_ARCHPATH] = archpath if etl_name: params[QPARAM_ETL_NAME] = etl_name resp = self._client.request( HTTP_METHOD_GET, path=self._object_path, params=params, stream=True, ) obj_reader = ObjectReader( stream=resp, response_headers=resp.headers, chunk_size=chunk_size, ) if writer: writer.writelines(obj_reader) return obj_reader def get_url(self, archpath: str = "", etl_name: str = None): """ Get the full url to the object including base url and any query parameters Args: archpath (str, optional): If the object is an archive, use `archpath` to extract a single file from the archive etl_name (str, optional): Transforms an object based on ETL with etl_name Returns: Full URL to get object """ params = self._qparams.copy() if archpath: params[QPARAM_ARCHPATH] = archpath if etl_name: params[QPARAM_ETL_NAME] = etl_name return self._client.get_full_url(self._object_path, params) def put_content(self, content: bytes) -> Header: """ Puts bytes as an object to a bucket in AIS storage. Args: content (bytes): Bytes to put as an object. Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore """ self._put_data(self.name, content) def put_file(self, path: str = None): """ Puts a local file as an object to a bucket in AIS storage. Args: path (str): Path to local file Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore ValueError: The path provided is not a valid file """ validate_file(path) self._put_data(self.name, read_file_bytes(path)) def _put_data(self, obj_name: str, data: bytes): url = f"{URL_PATH_OBJECTS}/{ self._bck_name }/{ obj_name }" self._client.request( HTTP_METHOD_PUT, path=url, params=self._qparams, data=data, ) # pylint: disable=too-many-arguments def promote( self, path: str, target_id: str = "", recursive: bool = False, overwrite_dest: bool = False, delete_source: bool = False, src_not_file_share: bool = False, ) -> Header: """ Promotes a file or folder an AIS target can access to a bucket in AIS storage. These files can be either on the physical disk of an AIS target itself or on a network file system the cluster can access. See more info here: https://aiatscale.org/blog/2022/03/17/promote Args: path (str): Path to file or folder the AIS cluster can reach target_id (str, optional): Promote files from a specific target node recursive (bool, optional): Recursively promote objects from files in directories inside the path overwrite_dest (bool, optional): Overwrite objects already on AIS delete_source (bool, optional): Delete the source files when done promoting src_not_file_share (bool, optional): Optimize if the source is guaranteed to not be on a file share Returns: Object properties Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore AISError: Path does not exist on the AIS cluster storage """ url = f"{URL_PATH_OBJECTS}/{ self._bck_name }" value = PromoteAPIArgs( source_path=path, object_name=self.name, target_id=target_id, recursive=recursive, overwrite_dest=overwrite_dest, delete_source=delete_source, src_not_file_share=src_not_file_share, ).as_dict() json_val = ActionMsg(action=ACT_PROMOTE, name=path, value=value).dict() return self._client.request( HTTP_METHOD_POST, path=url, params=self._qparams, json=json_val ).headers def delete(self): """ Delete an object from a bucket. Returns: None Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore requests.exceptions.HTTPError(404): The object does not exist """ self._client.request( HTTP_METHOD_DELETE, path=self._object_path, params=self._qparams, )
aistore-master
python/aistore/sdk/object.py
from typing import List from pydantic import BaseModel, Field from aistore.sdk.types import BucketModel # See ext/dsort/metric.go for cluster-side type definitions # pylint: disable=too-few-public-methods class TimeStats(BaseModel): """ Statistics for time spent on tasks """ total_ms: str count: str min_ms: str max_ms: str avg_ms: str class ThroughputStats(BaseModel): """ Statistics on task throughput """ total: str count: str min_throughput: str max_throughput: str avg_throughput: str class DetailedStats(TimeStats, ThroughputStats): """ Include fields from both time and throughput stats """ class PhaseInfo(BaseModel): """ Stats for a specific dSort phase """ started_time: str end_time: str elapsed: str running: bool finished: bool class LocalExtraction(PhaseInfo): """ Metrics for first phase of dSort """ total_count: str extracted_count: str extracted_size: str extracted_record_count: str extracted_to_disk_count: str extracted_to_disk_size: str single_shard_stats: DetailedStats = None class MetaSorting(PhaseInfo): """ Metrics for second phase of dSort """ sent_stats: TimeStats = None recv_stats: TimeStats = None class ShardCreation(PhaseInfo): """ Metrics for final phase of dSort """ to_create: str created_count: str moved_shard_count: str req_stats: TimeStats = None resp_stats: TimeStats = None local_send_stats: DetailedStats = None local_recv_stats: DetailedStats = None single_shard_stats: DetailedStats = None class DsortMetrics(BaseModel): """ All stats for a dSort run """ local_extraction: LocalExtraction meta_sorting: MetaSorting shard_creation: ShardCreation aborted: bool = None archived: bool = None description: str = None warnings: List[str] = None errors: List[str] = None extended: bool = None class JobInfo(BaseModel): """ Info about a dsort Job, including metrics """ id: str src_bck: BucketModel = Field(alias="src-bck") dst_bck: BucketModel = Field(alias="dst-bck") started_time: str = None finish_time: str = None extracted_duration: str = Field(alias="started_meta_sorting", default=None) sorting_duration: str = Field(alias="started_shard_creation", default=None) creation_duration: str = Field(alias="finished_shard_creation", default=None) objects: int = Field(alias="loc-objs") bytes: int = Field(alias="loc-bytes") metrics: DsortMetrics = Field(alias="Metrics") aborted: bool archived: bool # pylint: disable=missing-class-docstring class Config: allow_population_by_field_name = True
aistore-master
python/aistore/sdk/dsort_types.py
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # from __future__ import annotations # pylint: disable=unused-variable import itertools import logging from datetime import datetime from typing import List, Dict import time from aistore.sdk.bucket import Bucket from aistore.sdk.const import ( HTTP_METHOD_GET, HTTP_METHOD_PUT, QPARAM_WHAT, QPARAM_FORCE, DEFAULT_JOB_WAIT_TIMEOUT, WHAT_ONE_XACT_STATUS, URL_PATH_CLUSTER, ACT_START, WHAT_QUERY_XACT_STATS, ) from aistore.sdk.errors import Timeout, JobInfoNotFound from aistore.sdk.request_client import RequestClient from aistore.sdk.types import JobStatus, JobArgs, ActionMsg, JobSnapshot, BucketModel from aistore.sdk.utils import probing_frequency # pylint: disable=unused-variable class Job: """ A class containing job-related functions. Args: client (RequestClient): Client for interfacing with AIS cluster job_id (str, optional): ID of a specific job, empty for all jobs job_kind (str, optional): Specific kind of job, empty for all kinds """ # pylint: disable=duplicate-code def __init__(self, client: RequestClient, job_id: str = "", job_kind: str = ""): self._client = client self._job_id = job_id self._job_kind = job_kind @property def job_id(self): """ Return job id """ return self._job_id @property def job_kind(self): """ Return job kind """ return self._job_kind def status( self, ) -> JobStatus: """ Return status of a job Returns: The job status including id, finish time, and error info. Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore """ if not self._job_id: raise ValueError("Cannot query status on a job without an assigned ID") return self._client.request_deserialize( HTTP_METHOD_GET, path=URL_PATH_CLUSTER, res_model=JobStatus, json=JobArgs(id=self._job_id, kind=self._job_kind).as_dict(), params={QPARAM_WHAT: WHAT_ONE_XACT_STATUS}, ) def wait( self, timeout: int = DEFAULT_JOB_WAIT_TIMEOUT, verbose: bool = True, ): """ Wait for a job to finish Args: timeout (int, optional): The maximum time to wait for the job, in seconds. Default timeout is 5 minutes. verbose (bool, optional): Whether to log wait status to standard output Returns: None Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore errors.Timeout: Timeout while waiting for the job to finish """ logger = logging.getLogger(f"{__name__}.wait") logger.disabled = not verbose passed = 0 sleep_time = probing_frequency(timeout) while True: if passed > timeout: raise Timeout("job to finish") status = self.status() if status.end_time == 0: time.sleep(sleep_time) passed += sleep_time logger.info("Waiting on job '%s'...", status.uuid) continue end_time = datetime.fromtimestamp(status.end_time / 1e9).time() if status.err: logger.error( "Job '%s' failed at time '%s' with error: %s", status.uuid, end_time, status.err, ) elif status.aborted: logger.error("Job '%s' aborted at time '%s'", status.uuid, end_time) else: logger.info("Job '%s' finished at time '%s'", status.uuid, end_time) break def wait_for_idle( self, timeout: int = DEFAULT_JOB_WAIT_TIMEOUT, verbose: bool = True, ): """ Wait for a job to reach an idle state Args: timeout (int, optional): The maximum time to wait for the job, in seconds. Default timeout is 5 minutes. verbose (bool, optional): Whether to log wait status to standard output Returns: None Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore errors.Timeout: Timeout while waiting for the job to finish """ action = f"job '{self._job_id}' to reach idle state" logger = logging.getLogger(f"{__name__}.wait_for_idle") logger.disabled = not verbose passed = 0 sleep_time = probing_frequency(timeout) while True: snapshot_lists = self._query_job_snapshots().values() snapshots = list(itertools.chain.from_iterable(snapshot_lists)) job_info_found = True try: if self._check_job_idle(snapshots): logger.info("Job '%s' reached idle state", self._job_id) return except JobInfoNotFound: logger.info("No information found for job %s, retrying", self._job_id) job_info_found = False if passed > timeout: if len(snapshots) == 0: raise Timeout(action, "No job information found.") if not job_info_found: raise Timeout( action, f"No information found for job {self._job_id}." ) raise Timeout(action) time.sleep(sleep_time) passed += sleep_time logger.info("Waiting for %s", action) def _check_job_idle(self, snapshots): job_found = False for snap in snapshots: if snap.id != self._job_id: continue # If any targets are reporting the job not idle, continue waiting if not snap.is_idle: return False job_found = True if not job_found: raise JobInfoNotFound(f"No info found for job {self._job_id}") return True def start( self, daemon_id: str = "", force: bool = False, buckets: List[Bucket] = None, ) -> str: """ Start a job and return its ID. Args: daemon_id (str, optional): For running a job that must run on a specific target node (e.g. resilvering). force (bool, optional): Override existing restrictions for a bucket (e.g., run LRU eviction even if the bucket has LRU disabled). buckets (List[Bucket], optional): List of one or more buckets; applicable only for jobs that have bucket scope (for details on job types, see `Table` in xact/api.go). Returns: The running job ID. Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore """ job_args = JobArgs(kind=self._job_kind, daemon_id=daemon_id) if buckets and len(buckets) > 0: bucket_models = [ BucketModel( name=bck.name, provider=bck.provider, namespace=bck.namespace ) for bck in buckets ] if len(bucket_models) == 1: job_args.bucket = bucket_models[0] else: job_args.buckets = bucket_models params = {QPARAM_FORCE: "true"} if force else {} action = ActionMsg(action=ACT_START, value=job_args.as_dict()).dict() resp = self._client.request( HTTP_METHOD_PUT, path=URL_PATH_CLUSTER, json=action, params=params ) return resp.text def _query_job_snapshots(self) -> Dict[str, List[JobSnapshot]]: value = JobArgs(id=self._job_id, kind=self._job_kind).as_dict() params = {QPARAM_WHAT: WHAT_QUERY_XACT_STATS} return self._client.request_deserialize( HTTP_METHOD_GET, path=URL_PATH_CLUSTER, json=value, params=params, res_model=Dict[str, List[JobSnapshot]], )
aistore-master
python/aistore/sdk/job.py
# # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # from __future__ import annotations # pylint: disable=unused-variable from aistore.sdk.bucket import Bucket from aistore.sdk.const import ( PROVIDER_AIS, ) from aistore.sdk.cluster import Cluster from aistore.sdk.dsort import Dsort from aistore.sdk.request_client import RequestClient from aistore.sdk.types import Namespace from aistore.sdk.job import Job from aistore.sdk.etl import Etl # pylint: disable=unused-variable class Client: """ AIStore client for managing buckets, objects, ETL jobs Args: endpoint (str): AIStore endpoint """ def __init__(self, endpoint: str): self._request_client = RequestClient(endpoint) def bucket( self, bck_name: str, provider: str = PROVIDER_AIS, namespace: Namespace = None ): """ Factory constructor for bucket object. Does not make any HTTP request, only instantiates a bucket object. Args: bck_name (str): Name of bucket provider (str): Provider of bucket, one of "ais", "aws", "gcp", ... (optional, defaults to ais) namespace (Namespace): Namespace of bucket (optional, defaults to None) Returns: The bucket object created. """ return Bucket( client=self._request_client, name=bck_name, provider=provider, namespace=namespace, ) def cluster(self): """ Factory constructor for cluster object. Does not make any HTTP request, only instantiates a cluster object. Returns: The cluster object created. """ return Cluster(client=self._request_client) def job(self, job_id: str = "", job_kind: str = ""): """ Factory constructor for job object, which contains job-related functions. Does not make any HTTP request, only instantiates a job object. Args: job_id (str, optional): Optional ID for interacting with a specific job job_kind (str, optional): Optional specific type of job empty for all kinds Returns: The job object created. """ return Job(client=self._request_client, job_id=job_id, job_kind=job_kind) def etl(self, etl_name: str): """ Factory constructor for ETL object. Contains APIs related to AIStore ETL operations. Does not make any HTTP request, only instantiates an ETL object. Args: etl_name (str): Name of the ETL Returns: The ETL object created. """ return Etl(client=self._request_client, name=etl_name) def dsort(self, dsort_id: str = ""): """ Factory constructor for dSort object. Contains APIs related to AIStore dSort operations. Does not make any HTTP request, only instantiates a dSort object. Args: dsort_id: ID of the dSort job Returns: dSort object created """ return Dsort(client=self._request_client, dsort_id=dsort_id)
aistore-master
python/aistore/sdk/client.py
from aistore.sdk.client import Client from aistore.sdk.list_object_flag import ListObjectFlag from aistore.sdk.bucket import Bucket from aistore.sdk.namespace import Namespace
aistore-master
python/aistore/sdk/__init__.py
from __future__ import annotations from enum import Enum from typing import List class ListObjectFlag(Enum): """ Flags to pass when listing objects in a bucket. See api/apc/lsmsg.go """ CACHED = 0 ALL = 1 DELETED = 2 ARCH_DIR = 3 NAME_ONLY = 4 NAME_SIZE = 5 DONT_HEAD_REMOTE = 6 TRY_HEAD_REMOTE = 7 DONT_ADD_REMOTE = 8 USE_CACHE = 9 ONLY_REMOTE_PROPS = 10 @staticmethod def join_flags(flags: List[ListObjectFlag]) -> int: """ Take a list of ListObjectFlag enums and return the integer value of the combined flags Args: flags: List of ListObjectFlag enums Returns: A single bit string with each digit corresponding to the flag's value from the right. E.g. USE_CACHE = 9 and NAME_ONLY = 4 so if both flags are passed, the result will be 2^9 + 2^4 = 528 """ res = 0 for flag in flags: res = res ^ 2**flag.value return res
aistore-master
python/aistore/sdk/list_object_flag.py
# Defaults DEFAULT_ETL_COMM = "hpush" DEFAULT_ETL_TIMEOUT = "5m" DEFAULT_ETL_RUNTIME = "python3.8v2" # ETL comm types # ext/etl/api.go Hpush ETL_COMM_HPUSH = "hpush" # ext/etl/api.go Hpull ETL_COMM_HPULL = "hpull" # ext/etl/api.go Hrev ETL_COMM_HREV = "hrev" # ext/etl/api.go HpushStdin ETL_COMM_IO = "io" ETL_COMM_CODE = [ETL_COMM_IO, ETL_COMM_HPUSH, ETL_COMM_HREV, ETL_COMM_HPULL] ETL_COMM_SPEC = [ETL_COMM_HPUSH, ETL_COMM_HREV, ETL_COMM_HPULL] ETL_SUPPORTED_PYTHON_VERSIONS = ["3.10", "3.11"] # templates for ETL CODE_TEMPLATE = """ import pickle import base64 import importlib for mod in {}: importlib.import_module(mod) transform = pickle.loads(base64.b64decode('{}')) {} """
aistore-master
python/aistore/sdk/etl_const.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # from __future__ import annotations # pylint: disable=unused-variable import base64 from typing import Any, Mapping, List, Optional, Dict import msgspec from pydantic import BaseModel, validator from aistore.sdk.namespace import Namespace from aistore.sdk.const import PROVIDER_AIS from aistore.sdk.list_object_flag import ListObjectFlag # pylint: disable=too-few-public-methods,unused-variable,missing-function-docstring class ActionMsg(BaseModel): """ Represents the action message passed by the client via json """ action: str name: str = "" value: Any = None class NetInfo(BaseModel): """ Represents a set of network-related info """ node_hostname: str = "" daemon_port: str = "" direct_url: str = "" class Snode(BaseModel): """ Represents a system node """ daemon_id: str daemon_type: str public_net: NetInfo = None intra_control_net: NetInfo = None intra_data_net: NetInfo = None flags: int = 0 class Smap(BaseModel): """ Represents a system map """ tmap: Mapping[str, Snode] pmap: Mapping[str, Snode] proxy_si: Snode version: int = 0 uuid: str = "" creation_time: str = "" class BucketEntry(msgspec.Struct): """ Represents a single entry in a bucket -- an object See cmn/objlist.go/LsoEntry """ n: str cs: str = "" a: str = "" v: str = "" t: str = "" s: int = 0 c: int = 0 f: int = 0 object: Any = None @property def name(self): return self.n @property def checksum(self): return self.cs @property def atime(self): return self.a @property def version(self): return self.v @property def location(self): return self.t @property def size(self): return self.s @property def copies(self): return self.c @property def flags(self): return self.f def is_cached(self): return (self.flags & (1 << 6)) != 0 def is_ok(self): return (self.flags & ((1 << 5) - 1)) == 0 class BucketList(msgspec.Struct): """ Represents the response when getting a list of bucket items, containing a list of BucketEntry objects """ UUID: str ContinuationToken: str Flags: int Entries: List[BucketEntry] = None @property def uuid(self): return self.UUID @property def continuation_token(self): return self.ContinuationToken @property def flags(self): return self.Flags @property def entries(self): return [] if self.Entries is None else self.Entries def get_entries(self): """ Deprecated -- use entries property """ return self.entries class BucketModel(BaseModel): """ Represents the response from the API containing bucket info """ name: str provider: str = PROVIDER_AIS namespace: Namespace = None def as_dict(self): dict_rep = {"name": self.name, "provider": self.provider} if self.namespace: dict_rep["namespace"] = self.namespace return dict_rep class BsummCtrlMsg(BaseModel): """ Represents the bucket summary control message """ uuid: str prefix: str fast: bool cached: bool present: bool class JobArgs(BaseModel): """ Represents the set of args to pass when making a job-related request """ id: str = "" kind: str = "" daemon_id: str = "" bucket: BucketModel = None buckets: List[BucketModel] = None def as_dict(self): return { "ID": self.id, "Kind": self.kind, "DaemonID": self.daemon_id, "Bck": self.bucket, "Buckets": self.buckets, } class JobQuery(BaseModel): """ Structure to send the API when querying the cluster for multiple jobs """ active: bool = False kind: str = "" target: str = "" def as_dict(self): return { "kind": self.kind, "node": self.target, "show_active": self.active, } class JobStatus(BaseModel): """ Represents the response of an API query to fetch job status """ uuid: str = "" err: str = "" end_time: int = 0 aborted: bool = False class ETLInfo(BaseModel): # pylint: disable=too-few-public-methods,unused-variable """ Represents the API response when querying an ETL """ id: str = "" xaction_id: str = "" obj_count: int = 0 in_bytes: int = 0 out_bytes: int = 0 class ETLDetails(BaseModel): """ Represents the API response of queries on single ETL details """ id: str communication: str timeout: str code: Optional[bytes] spec: Optional[str] dependencies: Optional[str] runtime: Optional[str] # see ext/etl/runtime/all.go chunk_size: int = 0 argument: str = "" @validator("code") def set_code(cls, code): # pylint: disable=no-self-argument if code is not None: code = base64.b64decode(code) return code @validator("spec") def set_spec(cls, spec): # pylint: disable=no-self-argument if spec is not None: spec = base64.b64decode(spec) return spec class InitETLArgs(BaseModel): """ Represents the args shared by ETL initialization with code or spec """ etl_name: str communication_type: str timeout: str arg_type: str = "" class InitSpecETLArgs(InitETLArgs): """ Represents the set of args the sdk will pass to AIStore when making a request to initialize an ETL with a spec """ spec: str def as_dict(self): return { "id": self.etl_name, "timeout": self.timeout, "communication": f"{self.communication_type}://", "spec": self.spec, "argument": self.arg_type, } class InitCodeETLArgs(InitETLArgs): """ Represents the set of args the sdk will pass to AIStore when making a request to initialize an ETL with code """ runtime: str dependencies: str functions: Dict[str, str] code: str chunk_size: int = None def as_dict(self): dict_rep = { "id": self.etl_name, "runtime": self.runtime, "communication": f"{self.communication_type}://", "timeout": self.timeout, "funcs": self.functions, "code": self.code, "dependencies": self.dependencies, "argument": self.arg_type, } if self.chunk_size: dict_rep["chunk_size"] = self.chunk_size return dict_rep class PromoteAPIArgs(BaseModel): """ Represents the set of args the sdk will pass to AIStore when making a promote request and provides conversion to the expected json format """ target_id: str = "" source_path: str = "" object_name: str = "" recursive: bool = False overwrite_dest: bool = False delete_source: bool = False src_not_file_share: bool = False def as_dict(self): return { "tid": self.target_id, "src": self.source_path, "obj": self.object_name, "rcr": self.recursive, "ovw": self.overwrite_dest, "dls": self.delete_source, "notshr": self.src_not_file_share, } class JobStats(BaseModel): """ Structure for job statistics """ objects: int = 0 bytes: int = 0 out_objects: int = 0 out_bytes: int = 0 in_objects: int = 0 in_bytes: int = 0 class JobSnapshot(BaseModel): """ Structure for the data returned when querying a single job on a single target node """ id: str = "" kind: str = "" start_time: str = "" end_time: str = "" bucket: BucketModel = None source_bck: str = "" dest_bck: str = "" rebalance_id: str = "" stats: JobStats = None aborted: bool = False is_idle: bool = False class CopyBckMsg(BaseModel): """ API message structure for copying a bucket """ prefix: str = "" prepend: str dry_run: bool force: bool def as_dict(self): return { "prefix": self.prefix, "prepend": self.prepend, "dry_run": self.dry_run, "force": self.force, } class ListObjectsMsg(BaseModel): """ API message structure for listing objects in a bucket """ prefix: str page_size: int uuid: str props: str continuation_token: str flags: List[ListObjectFlag] target: str def as_dict(self): return { "prefix": self.prefix, "pagesize": self.page_size, "uuid": self.uuid, "props": self.props, "continuation_token": self.continuation_token, "flags": str(ListObjectFlag.join_flags(self.flags)), "target": self.target, } class TransformBckMsg(BaseModel): """ API message structure for requesting an etl transform on a bucket """ etl_name: str timeout: str def as_dict(self): return {"id": self.etl_name, "request_timeout": self.timeout} class TCBckMsg(BaseModel): """ API message structure for transforming or copying between buckets. Can be used on its own for an entire bucket or encapsulated in TCMultiObj to apply only to a selection of objects """ ext: Dict[str, str] = None copy_msg: CopyBckMsg = None transform_msg: TransformBckMsg = None def as_dict(self): dict_rep = {} if self.ext: dict_rep["ext"] = self.ext if self.copy_msg: for key, val in self.copy_msg.as_dict().items(): dict_rep[key] = val if self.transform_msg: for key, val in self.transform_msg.as_dict().items(): dict_rep[key] = val return dict_rep class TCMultiObj(BaseModel): """ API message structure for transforming or copying multiple objects between buckets """ to_bck: BucketModel tc_msg: TCBckMsg = None continue_on_err: bool object_selection: dict def as_dict(self): dict_rep = self.object_selection if self.tc_msg: for key, val in self.tc_msg.as_dict().items(): dict_rep[key] = val dict_rep["tobck"] = self.to_bck.as_dict() dict_rep["coer"] = self.continue_on_err return dict_rep class ArchiveMultiObj(BaseModel): """ API message structure for multi-object archive requests """ archive_name: str to_bck: BucketModel mime: str = None include_source_name = False allow_append = False continue_on_err = False object_selection: dict def as_dict(self): dict_rep = self.object_selection dict_rep["archname"] = self.archive_name dict_rep["isbn"] = self.include_source_name dict_rep["aate"] = self.allow_append dict_rep["coer"] = self.continue_on_err if self.mime: dict_rep["mime"] = self.mime if self.to_bck: dict_rep["tobck"] = self.to_bck.as_dict() return dict_rep
aistore-master
python/aistore/sdk/types.py
import json import logging import time from typing import Dict from aistore.sdk.const import ( HTTP_METHOD_POST, URL_PATH_DSORT, HTTP_METHOD_GET, DEFAULT_DSORT_WAIT_TIMEOUT, HTTP_METHOD_DELETE, DSORT_ABORT, DSORT_UUID, ) from aistore.sdk.dsort_types import JobInfo from aistore.sdk.errors import Timeout from aistore.sdk.utils import validate_file, probing_frequency class Dsort: """ Class for managing jobs for the dSort extension: https://github.com/NVIDIA/aistore/blob/master/docs/cli/dsort.md """ def __init__(self, client: "Client", dsort_id: str = ""): self._client = client self._dsort_id = dsort_id @property def dsort_id(self) -> str: """ Return dSort job id """ return self._dsort_id def start(self, spec_file: str) -> str: """ Start a dSort job with a provided spec file location Returns: dSort job ID """ validate_file(spec_file) with open(spec_file, "r", encoding="utf-8") as file_data: spec = json.load(file_data) self._dsort_id = self._client.request( HTTP_METHOD_POST, path=URL_PATH_DSORT, json=spec ).text return self._dsort_id def abort(self): """ Abort a dSort job """ qparam = {DSORT_UUID: [self._dsort_id]} self._client.request( HTTP_METHOD_DELETE, path=f"{URL_PATH_DSORT}/{DSORT_ABORT}", params=qparam ) def get_job_info(self) -> Dict[str, JobInfo]: """ Get info for a dsort job Returns: Dictionary of job info for all jobs associated with this dsort """ qparam = {DSORT_UUID: [self._dsort_id]} return self._client.request_deserialize( HTTP_METHOD_GET, path=URL_PATH_DSORT, res_model=Dict[str, JobInfo], params=qparam, ) def wait( self, timeout: int = DEFAULT_DSORT_WAIT_TIMEOUT, verbose: bool = True, ): """ Wait for a dSort job to finish Args: timeout (int, optional): The maximum time to wait for the job, in seconds. Default timeout is 5 minutes. verbose (bool, optional): Whether to log wait status to standard output Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore errors.Timeout: Timeout while waiting for the job to finish """ logger = logging.getLogger(f"{__name__}.wait") logger.disabled = not verbose passed = 0 sleep_time = probing_frequency(timeout) while True: if passed > timeout: raise Timeout("dsort job to finish") finished = True for job_info in self.get_job_info().values(): if job_info.metrics.aborted: logger.info("DSort job '%s' aborted", self._dsort_id) return # Shard creation is the last phase, so check if it's finished finished = job_info.metrics.shard_creation.finished and finished if finished: logger.info("DSort job '%s' finished", self._dsort_id) return logger.info("Waiting on dsort job '%s'...", self._dsort_id) time.sleep(sleep_time) passed += sleep_time
aistore-master
python/aistore/sdk/dsort.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # from abc import ABC, abstractmethod from typing import Iterable # pylint: disable=too-few-public-methods class AISSource(ABC): """ Interface for all AIS class types providing access to AIS objects via URLs """ @abstractmethod def list_urls(self, prefix: str = "", etl_name: str = None) -> Iterable[str]: """ Get an iterable of urls to reference the objects contained in this source (bucket, group, etc.) Args: prefix (str, optional): Only include objects with names matching this prefix etl_name (str, optional): Apply an ETL when retrieving object contents Returns: Iterable over selected object URLS """
aistore-master
python/aistore/sdk/ais_source.py
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # from pathlib import Path from typing import Iterator, Type, TypeVar import braceexpand import humanize from msgspec import msgpack import pydantic.tools import requests from pydantic import BaseModel, parse_raw_as from requests import Response from aistore.sdk.const import UTF_ENCODING, HEADER_CONTENT_TYPE, MSGPACK_CONTENT_TYPE from aistore.sdk.errors import ( AISError, ErrBckNotFound, ErrRemoteBckNotFound, ErrBckAlreadyExists, ErrETLAlreadyExists, ) T = TypeVar("T") class HttpError(BaseModel): """ Represents the errors returned by the API """ status: int message: str = "" method: str = "" url_path: str = "" remote_addr: str = "" caller: str = "" node: str = "" def _raise_error(text: str): err = pydantic.tools.parse_raw_as(HttpError, text) if 400 <= err.status < 500: err = pydantic.tools.parse_raw_as(HttpError, text) if "does not exist" in err.message: if "cloud bucket" in err.message or "remote bucket" in err.message: raise ErrRemoteBckNotFound(err.status, err.message) if "bucket" in err.message: raise ErrBckNotFound(err.status, err.message) if "already exists" in err.message: if "bucket" in err.message: raise ErrBckAlreadyExists(err.status, err.message) if "etl" in err.message: raise ErrETLAlreadyExists(err.status, err.message) raise AISError(err.status, err.message) # pylint: disable=unused-variable def handle_errors(resp: requests.Response): """ Error handling for requests made to the AIS Client Args: resp: requests.Response = Response received from the request """ error_text = resp.text if isinstance(resp.text, bytes): try: error_text = error_text.decode(UTF_ENCODING) except UnicodeDecodeError: error_text = error_text.decode("iso-8859-1") if error_text != "": _raise_error(error_text) resp.raise_for_status() def probing_frequency(dur: int) -> float: """ Given a timeout, return an interval to wait between retries Args: dur: Duration of timeout Returns: Frequency to probe """ freq = min(dur / 8.0, 1.0) freq = max(dur / 64.0, freq) return max(freq, 0.1) def read_file_bytes(filepath: str): """ Given a filepath, read the content as bytes Args: filepath: Existing local filepath Returns: Raw bytes """ with open(filepath, "rb") as reader: return reader.read() def _check_path_exists(path: str): if not Path(path).exists(): raise ValueError(f"Path: {path} does not exist") def validate_file(path: str): """ Validate that a file exists and is a file Args: path: Path to validate Raises: ValueError: If path does not exist or is not a file """ _check_path_exists(path) if not Path(path).is_file(): raise ValueError(f"Path: {path} is a directory, not a file") def validate_directory(path: str): """ Validate that a directory exists and is a directory Args: path: Path to validate Raises: ValueError: If path does not exist or is not a directory """ _check_path_exists(path) if not Path(path).is_dir(): raise ValueError(f"Path: {path} is a file, not a directory") def get_file_size(file: Path) -> str: """ Get the size of a file and return it in human-readable format Args: file: File to read Returns: Size of file as human-readable string """ return ( humanize.naturalsize(file.stat().st_size) if file.stat().st_size else "unknown" ) def expand_braces(template: str) -> Iterator[str]: """ Given a string template, apply bash-style brace expansion to return a list of strings Args: template: Valid brace expansion input, e.g. prefix-{0..10..2}-gap-{11..15}-suffix Returns: Iterator of brace expansion output """ # pylint: disable = fixme # TODO Build custom expansion to validate consistent with cmn/cos/template.go TemplateRange return braceexpand.braceexpand(template) def decode_response( res_model: Type[T], resp: Response, ) -> T: """ Parse response content from the cluster into a Python class, decoding with msgpack depending on content type in header Args: res_model (Type[T]): Resulting type to which the response should be deserialized resp (Response): Response from the AIS cluster """ if resp.headers.get(HEADER_CONTENT_TYPE) == MSGPACK_CONTENT_TYPE: return msgpack.decode(resp.content, type=res_model) return parse_raw_as(res_model, resp.text)
aistore-master
python/aistore/sdk/utils.py
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # from __future__ import annotations # pylint: disable=unused-variable from typing import List, Optional from aistore.sdk.const import ( HTTP_METHOD_GET, ACT_LIST, PROVIDER_AIS, QPARAM_WHAT, QPARAM_PRIMARY_READY_REB, QPARAM_PROVIDER, WHAT_SMAP, URL_PATH_BUCKETS, URL_PATH_HEALTH, URL_PATH_DAEMON, URL_PATH_CLUSTER, WHAT_ALL_XACT_STATUS, WHAT_ALL_RUNNING_STATUS, URL_PATH_ETL, ) from aistore.sdk.types import BucketModel, JobStatus, JobQuery, ETLInfo from aistore.sdk.request_client import RequestClient from aistore.sdk.types import ActionMsg, Smap # pylint: disable=unused-variable class Cluster: """ A class representing a cluster bound to an AIS client. """ # pylint: disable=duplicate-code def __init__(self, client: RequestClient): self._client = client @property def client(self): """Client this cluster uses to make requests""" return self._client def get_info(self) -> Smap: """ Returns state of AIS cluster, including the detailed information about its nodes. Returns: aistore.sdk.types.Smap: Smap containing cluster information Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore """ return self.client.request_deserialize( HTTP_METHOD_GET, path=URL_PATH_DAEMON, res_model=Smap, params={QPARAM_WHAT: WHAT_SMAP}, ) def list_buckets(self, provider: str = PROVIDER_AIS): """ Returns list of buckets in AIStore cluster. Args: provider (str, optional): Name of bucket provider, one of "ais", "aws", "gcp", "az", "hdfs" or "ht". Defaults to "ais". Empty provider returns buckets of all providers. Returns: List[BucketModel]: A list of buckets Raises: requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.ReadTimeout: Timed out waiting response from AIStore """ params = {QPARAM_PROVIDER: provider} action = ActionMsg(action=ACT_LIST).dict() return self.client.request_deserialize( HTTP_METHOD_GET, path=URL_PATH_BUCKETS, res_model=List[BucketModel], json=action, params=params, ) def list_jobs_status(self, job_kind="", target_id="") -> List[JobStatus]: """ List the status of jobs on the cluster Args: job_kind (str, optional): Only show jobs of a particular type target_id (str, optional): Limit to jobs on a specific target node Returns: List of JobStatus objects """ res = self._client.request_deserialize( HTTP_METHOD_GET, path=URL_PATH_CLUSTER, res_model=Optional[List[JobStatus]], json=JobQuery(kind=job_kind, target=target_id).as_dict(), params={QPARAM_WHAT: WHAT_ALL_XACT_STATUS}, ) if res is None: return [] return res def list_running_jobs(self, job_kind="", target_id="") -> List[str]: """ List the currently running jobs on the cluster Args: job_kind (str, optional): Only show jobs of a particular type target_id (str, optional): Limit to jobs on a specific target node Returns: List of jobs in the format job_kind[job_id] """ return self._client.request_deserialize( HTTP_METHOD_GET, path=URL_PATH_CLUSTER, res_model=List[str], json=JobQuery(kind=job_kind, target=target_id, active=True).as_dict(), params={QPARAM_WHAT: WHAT_ALL_RUNNING_STATUS}, ) def list_running_etls(self) -> List[ETLInfo]: """ Lists all running ETLs. Note: Does not list ETLs that have been stopped or deleted. Returns: List[ETLInfo]: A list of details on running ETLs """ return self._client.request_deserialize( HTTP_METHOD_GET, path=URL_PATH_ETL, res_model=List[ETLInfo] ) def is_aistore_running(self) -> bool: """ Checks if cluster is ready or still setting up. Returns: bool: True if cluster is ready, or false if cluster is still setting up """ # compare with AIS Go API (api/cluster.go) for additional supported options params = {QPARAM_PRIMARY_READY_REB: "true"} try: resp = self.client.request( HTTP_METHOD_GET, path=URL_PATH_HEALTH, params=params ) return resp.ok except Exception: return False
aistore-master
python/aistore/sdk/cluster.py
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # from typing import Optional, List, Callable from aistore.sdk.types import BucketEntry # pylint: disable=unused-variable class ObjectIterator: """ Represents an iterable that will fetch all objects from a bucket, querying as needed with the specified function Args: list_objects (Callable): Function returning a BucketList from an AIS cluster """ _fetched: Optional[List[BucketEntry]] = [] _token: str = "" _uuid: str = "" def __init__(self, list_objects: Callable): self._list_objects = list_objects def __iter__(self): return self def __next__(self) -> BucketEntry: # Iterator is exhausted. if len(self._fetched) == 0 and self._token == "" and self._uuid != "": raise StopIteration # Read the next page of objects. if len(self._fetched) == 0: resp = self._list_objects(uuid=self._uuid, token=self._token) self._fetched = resp.entries self._uuid = resp.uuid self._token = resp.continuation_token # Empty page and token mean no more objects left. if len(self._fetched) == 0 and self._token == "": raise StopIteration return self._fetched.pop(0)
aistore-master
python/aistore/sdk/object_iterator.py
from typing import Dict from requests.structures import CaseInsensitiveDict from aistore.sdk.const import ( HEADER_CONTENT_LENGTH, AIS_CHECKSUM_TYPE, AIS_CHECKSUM_VALUE, AIS_ACCESS_TIME, AIS_VERSION, AIS_CUSTOM_MD, ) # pylint: disable=too-few-public-methods class ObjectAttributes: """ Represents the attributes parsed from the response headers returned from an API call to get an object Args: response_headers (CaseInsensitiveDict): Response header dict containing object attributes """ def __init__(self, response_headers: CaseInsensitiveDict): self.response_headers = response_headers @property def size(self) -> int: """ Size of object content """ return int(self.response_headers.get(HEADER_CONTENT_LENGTH, 0)) @property def checksum_type(self) -> str: """ Type of checksum, e.g. xxhash or md5 """ return self.response_headers.get(AIS_CHECKSUM_TYPE, "") @property def checksum_value(self) -> str: """ Checksum value """ return self.response_headers.get(AIS_CHECKSUM_VALUE, "") @property def access_time(self) -> str: """ Time this object was accessed """ return self.response_headers.get(AIS_ACCESS_TIME, "") @property def obj_version(self) -> str: """ Object version """ return self.response_headers.get(AIS_VERSION, "") @property def custom_metadata(self) -> Dict[str, str]: """ Dictionary of custom metadata """ custom_md_header = self.response_headers.get(AIS_CUSTOM_MD, "") if len(custom_md_header) > 0: return self._parse_custom(custom_md_header) return {} @staticmethod def _parse_custom(custom_md_header) -> Dict[str, str]: """ Parse the comma-separated list of optional custom metadata from the custom metadata header Args: custom_md_header: Header containing metadata csv Returns: Dictionary of custom metadata """ custom_metadata = {} for entry in custom_md_header.split(","): try: assert isinstance(entry, str) entry_list = entry.strip().split("=") assert len(entry_list) == 2 custom_metadata[entry_list[0]] = entry_list[1] except AssertionError: continue return custom_metadata
aistore-master
python/aistore/sdk/object_attributes.py
# # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # class AISError(Exception): """ Raised when an error is encountered from a query to the AIS cluster """ def __init__(self, status_code: int, message: str): self.status_code = status_code self.message = message super().__init__(f"STATUS:{status_code}, MESSAGE:{message}") # pylint: disable=unused-variable class InvalidBckProvider(Exception): """ Raised when the bucket provider is invalid for the requested operation """ def __init__(self, provider): super().__init__(f"Invalid bucket provider {provider}") # pylint: disable=unused-variable class ErrRemoteBckNotFound(AISError): """ Raised when a remote bucket its required and missing for the requested operation """ def __init__(self, status_code, message): super().__init__(status_code=status_code, message=message) # pylint: disable=unused-variable class ErrBckNotFound(AISError): """ Raised when a bucket is expected and not found """ def __init__(self, status_code, message): super().__init__(status_code=status_code, message=message) # pylint: disable=unused-variable class ErrBckAlreadyExists(AISError): """ Raised when a bucket is created but already exists in AIS """ def __init__(self, status_code, message): super().__init__(status_code=status_code, message=message) # pylint: disable=unused-variable class ErrETLAlreadyExists(AISError): """ Raised when an ETL is created but already exists in AIS """ def __init__(self, status_code, message): super().__init__(status_code=status_code, message=message) # pylint: disable=unused-variable class Timeout(Exception): """ Raised when an operation takes too long to complete """ def __init__(self, action, message=""): super().__init__(f"Timed out while waiting for {action}. {message}") # pylint: disable=unused-variable class InvalidObjectRangeIndex(Exception): """ Raised when incorrect range parameters are passed when creating an ObjectRange """ def __init__(self, message): super().__init__(f"Invalid argument provided for object range index: {message}") class JobInfoNotFound(Exception): """ Raised when information on a job's status could not be found on the AIS cluster """ def __init__(self, message): super().__init__(f"Job information not found on the cluster: {message}") class UnexpectedHTTPStatusCode(Exception): """ Raised when the status code from a response is not what's expected. """ def __init__(self, expected_status_codes, received_status_code): expected_codes = ", ".join(str(code) for code in expected_status_codes) super().__init__( ( f"Unexpected status code received. " f"Expected one of the following: {expected_codes}, " f"but received: {received_status_code}" ) )
aistore-master
python/aistore/sdk/errors.py
from pydantic import BaseModel class Namespace(BaseModel): """ A bucket namespace defined by the uuid of the cluster and a name """ uuid: str = "" name: str = "" def get_path(self) -> str: """ Get the AIS-style path representation of the string -- @uuid#name Returns: Formatted namespace string """ return f"@{self.uuid}#{self.name}"
aistore-master
python/aistore/sdk/namespace.py
from typing import Iterator import requests from requests.structures import CaseInsensitiveDict from aistore.sdk.const import DEFAULT_CHUNK_SIZE from aistore.sdk.object_attributes import ObjectAttributes class ObjectReader: """ Represents the data returned by the API when getting an object, including access to the content stream and object attributes """ def __init__( self, response_headers: CaseInsensitiveDict, stream: requests.Response, chunk_size: int = DEFAULT_CHUNK_SIZE, ): self._chunk_size = chunk_size self._stream = stream self._attributes = ObjectAttributes(response_headers) @property def attributes(self) -> ObjectAttributes: """ Object metadata attributes Returns: Object attributes parsed from the headers returned by AIS """ return self._attributes def read_all(self) -> bytes: """ Read all byte data from the object content stream. This uses a bytes cast which makes it slightly slower and requires all object content to fit in memory at once Returns: Object content as bytes """ obj_arr = bytearray() for chunk in self: obj_arr.extend(chunk) return bytes(obj_arr) def raw(self) -> bytes: """ Returns: Raw byte stream of object content """ return self._stream.raw def __iter__(self) -> Iterator[bytes]: """ Creates a generator to read the stream content in chunks Returns: An iterator with access to the next chunk of bytes """ try: for chunk in self._stream.iter_content(chunk_size=self._chunk_size): yield chunk finally: self._stream.close()
aistore-master
python/aistore/sdk/object_reader.py
# # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # HEADERS_KW = "headers" # Standard Header Keys HEADER_ACCEPT = "Accept" HEADER_USER_AGENT = "User-Agent" HEADER_CONTENT_TYPE = "Content-Type" HEADER_CONTENT_LENGTH = "Content-Length" # Standard Header Values USER_AGENT_BASE = "ais/python" JSON_CONTENT_TYPE = "application/json" MSGPACK_CONTENT_TYPE = "application/msgpack" # AIS Headers AIS_CHECKSUM_TYPE = "ais-checksum-type" AIS_CHECKSUM_VALUE = "ais-checksum-value" AIS_ACCESS_TIME = "ais-atime" AIS_VERSION = "ais-version" AIS_CUSTOM_MD = "ais-custom-md" # Bucket Props Header keys HEADER_PREFIX = "ais-" HEADER_BUCKET_PROPS = HEADER_PREFIX + "bucket-props" HEADER_BUCKET_SUMM = HEADER_PREFIX + "bucket-summ" # URL Params # See api/apc/query.go QPARAM_WHAT = "what" QPARAM_ETL_NAME = "etl_name" QPARAM_PROVIDER = "provider" QPARAM_BCK_TO = "bck_to" QPARAM_FLT_PRESENCE = "presence" QPARAM_COUNT_REMOTE_OBJS = "count_remote_objs" QPARAM_KEEP_REMOTE = "keep_bck_md" QPARAM_ARCHPATH = "archpath" QPARAM_FORCE = "frc" QPARAM_PRIMARY_READY_REB = "prr" QPARAM_NAMESPACE = "namespace" DSORT_UUID = "uuid" # URL Param values # See api/apc/query.go WHAT_SMAP = "smap" WHAT_ONE_XACT_STATUS = "status" WHAT_ALL_XACT_STATUS = "status_all" WHAT_ALL_RUNNING_STATUS = "running_all" WHAT_QUERY_XACT_STATS = "qryxstats" # URL paths URL_PATH_CLUSTER = "cluster" URL_PATH_BUCKETS = "buckets" URL_PATH_OBJECTS = "objects" URL_PATH_HEALTH = "health" URL_PATH_DAEMON = "daemon" URL_PATH_ETL = "etl" URL_PATH_DSORT = "sort" DSORT_ABORT = "abort" # Bucket providers # See api/apc/provider.go PROVIDER_AIS = "ais" PROVIDER_AMAZON = "aws" PROVIDER_AZURE = "azure" PROVIDER_GOOGLE = "gcp" PROVIDER_HDFS = "hdfs" PROVIDER_HTTP = "ht" # HTTP Methods HTTP_METHOD_GET = "get" HTTP_METHOD_POST = "post" HTTP_METHOD_DELETE = "delete" HTTP_METHOD_PUT = "put" HTTP_METHOD_HEAD = "head" # Actions # See api/apc/actmsg.go ACT_CREATE_BCK = "create-bck" ACT_DESTROY_BCK = "destroy-bck" ACT_COPY_BCK = "copy-bck" ACT_ETL_BCK = "etl-bck" ACT_EVICT_REMOTE_BCK = "evict-remote-bck" ACT_LIST = "list" ACT_MOVE_BCK = "move-bck" ACT_PROMOTE = "promote" ACT_SUMMARY_BCK = "summary-bck" # Multi-object actions ACT_DELETE_OBJECTS = "delete-listrange" ACT_EVICT_OBJECTS = "evict-listrange" ACT_PREFETCH_OBJECTS = "prefetch-listrange" ACT_COPY_OBJECTS = "copy-listrange" ACT_TRANSFORM_OBJECTS = "etl-listrange" ACT_ARCHIVE_OBJECTS = "archive" # Job actions ACT_START = "start" # Defaults DEFAULT_CHUNK_SIZE = 32768 DEFAULT_JOB_WAIT_TIMEOUT = 300 DEFAULT_DSORT_WAIT_TIMEOUT = 300 # ENCODING UTF_ENCODING = "utf-8" # Status Codes STATUS_ACCEPTED = 202 STATUS_OK = 200 STATUS_BAD_REQUEST = 400
aistore-master
python/aistore/sdk/const.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # from abc import abstractmethod, ABC from typing import Iterator, Dict class ObjectCollection(ABC): """ Abstract class for collections of object names """ @abstractmethod def get_value(self) -> Dict[str, any]: """ Get the json representation of the names to send to the API Returns: Dictionary of request entry to name representation """ @abstractmethod def __iter__(self) -> Iterator[str]: pass
aistore-master
python/aistore/sdk/multiobj/object_collection.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # import logging from typing import List, Iterable from aistore.sdk.ais_source import AISSource from aistore.sdk.const import ( HTTP_METHOD_DELETE, HTTP_METHOD_POST, HTTP_METHOD_PUT, ACT_DELETE_OBJECTS, ACT_PREFETCH_OBJECTS, ACT_EVICT_OBJECTS, ACT_COPY_OBJECTS, ACT_TRANSFORM_OBJECTS, ACT_ARCHIVE_OBJECTS, ) from aistore.sdk.etl_const import DEFAULT_ETL_TIMEOUT from aistore.sdk.multiobj.object_names import ObjectNames from aistore.sdk.multiobj.object_range import ObjectRange from aistore.sdk.multiobj.object_template import ObjectTemplate from aistore.sdk.types import ( TCMultiObj, CopyBckMsg, TransformBckMsg, TCBckMsg, ArchiveMultiObj, ) # pylint: disable=unused-variable class ObjectGroup(AISSource): """ A class representing multiple objects within the same bucket. Only one of obj_names, obj_range, or obj_template should be provided. Args: bck (Bucket): Bucket the objects belong to obj_names (list[str], optional): List of object names to include in this collection obj_range (ObjectRange, optional): Range defining which object names in the bucket should be included obj_template (str, optional): String argument to pass as template value directly to api """ def __init__( self, bck: "Bucket", obj_names: list = None, obj_range: ObjectRange = None, obj_template: str = None, ): self.bck = bck num_args = sum( 1 if x is not None else 0 for x in [obj_names, obj_range, obj_template] ) if num_args != 1: raise ValueError( "ObjectGroup accepts one and only one of: obj_names, obj_range, or obj_template" ) if obj_range and not isinstance(obj_range, ObjectRange): raise TypeError("obj_range must be of type ObjectRange") if obj_range: self._obj_collection = obj_range elif obj_names: self._obj_collection = ObjectNames(obj_names) else: self._obj_collection = ObjectTemplate(obj_template) def list_urls(self, prefix: str = "", etl_name: str = None) -> Iterable[str]: """ Get an iterator of the full URL for every object in this group Args: prefix (str, optional): Limit objects selected by a given string prefix etl_name (str, optional): ETL to include in URLs Returns: Iterator of all object URLs in the group """ for obj_name in self._obj_collection: yield self.bck.object(obj_name).get_url(etl_name=etl_name) def delete(self): """ Deletes a list or range of objects in a bucket Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore Returns: Job ID (as str) that can be used to check the status of the operation """ return self.bck.make_request( HTTP_METHOD_DELETE, ACT_DELETE_OBJECTS, value=self._obj_collection.get_value(), ).text def evict(self): """ Evicts a list or range of objects in a bucket so that they are no longer cached in AIS NOTE: only Cloud buckets can be evicted. Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore Returns: Job ID (as str) that can be used to check the status of the operation """ self.bck.verify_cloud_bucket() return self.bck.make_request( HTTP_METHOD_DELETE, ACT_EVICT_OBJECTS, value=self._obj_collection.get_value(), ).text def prefetch(self): """ Prefetches a list or range of objects in a bucket so that they are cached in AIS NOTE: only Cloud buckets can be prefetched. Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore Returns: Job ID (as str) that can be used to check the status of the operation """ self.bck.verify_cloud_bucket() return self.bck.make_request( HTTP_METHOD_POST, ACT_PREFETCH_OBJECTS, value=self._obj_collection.get_value(), ).text # pylint: disable=too-many-arguments def copy( self, to_bck: "Bucket", prepend: str = "", continue_on_error: bool = False, dry_run: bool = False, force: bool = False, ): """ Copies a list or range of objects in a bucket Args: to_bck (Bucket): Destination bucket prepend (str, optional): Value to prepend to the name of copied objects continue_on_error (bool, optional): Whether to continue if there is an error copying a single object dry_run (bool, optional): Skip performing the copy and just log the intended actions force (bool, optional): Force this job to run over others in case it conflicts (see "limited coexistence" and xact/xreg/xreg.go) Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore Returns: Job ID (as str) that can be used to check the status of the operation """ if dry_run: logger = logging.getLogger(f"{__name__}.copy") logger.info( "Copy dry-run. Running with dry_run=False will copy the following objects from bucket '%s' to '%s': %s", f"{self.bck.get_path()}", f"{to_bck.get_path()}", list(self._obj_collection), ) copy_msg = CopyBckMsg(prepend=prepend, dry_run=dry_run, force=force) value = TCMultiObj( to_bck=to_bck.as_model(), tc_msg=TCBckMsg(copy_msg=copy_msg), object_selection=self._obj_collection.get_value(), continue_on_err=continue_on_error, ).as_dict() return self.bck.make_request( HTTP_METHOD_POST, ACT_COPY_OBJECTS, value=value ).text # pylint: disable=too-many-arguments def transform( self, to_bck: "Bucket", etl_name: str, timeout: str = DEFAULT_ETL_TIMEOUT, prepend: str = "", continue_on_error: bool = False, dry_run: bool = False, force: bool = False, ): """ Performs ETL operation on a list or range of objects in a bucket, placing the results in the destination bucket Args: to_bck (Bucket): Destination bucket etl_name (str): Name of existing ETL to apply timeout (str): Timeout of the ETL job (e.g. 5m for 5 minutes) prepend (str, optional): Value to prepend to the name of resulting transformed objects continue_on_error (bool, optional): Whether to continue if there is an error transforming a single object dry_run (bool, optional): Skip performing the transform and just log the intended actions force (bool, optional): Force this job to run over others in case it conflicts (see "limited coexistence" and xact/xreg/xreg.go) Raises: aistore.sdk.errors.AISError: All other types of errors with AIStore requests.ConnectionError: Connection error requests.ConnectionTimeout: Timed out connecting to AIStore requests.exceptions.HTTPError: Service unavailable requests.RequestException: "There was an ambiguous exception that occurred while handling..." requests.ReadTimeout: Timed out receiving response from AIStore Returns: Job ID (as str) that can be used to check the status of the operation """ if dry_run: logger = logging.getLogger(f"{__name__}.transform") logger.info( "Transform dry-run. Running with dry_run=False will apply ETL '%s' to objects %s", etl_name, list(self._obj_collection), ) copy_msg = CopyBckMsg(prepend=prepend, dry_run=dry_run, force=force) transform_msg = TransformBckMsg(etl_name=etl_name, timeout=timeout) value = TCMultiObj( to_bck=to_bck.as_model(), tc_msg=TCBckMsg(transform_msg=transform_msg, copy_msg=copy_msg), object_selection=self._obj_collection.get_value(), continue_on_err=continue_on_error, ).as_dict() return self.bck.make_request( HTTP_METHOD_POST, ACT_TRANSFORM_OBJECTS, value=value ).text def archive( self, archive_name: str, mime: str = "", to_bck: "Bucket" = None, include_source_name: bool = False, allow_append: bool = False, continue_on_err: bool = False, ): """ Create or append to an archive Args: archive_name (str): Name of archive to create or append mime (str, optional): MIME type of the content to_bck (Bucket, optional): Destination bucket, defaults to current bucket include_source_name (bool, optional): Include the source bucket name in the archived objects' names allow_append (bool, optional): Allow appending to an existing archive continue_on_err (bool, optional): Whether to continue if there is an error archiving a single object Returns: Job ID (as str) that can be used to check the status of the operation """ val = ArchiveMultiObj( object_selection=self._obj_collection.get_value(), archive_name=archive_name, mime=mime, to_bck=to_bck.as_model() if to_bck else self.bck.as_model(), include_source_name=include_source_name, allow_append=allow_append, continue_on_err=continue_on_err, ).as_dict() return self.bck.make_request( HTTP_METHOD_PUT, ACT_ARCHIVE_OBJECTS, value=val ).text def list_names(self) -> List[str]: """ List all the object names included in this group of objects Returns: List of object names """ return list(self._obj_collection)
aistore-master
python/aistore/sdk/multiobj/object_group.py
from aistore.sdk.multiobj.object_collection import ObjectCollection from aistore.sdk.multiobj.object_template import ObjectTemplate from aistore.sdk.multiobj.object_range import ObjectRange from aistore.sdk.multiobj.object_names import ObjectNames from aistore.sdk.multiobj.object_group import ObjectGroup
aistore-master
python/aistore/sdk/multiobj/__init__.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # from typing import List, Iterator, Dict from aistore.sdk.multiobj.object_collection import ObjectCollection class ObjectNames(ObjectCollection): """ A collection of object names, provided as a list of strings Args: names (List[str]): A list of object names """ def __init__(self, names: List[str]): self._names = names def get_value(self) -> Dict[str, any]: return {"objnames": self._names} def __iter__(self) -> Iterator[str]: return iter(self._names)
aistore-master
python/aistore/sdk/multiobj/object_names.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # from typing import Dict, Iterator from aistore.sdk import utils from aistore.sdk.multiobj.object_collection import ObjectCollection class ObjectTemplate(ObjectCollection): """ A collection of object names specified by a template in the bash brace expansion format Args: template (str): A string template that defines the names of objects to include in the collection """ def __init__(self, template: str): self._template = template def __iter__(self) -> Iterator[str]: return utils.expand_braces(self._template) def get_value(self) -> Dict[str, str]: return {"template": self._template}
aistore-master
python/aistore/sdk/multiobj/object_template.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # from typing import Iterator from aistore.sdk import utils from aistore.sdk.errors import InvalidObjectRangeIndex from aistore.sdk.multiobj.object_collection import ObjectCollection # pylint: disable=unused-variable,too-few-public-methods class ObjectRange(ObjectCollection): """ Class representing a range of object names Args: prefix (str): Prefix contained in all names of objects min_index (int): Starting index in the name of objects max_index (int): Last index in the name of all objects pad_width (int, optional): Left-pad indices with zeros up to the width provided, e.g. pad_width = 3 will transform 1 to 001 step (int, optional): Size of iterator steps between each item suffix (str, optional): Suffix at the end of all object names """ # pylint: disable=too-many-arguments def __init__( self, prefix: str, min_index: int = None, max_index: int = None, pad_width: int = 0, step: int = 1, suffix: str = "", ): self._prefix = prefix self._step = step self._suffix = suffix self._validate_indices(min_index, max_index, pad_width) min_set = isinstance(min_index, int) if self._suffix and not min_set: raise ValueError("Suffix cannot be used without indices") self._min_index = str(min_index).zfill(pad_width) if min_set else None self._max_index = ( str(max_index).zfill(pad_width) if isinstance(min_index, int) else None ) @staticmethod def _validate_indices(min_index, max_index, pad_width): """ Validate the indices passed to create a range: min_index < max_index and pad_width (if set) can fit the indices provided. Raises: InvalidObjectRangeIndex: If the indices passed to the range are not valid """ indices = [isinstance(min_index, int), isinstance(max_index, int)] if not all(indices): if any(indices): raise InvalidObjectRangeIndex( "Provide both min_index and max_index or neither" ) return if min_index >= max_index: raise InvalidObjectRangeIndex(f"{min_index} must be less than {max_index}") if pad_width != 0 and len(str(min_index)) > pad_width: raise InvalidObjectRangeIndex( f"Number of digits in min index {min_index} must not be greater than pad width {pad_width}" ) def _indices_set(self) -> bool: if all([self._min_index, self._max_index]): return True return False def __str__(self) -> str: if self._indices_set(): return f"{self._prefix}{{{self._min_index}..{self._max_index}..{self._step}}}{self._suffix}" return f"{self._prefix}" def __iter__(self) -> Iterator[str]: if not self._indices_set(): raise RuntimeError("Cannot iterate over object range with no indices") return utils.expand_braces(str(self)) def get_value(self): return {"template": str(self)}
aistore-master
python/aistore/sdk/multiobj/object_range.py
from aistore.pytorch.aisio import ( AISFileListerIterDataPipe as AISFileLister, AISFileLoaderIterDataPipe as AISFileLoader, AISSourceLister, ) from aistore.pytorch.dataset import AISDataset
aistore-master
python/aistore/pytorch/__init__.py
""" AIS IO Datapipe Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ from typing import Iterator, Tuple, List from torch.utils.data.dataset import T_co from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper from aistore.sdk.ais_source import AISSource try: from aistore.sdk import Client from aistore.pytorch.utils import parse_url, unparse_url HAS_AIS = True except ImportError: HAS_AIS = False def _assert_aistore() -> None: if not HAS_AIS: raise ModuleNotFoundError( "Package `aistore` is required to be installed to use this datapipe." "Please run `pip install aistore` or `conda install aistore` to install the package" "For more info visit: https://github.com/NVIDIA/aistore/blob/master/python/aistore/" ) # pylint: disable=unused-variable # pylint: disable=W0223 @functional_datapipe("ais_list_files") class AISFileListerIterDataPipe(IterDataPipe[str]): """ Iterable Datapipe that lists files from the AIStore backends with the given URL prefixes. (functional name: ``list_files_by_ais``). Acceptable prefixes include but not limited to - `ais://bucket-name`, `ais://bucket-name/` Note: - This function also supports files from multiple backends (`aws://..`, `gcp://..`, `hdfs://..`, etc) - Input must be a list and direct URLs are not supported. - length is -1 by default, all calls to len() are invalid as not all items are iterated at the start. - This internally uses AIStore Python SDK. Args: source_datapipe(IterDataPipe[str]): a DataPipe that contains URLs/URL prefixes to objects on AIS length(int): length of the datapipe url(str): AIStore endpoint Example: >>> from torchdata.datapipes.iter import IterableWrapper, AISFileLister >>> ais_prefixes = IterableWrapper(['gcp://bucket-name/folder/', 'aws:bucket-name/folder/', >>> 'ais://bucket-name/folder/', ...]) >>> dp_ais_urls = AISFileLister(url='localhost:8080', source_datapipe=ais_prefixes) >>> for url in dp_ais_urls: ... pass >>> # Functional API >>> dp_ais_urls = ais_prefixes.list_files_by_ais(url='localhost:8080') >>> for url in dp_ais_urls: ... pass """ def __init__( self, source_datapipe: IterDataPipe[str], url: str, length: int = -1 ) -> None: _assert_aistore() self.source_datapipe: IterDataPipe[str] = source_datapipe self.length: int = length self.client = Client(url) def __iter__(self) -> Iterator[str]: for prefix in self.source_datapipe: provider, bck_name, prefix = parse_url(prefix) obj_iter = self.client.bucket(bck_name, provider).list_objects_iter( prefix=prefix ) for entry in obj_iter: yield unparse_url( provider=provider, bck_name=bck_name, obj_name=entry.name ) def __len__(self) -> int: if self.length == -1: raise TypeError(f"{type(self).__name__} instance doesn't have valid length") return self.length # pylint: disable=unused-variable # pylint: disable=W0223 @functional_datapipe("ais_load_files") class AISFileLoaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): """ Iterable DataPipe that loads files from AIStore with the given URLs (functional name: ``load_files_by_ais``). Iterates all files in BytesIO format and returns a tuple (url, BytesIO). Note: - This function also supports files from multiple backends (`aws://..`, `gcp://..`, etc) - Input must be a list and direct URLs are not supported. - This internally uses AIStore Python SDK. - An `etl_name` can be provided to run an existing ETL on the AIS cluster. See https://github.com/NVIDIA/aistore/blob/master/docs/etl.md for more info on AIStore ETL. Args: source_datapipe(IterDataPipe[str]): a DataPipe that contains URLs/URL prefixes to objects length(int): length of the datapipe url(str): AIStore endpoint etl_name (str, optional): Optional etl on the AIS cluster to apply to each object Example: >>> from torchdata.datapipes.iter import IterableWrapper, AISFileLister,AISFileLoader >>> ais_prefixes = IterableWrapper(['gcp://bucket-name/folder/', 'aws:bucket-name/folder/', >>> 'ais://bucket-name/folder/', ...]) >>> dp_ais_urls = AISFileLister(url='localhost:8080', source_datapipe=ais_prefixes) >>> dp_cloud_files = AISFileLoader(url='localhost:8080', source_datapipe=dp_ais_urls) >>> for url, file in dp_cloud_files: ... pass >>> # Functional API >>> dp_cloud_files = dp_ais_urls.load_files_by_ais(url='localhost:8080') >>> for url, file in dp_cloud_files: ... pass """ def __init__( self, source_datapipe: IterDataPipe[str], url: str, length: int = -1, etl_name: str = None, ) -> None: _assert_aistore() self.source_datapipe: IterDataPipe[str] = source_datapipe self.length = length self.client = Client(url) self.etl_name = etl_name def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for url in self.source_datapipe: provider, bck_name, obj_name = parse_url(url) yield url, StreamWrapper( self.client.bucket(bck_name=bck_name, provider=provider) .object(obj_name=obj_name) .get(etl_name=self.etl_name) .raw() ) def __len__(self) -> int: return len(self.source_datapipe) @functional_datapipe("ais_list_sources") class AISSourceLister(IterDataPipe[str]): def __init__(self, ais_sources: List[AISSource], prefix="", etl_name=None): """ Iterable DataPipe over the full URLs for each of the provided AIS source object types Args: ais_sources (List[AISSource]): List of types implementing the AISSource interface: Bucket, ObjectGroup, Object, etc. prefix (str, optional): Filter results to only include objects with names starting with this prefix etl_name (str, optional): Pre-existing ETL on AIS to apply to all selected objects on the cluster side """ _assert_aistore() self.sources = ais_sources self.prefix = prefix self.etl_name = etl_name def __getitem__(self, index) -> T_co: raise NotImplementedError def __iter__(self) -> Iterator[T_co]: for source in self.sources: for url in source.list_urls(prefix=self.prefix, etl_name=self.etl_name): yield url
aistore-master
python/aistore/pytorch/aisio.py
""" AIS Plugin for PyTorch PyTorch Dataset and DataLoader for AIS. Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ from typing import List, Union from torch.utils.data import Dataset from aistore.sdk import Client from aistore.pytorch.utils import list_objects_info # pylint: disable=too-few-public-methods class AISBaseClass: """ A base class for creating AIS Datasets for PyTorch Args: client_url(str): AIS endpoint URL urls_list(str or List[str]): single or list of url prefixes to load data """ def __init__(self, client_url: str, urls_list: Union[str, List[str]]) -> None: self.client = Client(client_url) if isinstance(urls_list, str): urls_list = [urls_list] self._object_info = {} self._object_info = list_objects_info(self.client, urls_list) # pylint: disable=unused-variable class AISDataset(AISBaseClass, Dataset): """ A map-style dataset for objects in AIS. If `etl_name` is provided, that ETL must already exist on the AIStore cluster Args: client_url (str): AIS endpoint URL urls_list (str or List[str]): single or list of url prefixes to load data etl_name (str, optional): Optional etl on the AIS cluster to apply to each object """ def __init__( self, client_url: str, urls_list: Union[str, List[str]], etl_name=None ): AISBaseClass.__init__(self, client_url, urls_list) self.etl_name = etl_name def __len__(self): return len(self._object_info) def __getitem__(self, index: int): object_name = self._object_info[index]["object"] obj = ( self.client.bucket( bck_name=self._object_info[index]["bck_name"], provider=self._object_info[index]["provider"], ) .object(obj_name=object_name) .get(etl_name=self.etl_name) .read_all() ) return object_name, obj
aistore-master
python/aistore/pytorch/dataset.py
""" Utils for AIS PyTorch Plugin Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ from typing import List, Mapping, Tuple from urllib.parse import urlparse, urlunparse from aistore.sdk import Client def parse_url(url: str) -> Tuple[str, str, str]: """ Parse AIS urls for bucket and object names Args: url (str): Complete URL of the object (eg. "ais://bucket1/file.txt") Returns: provider (str): AIS Backend bck_name (str): Bucket name identifier obj_name (str): Object name with extension """ parsed_url = urlparse(url) path = parsed_url.path if len(path) > 0 and path.startswith("/"): path = path[1:] # returns provider, bck_name, path return parsed_url.scheme, parsed_url.netloc, path # pylint: disable=unused-variable def list_objects_info(client: Client, urls_list: List[str]) -> List[Mapping[str, str]]: """ Create list of [bucket_name, object_name] from all the object urls Args: client (Client): AIStore client object of the calling method urls_list (List[str]): list of urls Returns: List[samples](List[Mapping[str, str]]): list of {provider, bucket, path to the object} """ samples = [] for url in urls_list: provider, bck_name, path = parse_url(url) objects = client.bucket(bck_name=bck_name, provider=provider).list_objects( prefix=path ) for obj_info in objects.entries: samples.append( {"provider": provider, "bck_name": bck_name, "object": obj_info.name} ) return samples def unparse_url(provider: str, bck_name: str, obj_name: str) -> str: """ To generate URL based on provider, bck_name and object name Args: provider(str): Provider name ('ais', 'gcp', etc) bck_name(str): Bucket name obj_name(str): Object name with extension. Returns: unparsed_url(str): Unparsed url (complete url) """ return urlunparse([provider, bck_name, obj_name, "", "", ""])
aistore-master
python/aistore/pytorch/utils.py
from setuptools import setup, find_packages setup( name="pyaisloader", version="0.0.1", entry_points={ "console_scripts": [ "pyaisloader=pyaisloader.main:main", ], }, packages=find_packages(include=["pyaisloader", "pyaisloader.*"]), install_requires=[ "colorama>=0.4.6", "humanfriendly>=10.0", "pendulum>=2.1.2", "tabulate>=0.9.0", "aistore>=1.3.0", ], )
aistore-master
python/pyaisloader/setup.py
import itertools import random import time from aistore.sdk.const import PROVIDER_AIS from pyaisloader.utils.bucket_utils import ( add_one_object, bucket_exists, bucket_obj_count, bucket_size, ) from pyaisloader.utils.cli_utils import ( bold, confirm_continue, print_caution, print_in_progress, print_sep, print_success, terminate, underline, ) from pyaisloader.utils.concurrency_utils import multiworker_deploy from pyaisloader.utils.parse_utils import format_size, format_time from pyaisloader.utils.random_utils import generate_bytes, generate_random_str from pyaisloader.utils.stat_utils import combine_results, print_results class BenchmarkStats: def __init__(self): self.total_op_bytes = 0 self.total_op_time = 0 self.total_ops = 0 self.latencies = [] self.objs_created = [] def update(self, size, latency, obj_name=None): self.total_ops += 1 self.total_op_bytes += size self.latencies.append(latency) self.total_op_time += latency if obj_name: self.objs_created.append(obj_name) def produce_stats(self): self.latencies = self.latencies or [0] # To avoid division by zero self.result = { "ops": self.total_ops, "bytes": self.total_op_bytes, "time": self.total_op_time, "throughput": self.total_op_bytes / self.total_op_time if self.total_op_time != 0 else 0, "latency_min": min(self.latencies), "latency_avg": sum(self.latencies) / len(self.latencies), "latency_max": max(self.latencies), } class Benchmark: """Abstract class for all benchmarks""" def __init__(self, bucket, workers, cleanup): self.bucket = bucket self.workers = workers self.cleanup = cleanup self.objs_created = [] # Track for intelligent clean-up (deletes bucket if bucket was created by benchmark, otherwise only deletes objects in bucket created by benchmark) self.bck_created = False self.setup() def run(self, *args, **kwargs): raise NotImplementedError("This method should be implemented by subclasses.") def setup(self): if self.bucket.provider != PROVIDER_AIS: # Cloud Bucket print_caution("You are currently operating on a cloud storage bucket.") confirm_continue() if not bucket_exists( self.bucket ): # Cloud buckets that don't exist are not permitted terminate( "Cloud bucket " + bold(f"{self.bucket.provider}://{self.bucket.name}") + " does not exist and AIStore Python SDK does not yet support cloud bucket creation (re-run with existing cloud bucket)." ) else: if bucket_exists(self.bucket): print_caution( "The bucket " + bold(f"{self.bucket.provider}://{self.bucket.name}") + " already exists." ) confirm_continue() else: print_in_progress( "Creating bucket " + bold(f"{self.bucket.provider}://{self.bucket.name}") ) self.bucket.create() self.bck_created = True print_success( "Created bucket " + bold(f"{self.bucket.provider}://{self.bucket.name}") ) def prepopulate(self, type_list=False): prefix = ( "PREPOP-" + generate_random_str() + "-" ) # Each worker with unique prefix objs_created = [] prepopulated_bytes = 0 if type_list: for suffix in range(self.target): _, objs_created = self.__prepopulate_h(objs_created, prefix, suffix) else: suffix = 0 while prepopulated_bytes < self.target: size, objs_created = self.__prepopulate_h(objs_created, prefix, suffix) prepopulated_bytes += size suffix += 1 return objs_created def __prepopulate_h(self, objs_created, prefix, suffix): content, size = generate_bytes(self.minsize, self.maxsize) obj = self.bucket.object(prefix + (str(suffix))) obj.put_content(content) objs_created.append(obj.name) return size, objs_created def clean_up(self, new=True): if new: print_in_progress("Cleaning up", "\U0001F9F9") if not self.bck_created and not self.objs_created: print_caution("Nothing to delete! Skipping clean-up...") return if self.bck_created: msg = ( "bucket " + bold(f"{self.bucket.provider}://{self.bucket.name}") + " ? " ) else: msg = ( bold(f"{len(self.objs_created)}") + " objects created by the benchmark (and pre-population) in " + bold(f"{self.bucket.provider}://{self.bucket.name}") + " ? " ) decision = input( "\n" + "Would you like to proceed w/ deletion of " + msg + bold("(Y/N)") + ": " ) if decision.lower() in ["n", "no"]: print_caution("Skipping clean-up...") return if decision.lower() in ["y", "yes"]: if self.bck_created: self.bucket.delete() else: self.bucket.objects(obj_names=self.objs_created).delete() print_success("Completed clean-up") else: self.clean_up(False) class PutGetMixedBenchmark(Benchmark): def __init__( self, put_pct, minsize=None, maxsize=None, duration=None, totalsize=None, *args, **kwargs, ): super().__init__(*args, **kwargs) self.put_pct = put_pct self.duration = duration self.totalsize = totalsize self.minsize = minsize self.maxsize = maxsize def run(self): if self.put_pct == 100: self.__run_put() elif self.put_pct == 0: if self.totalsize is not None: self.__run_prepopulate() self.__run_get() else: self.__run_mixed() def __run_put(self): totalsize = None if self.totalsize is None else (self.totalsize // self.workers) print_in_progress("Performing PUT benchmark") results = multiworker_deploy( self, self.put_benchmark, (self.duration, totalsize) ) print_success("Completed PUT benchmark") result = [] for worker_result, worker_objs_created in results: result.append(worker_result) self.objs_created.extend(worker_objs_created) result = combine_results(result, self.workers) if self.cleanup: self.clean_up() print_sep() print("\n" + underline(bold("Benchmark Results (100% PUT):"))) print_results(result) def __run_get(self): if bucket_obj_count(self.bucket) == 0: add_one_object(self) self.get_objs_queue = self.bucket.list_all_objects() print_in_progress("Performing GET benchmark") result = multiworker_deploy(self, self.get_benchmark, (self.duration,)) print_success("Completed GET benchmark") result = combine_results(result, self.workers) if self.cleanup: self.clean_up() print_sep() print("\n" + underline(bold("Benchmark Results (100% GET):"))) print_results(result) def __run_mixed(self): if bucket_obj_count(self.bucket) == 0: add_one_object(self) print_in_progress("Performing MIXED benchmark") result = multiworker_deploy(self, self.mixed_benchmark, (self.duration,)) print_success("Completed MIXED benchmark") workers_objs_created = [ obj for worker_result in result for obj in worker_result[2] ] self.objs_created.extend(workers_objs_created) results_put = [res[0] for res in result] results_get = [res[1] for res in result] result_put = combine_results(results_put, self.workers) result_get = combine_results(results_get, self.workers) if self.cleanup: self.clean_up() print_sep() print("\n" + underline(bold("Benchmark Results for PUT operations:"))) print_results(result_put) print("\n" + underline(bold("Benchmark Results for GET operations:"))) print_results(result_get) def __run_prepopulate(self): print_in_progress("Starting Pre-Population") curr_bck_size = bucket_size(self.bucket) if curr_bck_size < self.totalsize: self.target = ((self.totalsize) - curr_bck_size) // self.workers result = multiworker_deploy( self, self.prepopulate, (False,), ) self.objs_created.extend(list(itertools.chain(*result))) remaining_bytes = ((self.totalsize) - curr_bck_size) % self.workers if remaining_bytes != 0: # self.target = remaining_bytes objs_created = self.prepopulate(type_list=False) self.objs_created.extend(objs_created) print_success("Completed Pre-Population") else: print( "\nBucket " + bold(f"{self.bucket.provider}://{self.bucket.name}") + f" currently has a total size of " + bold(f"{format_size(curr_bck_size)}") + f", which already meets the specified total size of " + bold(f"{format_size(self.totalsize)}") + ". " ) print_success("Skipped Pre-Population") def put_benchmark(self, duration, totalsize): # Done prefix = generate_random_str() # Each worker with unique prefix pstats = BenchmarkStats() if duration and totalsize: # Time/Size Based while pstats.total_op_time < duration and pstats.total_op_bytes < totalsize: self.__put_benchmark_h(pstats, prefix, pstats.total_ops) elif duration: # Time Based while pstats.total_op_time < duration: self.__put_benchmark_h(pstats, prefix, pstats.total_ops) elif totalsize: # Size Based while pstats.total_op_bytes < totalsize: size, latency, obj = self.__put_benchmark_h( pstats, prefix, pstats.total_ops ) pstats.objs_created.append(obj.name) pstats.update(size, latency, obj.name) pstats.produce_stats() return pstats.result, pstats.objs_created def __put_benchmark_h(self, stats, prefix, suffix): # Done content, size = generate_bytes(self.minsize, self.maxsize) obj = self.bucket.object(prefix + str(suffix)) op_start = time.time() obj.put_content(content) op_end = time.time() latency = op_end - op_start stats.objs_created.append(obj.name) stats.update(size, latency, obj.name) return obj def get_benchmark(self, duration): # Done gstats = BenchmarkStats() while gstats.total_op_time < duration: self.__get_benchmark_h(gstats, self.get_objs_queue) gstats.produce_stats() return gstats.result def __get_benchmark_h(self, stats, objs): # Done op_start = time.time() content = self.bucket.object(random.choice(objs).name).get() content.read_all() op_end = time.time() latency = op_end - op_start stats.update(content.attributes.size, latency) def mixed_benchmark(self, duration): # Done prefix = generate_random_str() # Each worker with unique prefix gstats = BenchmarkStats() pstats = BenchmarkStats() objs = [obj.object for obj in self.bucket.list_all_objects()] while pstats.total_op_time + gstats.total_op_time < duration: # Choose whether to perform a PUT or a GET operation if random.randint(0, 100) < self.put_pct: obj = self.__put_benchmark_h(pstats, prefix, pstats.total_ops) objs.append(obj) else: self.__get_benchmark_h(gstats, objs) gstats.produce_stats() pstats.produce_stats() return pstats.result, gstats.result, pstats.objs_created class ListBenchmark(Benchmark): def __init__(self, num_objects=None, *args, **kwargs): super().__init__(*args, **kwargs) self.num_objects = num_objects self.minsize = 1000 self.maxsize = 1000 # Pre-Population if self.num_objects: print_in_progress("Pre-Populating Bucket") curr_bck_count = bucket_obj_count(self.bucket) if self.num_objects > curr_bck_count: self.target = (self.num_objects - curr_bck_count) // self.workers result = multiworker_deploy( self, self.prepopulate, (True,), ) self.objs_created.extend(list(itertools.chain(*result))) if ((self.num_objects - curr_bck_count) % self.workers) != 0: self.target = (self.num_objects - curr_bck_count) % self.workers objs_created = self.prepopulate(type_list=True) self.objs_created.extend(objs_created) print_success("Completed Pre-Population") else: print( "\nBucket " + bold(f"{self.bucket.provider}://{self.bucket.name}") + f" currently has " + bold(f"{curr_bck_count}") + f" objects, which already meets the specified total count of " + bold(f"{self.num_objects}") + ". " ) print_success("Skipped Pre-Population") def __print_results(self): num_listed_objs = len(self.listed_objs) if num_listed_objs != 0: print_sep() print( "\n" + underline( bold(f"Benchmark Results (LIST {num_listed_objs} Objects):") ) ) print( "\n" + "The benchmark took approximately " + bold(format_time(self.benchmark_time)) + " and listed " + bold(str(num_listed_objs)) + " objects.\n" ) else: terminate( f"The bucket {self.bucket.provider}://{self.bucket.name} is empty. Please populate the bucket before running the benchmark or use the option --num-objects (or -n)." ) def run(self): self.listed_objs = [] # Start benchmark start_time = time.time() print_in_progress("Performing LIST benchmark") self.listed_objs = self.bucket.list_all_objects() print_success("Completed LIST benchmark") end_time = time.time() self.benchmark_time = end_time - start_time if self.cleanup: self.clean_up() self.__print_results()
aistore-master
python/pyaisloader/pyaisloader/benchmark.py
aistore-master
python/pyaisloader/pyaisloader/__init__.py
import os from aistore import Client ENDPOINT = os.environ["AIS_ENDPOINT"] client = Client(ENDPOINT)
aistore-master
python/pyaisloader/pyaisloader/client_config.py
import argparse import pkg_resources from pyaisloader.benchmark import PutGetMixedBenchmark, ListBenchmark from pyaisloader.const import PROVIDERS from pyaisloader.client_config import client from pyaisloader.utils.parse_utils import parse_size, parse_time from pyaisloader.utils.print_utils import bold VERSION = pkg_resources.require("pyaisloader")[0].version def prepend_default_arguments(parser): parser.add_argument( "-b", "--bucket", type=str, required=True, help="Bucket (e.g. ais://mybck, s3://mybck, gs://mybck)", ) return parser def append_default_arguments(parser): parser.add_argument( "-c", "--cleanup", action="store_true", default=False, help="Whether bucket should be destroyed or not upon benchmark completion", ) parser.add_argument( "-w", "--workers", type=int, required=True, help="Number of workers" ) return parser def main(): """Parses the command line arguments and instantiates the correct benchmark.""" parser = argparse.ArgumentParser(description="CLI for running benchmarks.") parser.add_argument( "--version", action="version", version=f"pyaisloader {VERSION}", help="Show version number and exit", ) subparsers = parser.add_subparsers( dest="type", title="types", description=( 'Choose a benchmark type. Type "PUT -h", "GET -h", ' '"MIXED -h", or "LIST -h" for more information about the specific benchmark.' ), ) put_parser = subparsers.add_parser( "PUT", aliases=["put", "P", "p"], help="100% PUT benchmark", description="This command runs a 100% PUT benchmark.", ) get_parser = subparsers.add_parser( "GET", aliases=["get", "G", "g"], help="100% GET benchmark", description="This command runs a 100% GET benchmark.", ) mixed_parser = subparsers.add_parser( "MIXED", aliases=["mixed", "M", "m"], help="MIXED benchmark", description="This command runs a MIXED benchmark, with a customizable balance of PUT and GET operations.", ) list_parser = subparsers.add_parser( "LIST", aliases=["list", "L", "l"], help="LIST objects benchmark", description="This command runs a LIST benchmark.", ) put_parser = prepend_default_arguments(put_parser) get_parser = prepend_default_arguments(get_parser) mixed_parser = prepend_default_arguments(mixed_parser) list_parser = prepend_default_arguments(list_parser) put_parser.add_argument( "-min", "--minsize", type=parse_size, required=True, help="Minimum size of objects to be PUT in bucket during the benchmark", ) put_parser.add_argument( "-max", "--maxsize", type=parse_size, required=True, help="Maximum size of objects to be PUT in bucket during the benchmark", ) put_parser.add_argument( "-s", "--totalsize", type=parse_size, required=False, help=( "Total size to PUT during the benchmark " "(if duration is not satisfied first)" ), ) put_parser.add_argument( "-d", "--duration", type=parse_time, required=False, help="Duration for which benchmark should be run", ) get_parser.add_argument( "-min", "--minsize", type=parse_size, required=False, help="Minimum size of objects to be PUT in bucket (if bucket is smaller than total size)", ) get_parser.add_argument( "-max", "--maxsize", type=parse_size, required=False, help="Maximum size of objects to be PUT in bucket (if bucket is smaller than total size)", ) get_parser.add_argument( "-s", "--totalsize", type=parse_size, required=False, help="Total size to which the bucket should be filled prior to start", ) get_parser.add_argument( "-d", "--duration", type=parse_time, required=True, help="Duration for which benchmark should be run", ) mixed_parser.add_argument( "-p", "--putpct", type=int, default=50, help="Percentage for PUT operations in MIXED benchmark", ) mixed_parser.add_argument( "-min", "--minsize", type=parse_size, required=True, help=("Minimum size of objects to be PUT in bucket during the benchmark "), ) mixed_parser.add_argument( "-max", "--maxsize", type=parse_size, required=True, help=("Maximum size of objects to be PUT in bucket during the benchmark "), ) mixed_parser.add_argument( "-d", "--duration", type=parse_time, required=True, help="Duration for which benchmark should be run", ) list_parser.add_argument( "-o", "--objects", type=int, help="Number of objects bucket should contain prior to benchmark start", ) put_parser = append_default_arguments(put_parser) get_parser = append_default_arguments(get_parser) mixed_parser = append_default_arguments(mixed_parser) list_parser = append_default_arguments(list_parser) args = parser.parse_args() if args.type is None: print( f"\nWelcome to {bold('pyaisloader')}, a CLI for running benchmarks that leverage the AIStore Python SDK. \n\n" "Available benchmark types include: PUT, GET, MIXED, and LIST. \n\n" "For more details about each benchmark type, use 'pyaisloader [benchmark_type] -h' \nor 'pyaisloader [benchmark_type] --help' " "(e.g. for more information about the PUT \nbenchmark, run 'pyaisloader PUT -h' or 'pyaisloader PUT --help').\n" ) return # Require that PUT benchmark specifies at least one of --totalsize or --duration if args.type.lower() in ["put", "p"]: if args.totalsize is None and args.duration is None: parser.error("At least one of --totalsize or --duration must be provided.") if args.type.lower() in ["get", "g"]: if args.totalsize: if args.minsize is None or args.maxsize is None: parser.error( "If pre-populating bucket, --totalsize, --minsize, and --maxsize are all required." ) # Instantiate client and bucket object provider, bck_name = args.bucket.split("://") bucket = client.bucket(bck_name, provider=PROVIDERS[provider]) benchmark_type = args.type.lower() if benchmark_type in ["put", "get", "mixed", "p", "g", "m"]: if benchmark_type in ["put", "p"]: benchmark = PutGetMixedBenchmark( put_pct=100, minsize=args.minsize, maxsize=args.maxsize, duration=args.duration, totalsize=args.totalsize, bucket=bucket, workers=args.workers, cleanup=args.cleanup, ) elif benchmark_type in ["get", "g"]: benchmark = PutGetMixedBenchmark( put_pct=0, minsize=args.minsize, maxsize=args.maxsize, duration=args.duration, totalsize=args.totalsize, bucket=bucket, workers=args.workers, cleanup=args.cleanup, ) else: benchmark = PutGetMixedBenchmark( put_pct=args.putpct, minsize=args.minsize, maxsize=args.maxsize, duration=args.duration, bucket=bucket, workers=args.workers, cleanup=args.cleanup, ) benchmark.run() elif benchmark_type in ["list", "l"]: benchmark = ListBenchmark( num_objects=args.objects, bucket=bucket, workers=args.workers, cleanup=args.cleanup, ) benchmark.run() if __name__ == "__main__": main()
aistore-master
python/pyaisloader/pyaisloader/main.py
from aistore.sdk.const import PROVIDER_AIS, PROVIDER_AMAZON, PROVIDER_GOOGLE BOLD = "\033[1m" UNDERLINE = "\033[4m" END = "\033[0m" PROVIDERS = { "ais": PROVIDER_AIS, "aws": PROVIDER_AMAZON, "gcp": PROVIDER_GOOGLE, "gs": PROVIDER_GOOGLE, "s3": PROVIDER_AMAZON, } BOOLEAN_VALUES = {"false": False, "f": False, "true": True, "t": True}
aistore-master
python/pyaisloader/pyaisloader/const.py
import sys from tabulate import tabulate from colorama import Back, Fore, Style from pyaisloader.const import BOLD, END, UNDERLINE from pyaisloader.utils.parse_utils import format_size, format_time def bold(msg): return f"{BOLD}{msg}{END}" def underline(msg): return f"{UNDERLINE}{msg}{END}" def print_sep(): print("\n" + "=" * 101) def print_in_progress(msg, icon="\U0001F552"): print( "\n" + Back.LIGHTBLACK_EX + Fore.BLACK + bold("IN PROGRESS") + Style.RESET_ALL + bold(": ") + msg + f" {icon}" ) def print_caution(msg): print( "\n" + Back.LIGHTYELLOW_EX + Fore.BLACK + bold("CAUTION") + Style.RESET_ALL + bold(": ") + msg ) def print_success(msg): print( "\n" + Back.LIGHTGREEN_EX + Fore.BLACK + bold("SUCCESS") + Style.RESET_ALL + bold(": ") + msg + Fore.GREEN + " \u2714" + Style.RESET_ALL ) def print_results(result): headers_values = [ ("# Ops Completed", result["ops"]), ("Total Size", format_size(result["bytes"])), ("Throughput", f"{format_size(result['throughput'])}/s"), ("Latency Min", format_time(result["latency_min"])), ("Latency Avg", format_time(result["latency_avg"])), ("Latency Max", format_time(result["latency_max"])), ] table = [ [f"{BOLD}{name}{END}" for name, _ in headers_values], [value for _, value in headers_values], ] print("\n" + tabulate(table, tablefmt="simple_grid") + "\n") def confirm_continue(): decision = input("\n" + "Would you like to proceed? " + bold("(Y/N)") + ": ") if decision.lower() in ["n", "no"]: terminate() elif decision.lower() in ["y", "yes"]: return else: confirm_continue() def terminate(msg=None): if msg: print( "\n" + Back.LIGHTRED_EX + Fore.BLACK + bold("TERMINATING") + Style.RESET_ALL + bold(": ") + msg + "\n" ) sys.exit() else: print( "\n" + Back.LIGHTRED_EX + Fore.BLACK + bold("TERMINATING") + Style.RESET_ALL + bold("...") + "\n" ) sys.exit()
aistore-master
python/pyaisloader/pyaisloader/utils/cli_utils.py
import os import random import string def generate_random_str(): chars = string.ascii_letters + string.digits return "".join(random.choice(chars) for _ in range(5)) def generate_bytes(min_size, max_size): size = random.randint(min_size, max_size) content = os.urandom(size) return content, size
aistore-master
python/pyaisloader/pyaisloader/utils/random_utils.py
from colorama import Back, Fore, Style from pyaisloader.const import BOLD, END, UNDERLINE from pyaisloader.utils.cli_utils import terminate def bold(msg): return f"{BOLD}{msg}{END}" def underline(msg): return f"{UNDERLINE}{msg}{END}" def print_sep(): print("\n" + "=" * 101) def confirm_continue(): decision = input("\n" + "Would you like to proceed? " + bold("(Y/N)") + ": ") if decision.lower() in ["n", "no"]: terminate() elif decision.lower() in ["y", "yes"]: return else: confirm_continue() def print_in_progress(msg, icon="\U0001F552"): print( "\n" + Back.LIGHTBLACK_EX + Fore.BLACK + bold("IN PROGRESS") + Style.RESET_ALL + bold(": ") + msg + f" {icon}" ) def print_caution(msg): print( "\n" + Back.LIGHTYELLOW_EX + Fore.BLACK + bold("CAUTION") + Style.RESET_ALL + bold(": ") + msg ) def print_success(msg): print( "\n" + Back.LIGHTGREEN_EX + Fore.BLACK + bold("SUCCESS") + Style.RESET_ALL + bold(": ") + msg + Fore.GREEN + " \u2714" + Style.RESET_ALL )
aistore-master
python/pyaisloader/pyaisloader/utils/print_utils.py
import humanfriendly import pendulum from pyaisloader.const import BOOLEAN_VALUES def parse_time(time_str): return humanfriendly.parse_timespan(time_str) def parse_size(size_str): return humanfriendly.parse_size(size_str) def format_time(duration): d = pendulum.duration(seconds=duration) if d.minutes > 0: return d.in_words() if d.seconds > 0: return f"{d.seconds} seconds" if d.microseconds > 0: if d.microseconds >= 1e6: return f"{d.microseconds/1e6} seconds" if d.microseconds >= 1e3: return f"{d.microseconds/1e3} milliseconds" return f"{d.microseconds} microseconds" return "0 seconds" def format_size(byte_count): return humanfriendly.format_size(byte_count)
aistore-master
python/pyaisloader/pyaisloader/utils/parse_utils.py
from requests.exceptions import HTTPError from pyaisloader.utils.print_utils import ( print_caution, print_in_progress, print_success, ) from pyaisloader.utils.random_utils import generate_bytes def bucket_exists(bucket): try: bucket.head() return True except HTTPError: return False def bucket_size(bucket): _, bsumm = bucket.info() present_size = int(bsumm["TotalSize"]["size_all_present_objs"]) remote_size = int(bsumm["TotalSize"]["size_all_remote_objs"]) if remote_size > 0: return remote_size else: return present_size def bucket_obj_count(bucket): _, bsumm = bucket.info() return int(bsumm["ObjCount"]["obj_count_present"]) + int( bsumm["ObjCount"]["obj_count_remote"] ) def cleanup(benchmark): benchmark.bucket.objects(obj_names=benchmark.objs_created).delete() def add_one_object(benchmark): print_caution("Bucket is empty!") print_in_progress("Adding one object") content, _ = generate_bytes(1000, 1000) obj_name = "initial-object" benchmark.bucket.object(obj_name).put_content(content) benchmark.objs_created.append(obj_name) print_success("Added one object")
aistore-master
python/pyaisloader/pyaisloader/utils/bucket_utils.py
aistore-master
python/pyaisloader/pyaisloader/utils/__init__.py
import concurrent.futures from requests.exceptions import HTTPError def bucket_exists(bucket): try: bucket.head() return True except HTTPError: return False def bucket_size(bck): return int(bck.summary()["TotalSize"]["size_on_disk"]) def bucket_obj_count(bck): summary = bck.summary() return int(summary["ObjCount"]["obj_count_present"]) + int( summary["ObjCount"]["obj_count_remote"] ) def cleanup(benchmark): benchmark.bucket.objects(obj_names=benchmark.objs_created).delete() def multiworker_deploy(benchmark, worker_function, worker_args=None): with concurrent.futures.ProcessPoolExecutor( max_workers=benchmark.workers ) as executor: # Prepare a list of argument tuples for the workers. worker_args = [worker_args for _ in range(benchmark.workers)] result = list(executor.map(worker_function, *zip(*worker_args))) return result
aistore-master
python/pyaisloader/pyaisloader/utils/concurrency_utils.py
from tabulate import tabulate from pyaisloader.const import BOLD, END from pyaisloader.utils.parse_utils import format_size, format_time def combine_results(results, num_workers): result = { "ops": sum(r["ops"] for r in results), "bytes": sum(r["bytes"] for r in results), "time": sum(r["time"] for r in results), "throughput": sum(r["throughput"] for r in results), "latency_min": min(r["latency_min"] for r in results), "latency_avg": sum(r["latency_avg"] for r in results) / num_workers, "latency_max": max(r["latency_max"] for r in results), } return result def print_results(result): headers_values = [ ("# Ops Completed", result["ops"]), ("Total Size", format_size(result["bytes"])), ("Throughput", f"{format_size(result['throughput'])}/s"), ("Latency Min", format_time(result["latency_min"])), ("Latency Avg", format_time(result["latency_avg"])), ("Latency Max", format_time(result["latency_max"])), ] table = [ [f"{BOLD}{name}{END}" for name, _ in headers_values], [value for _, value in headers_values], ] print("\n" + tabulate(table, tablefmt="simple_grid") + "\n")
aistore-master
python/pyaisloader/pyaisloader/utils/stat_utils.py
# # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-module-docstring import io import logging import unittest import boto3 from moto import mock_s3 from botocore.exceptions import ClientError from aistore.sdk.const import UTF_ENCODING from tests import ( AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_SESSION_TOKEN, AWS_DEFAULT_REGION, ) from tests.utils import random_string from tests.unit.botocore_patch import mock_s3_redirect # pylint: disable=too-many-instance-attributes,missing-function-docstring,invalid-name,unused-variable class BotocoreBaseTest(unittest.TestCase): """ Common test group for the botocore monkey patch; Runs a small set of S3 operations. We run this over and over, varying whether redirects are issued, and whether our monkey patch is loaded to handle them. If botocore has been monkeypatched, it should not get upset when redirected. If botocore has not, it should get upset every time. For units, we use moto to mock an S3 instance; to control whether redirects are issued we use a decorator (see mock_s3_redirect.py). To control botocore's expected behavior we use the redirect_errors_expected property. """ __test__ = False mock_s3 = mock_s3() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.enable_redirects = False self.redirect_errors_expected = False # Use moto to mock S3 by default. self.use_moto = True # AIstore endpoint URL to use iff we're not using moto. self.endpoint_url = kwargs.get("endpoint_url", "http://localhost:8080/s3") def setUp(self): self.control_bucket = random_string() self.control_object = random_string() self.another_bucket = random_string() self.another_object = random_string() if self.use_moto: logging.debug("Using moto for S3 services") # Disable any redirections until we're ready. mock_s3_redirect.redirections_enabled = False self.mock_s3.start() self.s3 = boto3.client( "s3", region_name="us-east-1" ) # pylint: disable=invalid-name else: logging.debug("Using aistore for S3 services") self.s3 = boto3.client( "s3", region_name=AWS_DEFAULT_REGION, endpoint_url=self.endpoint_url, aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, aws_session_token=AWS_SESSION_TOKEN, ) self.s3.create_bucket(Bucket=self.control_bucket) self.s3.upload_fileobj( io.BytesIO(b"Hello, world!"), self.control_bucket, self.control_object ) if self.use_moto: # Enable redirections if we've been asked to do so. mock_s3_redirect.redirections_enabled = self.enable_redirects def tearDown(self): if self.use_moto: self.mock_s3.stop() else: try: self.s3.delete_object( Bucket=self.control_bucket, Key=self.control_object ) except Exception: pass try: self.s3.delete_bucket(Bucket=self.control_bucket) except Exception: pass try: self.s3.delete_object( Bucket=self.control_bucket, Key=self.another_object ) except Exception: pass try: self.s3.delete_bucket(Bucket=self.another_bucket) except Exception: pass def test_bucket_create(self): # When integration testing against a real aistore, this won't redirect. redirect_errors_expected = ( False if not self.use_moto else self.redirect_errors_expected ) with MightRedirect(redirect_errors_expected, operation="_bucket_response_put"): logging.warning("Creating bucket %s", self.another_bucket) self.s3.create_bucket(Bucket=self.another_bucket) def test_bucket_list(self): # Our redirect mock can't intercept bucket listing operations; # so, always expect success self.assertIn( self.control_bucket, [b["Name"] for b in self.s3.list_buckets()["Buckets"]] ) def test_object_create(self): with MightRedirect(self.redirect_errors_expected): self.s3.upload_fileobj( io.BytesIO(b"Hello, world!"), self.control_bucket, self.another_object ) def test_object_list(self): # Our redirect mock can't intercept object listing operations; # so, always expect success self.assertEqual( [ b["Key"] for b in self.s3.list_objects(Bucket=self.control_bucket)["Contents"] ], [self.control_object], ) def test_object_get(self): with MightRedirect(self.redirect_errors_expected): stream_str = io.BytesIO() self.s3.download_fileobj( self.control_bucket, self.control_object, stream_str ) self.assertEqual( stream_str.getvalue().decode(UTF_ENCODING), "Hello, world!" ) def test_caching(self): with MightRedirect(self.redirect_errors_expected): stream_str = io.BytesIO() self.s3.download_fileobj( self.control_bucket, self.control_object, stream_str ) self.assertEqual( stream_str.getvalue().decode(UTF_ENCODING), "Hello, world!" ) self.s3.download_fileobj( self.control_bucket, self.control_object, stream_str ) self.assertEqual( stream_str.getvalue().decode(UTF_ENCODING), "Hello, world!" ) def test_object_delete(self): with MightRedirect(self.redirect_errors_expected): self.s3.delete_object(Bucket=self.control_bucket, Key=self.control_object) def test_bucket_delete(self): with MightRedirect(self.redirect_errors_expected): self.s3.delete_object(Bucket=self.control_bucket, Key=self.control_object) self.s3.delete_bucket(Bucket=self.control_bucket) class MightRedirect: """ Context manager to handle botocore errors. Some test sets expect botocore to issue errors when it encounters redirects. Others expect the opposite. This allows us to control the expected behavior. """ max_retries = 3 def __init__(self, redirect_errors_expected=False, operation=None): self.redirect_errors_expected = redirect_errors_expected self.operation = operation def __enter__(self): return self def __exit__(self, exc, value, traceback): if self.redirect_errors_expected: try: if exc and value: raise value except ClientError as ex: # Some operations don't pass through redirect errors directly if self.operation in ["_bucket_response_put"]: return True if int(ex.response["Error"]["Code"]) in [302, 307]: return True instead = "No error" if value: instead = value raise Exception( "A ClientError with a redirect code was expected, " + "but didn't happen. Instead: " + instead ) return False
aistore-master
python/tests/botocore_common.py
import os AWS_SESSION_TOKEN = os.environ.get("AWS_SESSION_TOKEN", "testing") AWS_DEFAULT_REGION = os.environ.get("AWS_DEFAULT_REGION", "us-east-1") AWS_SECRET_ACCESS_KEY = os.environ.get("AWS_SECRET_ACCESS_KEY", "testing") AWS_ACCESS_KEY_ID = os.environ.get("AWS_ACCESS_KEY_ID", "testing") AWS_SECURITY_TOKEN = os.environ.get("AWS_SECURITY_TOKEN", "testing")
aistore-master
python/tests/__init__.py
import os import random import shutil import string import tempfile from pathlib import Path from aistore.sdk import Client from aistore.sdk.const import UTF_ENCODING from aistore.sdk.errors import ErrBckNotFound # pylint: disable=unused-variable def random_string(length: int = 10): return "".join(random.choices(string.ascii_lowercase, k=length)) # pylint: disable=unused-variable def create_and_put_object( client: Client, bck_name: str, obj_name: str, provider: str = "ais", obj_size: int = 0, ): obj_size = obj_size if obj_size else random.randrange(10, 20) obj_body = "".join(random.choices(string.ascii_letters, k=obj_size)) content = obj_body.encode(UTF_ENCODING) temp_file = Path(tempfile.gettempdir()).joinpath(os.urandom(24).hex()) with open(temp_file, "wb") as file: file.write(content) file.flush() client.bucket(bck_name, provider=provider).object(obj_name).put_file(file.name) return content def destroy_bucket(client: Client, bck_name: str): try: client.bucket(bck_name).delete() except ErrBckNotFound: pass def cleanup_local(path: str): try: shutil.rmtree(path) except FileNotFoundError: pass def create_and_put_objects(client, bucket, prefix, suffix, num_obj): obj_names = [prefix + str(i) + suffix for i in range(num_obj)] for obj_name in obj_names: create_and_put_object( client, bck_name=bucket.name, provider=bucket.provider, obj_name=obj_name, ) return obj_names
aistore-master
python/tests/utils.py
aistore-master
python/tests/unit/__init__.py
# # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-module-docstring,import-outside-toplevel,unused-import from tests.botocore_common import BotocoreBaseTest # pylint: disable=unused-variable class UnpatchedTestCase(BotocoreBaseTest): """ Our control case. When botocore is unpatched, and S3 issues no redirects, we should not see any client errors. """ __test__ = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.enable_redirects = False self.redirect_errors_expected = False
aistore-master
python/tests/unit/botocore_patch/test_botocore_noredirects_unpatched.py
aistore-master
python/tests/unit/botocore_patch/__init__.py
# # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-module-docstring import logging import wrapt # Patch moto - an S3 stubbing library - to # issue redirects for us. # When running tests, fake HTTP redirects # for the following. # # Not all response operatons found in moto's # S3Response are found below; they don't all # provide us with sufficient information to # patch successfully. test_ops = [ "_bucket_response_put", "_bucket_response_post", "_bucket_response_delete_keys", "_key_response_get", "_key_response_put", "_key_response_delete", "_key_response_post", ] redirected_ops = test_ops redirections_enabled = True # pylint: disable=invalid-name def s3_response_wrapper( wrapped, instance, args, kwargs ): # pylint: disable=unused-argument """ Patch various internal S3Response methods in moto to issue redirects. args and kwargs are somewhat inconsistent and vary per HTTP method. in particular, HEAD doesn't have enough scrapable context for us to redirect, so we don't bother. """ url = None operation = wrapped.__name__ should_redirect = operation in redirected_ops and redirections_enabled ret = wrapped(*args, **kwargs) if not should_redirect: return ret logging.debug("s3_response_wrapper: intercepted %s", wrapped.__name__) method = None try: method = operation.split("_").pop().upper() if method == "GET": bucket = args[0] url = f"https://s3.amazonaws.com/{bucket}" key = args[-1] if isinstance(key, str): url += f"/{key}" attempt = int( kwargs["headers"]["amz-sdk-request"].split(";")[0].split("=")[1] ) elif method == "PUT": url = args[0].__dict__["url"] attempt = int( args[0] .__dict__["headers"]["amz-sdk-request"] .split(";")[0] .split("=")[1] ) elif method == "DELETE": bucket = args[1] url = f"https://s3.amazonaws.com/{bucket}" key = args[-1] if isinstance(key, str): url += f"/{key}" attempt = int(args[0]["amz-sdk-request"].split(";")[0].split("=")[1]) elif method == "HEAD": url = None attempt = None elif method == "POST": url = None attempt = None logging.debug( "s3_response_wrapper: parsed operation %s, method %s, url %s, attempt %s", operation, method, url, attempt, ) except Exception: # pylint: disable=broad-except pass logging.debug("s3_response_wrapper: redirecting operation %s", operation) if attempt < 5: ret = list(ret) ret[0] = 307 ret[1]["Location"] = url + "?andthenanotherthing" ret[1]["Server"] = "AIStore" ret = tuple(ret) return ret @wrapt.when_imported("moto.s3.responses") def patch_moto(module): # pylint: disable=unused-variable """ Meta-mock our moto mocks to make them send redirects on occasion. Bucket delete won't play nicely. Others are more helpful. """ for func in test_ops: logging.debug("Patching S3Response.%s", func) wrapt.wrap_function_wrapper(module, "S3Response." + func, s3_response_wrapper)
aistore-master
python/tests/unit/botocore_patch/mock_s3_redirect.py
# # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-module-docstring,import-outside-toplevel,unused-import from tests.botocore_common import BotocoreBaseTest # pylint: disable=unused-variable class PatchedRedirectingTestCase(BotocoreBaseTest): """ This directly tests our monkey patch. When botocore is patched, and S3 issues redirects, we should not see any client errors. """ __test__ = True def __init__(self, *args, **kwargs): from aistore.botocore_patch import botocore super().__init__(*args, **kwargs) self.enable_redirects = True self.redirect_errors_expected = False
aistore-master
python/tests/unit/botocore_patch/test_botocore_redirects_patched.py
# # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-module-docstring,import-outside-toplevel,unused-import from tests.botocore_common import BotocoreBaseTest # pylint: disable=unused-variable class UnpatchedRedirectingTestCase(BotocoreBaseTest): """ Another control case. When botocore is unpatched, and S3 issues redirects, we should see some client errors. """ __test__ = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.enable_redirects = True self.redirect_errors_expected = True
aistore-master
python/tests/unit/botocore_patch/test_botocore_redirects_unpatched.py
# # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-module-docstring,import-outside-toplevel,unused-import from tests.botocore_common import BotocoreBaseTest # pylint: disable=unused-variable class PatchedTestCase(BotocoreBaseTest): """ A passthrough test to check we're not breaking botocore simply by being imported. When botocore is patched, and S3 issues no redirects, we should not see any client errors. """ __test__ = True def __init__(self, *args, **kwargs): from aistore.botocore_patch import botocore super().__init__(*args, **kwargs) self.enable_redirects = False self.redirect_errors_expected = False
aistore-master
python/tests/unit/botocore_patch/test_botocore_noredirects_patched.py
import unittest from typing import Dict, List from unittest.mock import Mock, patch, call from aistore.sdk.const import ( QPARAM_WHAT, QPARAM_FORCE, HTTP_METHOD_GET, HTTP_METHOD_PUT, WHAT_ONE_XACT_STATUS, URL_PATH_CLUSTER, ACT_START, WHAT_QUERY_XACT_STATS, ) from aistore.sdk.errors import Timeout from aistore.sdk.request_client import RequestClient from aistore.sdk.types import JobStatus, JobArgs, BucketModel, ActionMsg, JobSnapshot from aistore.sdk.utils import probing_frequency from aistore.sdk.job import Job # pylint: disable=unused-variable class TestJob(unittest.TestCase): def setUp(self): self.mock_client = Mock() self.job_id = "1234" self.job_kind = "test job" self.default_job = Job(self.mock_client) self.job = Job(self.mock_client, self.job_id, self.job_kind) def test_properties(self): self.assertEqual(self.job_id, self.job.job_id) self.assertEqual(self.job_kind, self.job.job_kind) def test_job_status(self): expected_request_val = JobArgs(id=self.job_id, kind=self.job_kind).as_dict() returned_status = JobStatus() self.mock_client.request_deserialize.return_value = returned_status res = self.job.status() self.assertEqual(returned_status, res) self.mock_client.request_deserialize.assert_called_with( HTTP_METHOD_GET, path=URL_PATH_CLUSTER, res_model=JobStatus, json=expected_request_val, params={QPARAM_WHAT: WHAT_ONE_XACT_STATUS}, ) def test_job_status_no_id(self): job_no_id = Job(self.mock_client) with self.assertRaises(ValueError): job_no_id.status() @patch("aistore.sdk.job.time.sleep") @patch("aistore.sdk.job.Job.status") def test_wait_default_params(self, mock_status, mock_sleep): timeout = 300 frequency = probing_frequency(timeout) expected_status_calls = [ call(), call(), call(), ] expected_sleep_calls = [call(frequency), call(frequency)] self.wait_exec_assert( self.default_job, mock_status, mock_sleep, expected_status_calls, expected_sleep_calls, ) @patch("aistore.sdk.job.time.sleep") @patch("aistore.sdk.job.Job.status") def test_wait(self, mock_status, mock_sleep): timeout = 20 frequency = probing_frequency(timeout) expected_status_calls = [call(), call(), call()] expected_sleep_calls = [call(frequency), call(frequency)] self.wait_exec_assert( self.job, mock_status, mock_sleep, expected_status_calls, expected_sleep_calls, timeout=timeout, ) @patch("aistore.sdk.job.time.sleep") @patch("aistore.sdk.job.Job.status") # pylint: disable=unused-argument def test_wait_timeout(self, mock_status, mock_sleep): mock_status.return_value = JobStatus(end_time=0) self.assertRaises(Timeout, self.job.wait) # pylint: disable=too-many-arguments def wait_exec_assert( self, job, mock_status, mock_sleep, expected_status_calls, expected_sleep_calls, **kwargs ): mock_status.side_effect = [ JobStatus(end_time=0), JobStatus(end_time=0), JobStatus(end_time=1), ] job.wait(**kwargs) mock_status.assert_has_calls(expected_status_calls) mock_sleep.assert_has_calls(expected_sleep_calls) self.assertEqual(3, mock_status.call_count) self.assertEqual(2, mock_sleep.call_count) @patch("aistore.sdk.job.time.sleep") def test_wait_for_idle(self, mock_sleep): snap_other_job_idle = JobSnapshot(id="other_id", is_idle=True) snap_job_running = JobSnapshot(id=self.job_id, is_idle=False) snap_job_idle = JobSnapshot(id=self.job_id, is_idle=True) self.mock_client.request_deserialize.side_effect = [ {"d1": [snap_other_job_idle, snap_job_running], "d2": [snap_job_running]}, {"d1": [snap_job_running], "d2": [snap_job_idle]}, {"d1": [snap_job_idle], "d2": [snap_job_idle]}, ] timeout = 20 frequency = probing_frequency(timeout) expected_request_val = JobArgs(id=self.job_id, kind=self.job_kind).as_dict() expected_request_params = {QPARAM_WHAT: WHAT_QUERY_XACT_STATS} expected_call = call( HTTP_METHOD_GET, path=URL_PATH_CLUSTER, json=expected_request_val, params=expected_request_params, res_model=Dict[str, List[JobSnapshot]], ) expected_client_requests = [expected_call for _ in range(2)] expected_sleep_calls = [call(frequency), call(frequency)] self.job.wait_for_idle(timeout=timeout) self.mock_client.request_deserialize.assert_has_calls(expected_client_requests) mock_sleep.assert_has_calls(expected_sleep_calls) self.assertEqual(3, self.mock_client.request_deserialize.call_count) self.assertEqual(2, mock_sleep.call_count) @patch("aistore.sdk.job.time.sleep") # pylint: disable=unused-argument def test_wait_for_idle_timeout(self, mock_sleep): res = { "d1": [JobSnapshot(id=self.job_id, is_idle=True)], "d2": [JobSnapshot(id=self.job_id, is_idle=False)], } self.mock_client.request_deserialize.return_value = res self.assertRaises(Timeout, self.job.wait_for_idle) @patch("aistore.sdk.job.time.sleep") # pylint: disable=unused-argument def test_wait_for_idle_no_snapshots(self, mock_sleep): self.mock_client.request_deserialize.return_value = {} with self.assertRaises(Timeout) as exc: self.job.wait_for_idle() self.assertEqual( "Timed out while waiting for job '1234' to reach idle state. No job information found.", str(exc.exception.args[0]), ) @patch("aistore.sdk.job.time.sleep") # pylint: disable=unused-argument def test_wait_for_idle_no_job_in_snapshots(self, mock_sleep): res = { "d1": [JobSnapshot(id="1"), JobSnapshot(id="2")], "d2": [JobSnapshot(id="2")], } self.mock_client.request_deserialize.return_value = res with self.assertRaises(Timeout) as exc: self.job.wait_for_idle() self.assertEqual( "Timed out while waiting for job '1234' to reach idle state. No information found for job 1234.", str(exc.exception.args[0]), ) def test_job_start_single_bucket(self): daemon_id = "daemon id" bucket = BucketModel(client=Mock(RequestClient), name="single bucket") expected_json = JobArgs( kind=self.job_kind, daemon_id=daemon_id, bucket=bucket ).as_dict() self.job_start_exec_assert( self.job, expected_json, {QPARAM_FORCE: "true"}, daemon_id=daemon_id, force=True, buckets=[bucket], ) def test_job_start_bucket_list(self): daemon_id = "daemon id" buckets = [ BucketModel(client=Mock(RequestClient), name="first bucket"), BucketModel(client=Mock(RequestClient), name="second bucket"), ] expected_json = JobArgs( kind=self.job_kind, daemon_id=daemon_id, buckets=buckets ).as_dict() self.job_start_exec_assert( self.job, expected_json, {QPARAM_FORCE: "true"}, daemon_id=daemon_id, force=True, buckets=buckets, ) def test_job_start_default_params(self): expected_act_value = JobArgs().as_dict() self.job_start_exec_assert(self.default_job, expected_act_value, {}) def job_start_exec_assert(self, job, expected_json, expected_params, **kwargs): expected_action = ActionMsg(action=ACT_START, value=expected_json).dict() response_txt = "response" response = Mock() response.text = response_txt self.mock_client.request.return_value = response res = job.start(**kwargs) self.assertEqual(response_txt, res) self.mock_client.request.assert_called_with( HTTP_METHOD_PUT, path=URL_PATH_CLUSTER, json=expected_action, params=expected_params, )
aistore-master
python/tests/unit/sdk/test_job.py
import json import unittest from unittest.mock import Mock, patch, mock_open from msgspec import msgpack from requests import Response from aistore.sdk import utils from aistore.sdk.const import MSGPACK_CONTENT_TYPE, HEADER_CONTENT_TYPE from aistore.sdk.errors import ( AISError, ErrRemoteBckNotFound, ErrBckNotFound, ErrBckAlreadyExists, ErrETLAlreadyExists, ) def test_cases(*args): def decorator(func): def wrapper(self, *inner_args, **kwargs): for arg in args: with self.subTest(arg=arg): func(self, arg, *inner_args, **kwargs) return wrapper return decorator # pylint: disable=unused-variable class TestUtils(unittest.TestCase): def test_handle_error_no_text(self): mock_response = Mock(text="") utils.handle_errors(mock_response) mock_response.raise_for_status.assert_called() def test_handle_error_decode_err(self): err_status = 300 err_msg = "error message iso-8859-1" expected_text = json.dumps({"status": err_status, "message": err_msg}) # Fail initial decoding, then return the decoded text decode_err = UnicodeDecodeError("1", b"2", 3, 4, "5") mock_iso_text = Mock(spec=bytes) mock_iso_text.decode.side_effect = [decode_err, expected_text] self.handle_err_exec_assert(AISError, err_status, err_msg, mock_iso_text) @test_cases(399, 500) def test_handle_error_ais_err(self, err_status): err_msg = "error message" expected_text = json.dumps({"status": err_status, "message": err_msg}) mock_text = Mock(spec=bytes) mock_text.decode.return_value = expected_text self.handle_err_exec_assert(AISError, err_status, err_msg, mock_text) @test_cases( ("cloud bucket does not exist", ErrRemoteBckNotFound), ("remote bucket does not exist", ErrRemoteBckNotFound), ("bucket does not exist", ErrBckNotFound), ("bucket already exists", ErrBckAlreadyExists), ("etl already exists", ErrETLAlreadyExists), ) def test_handle_error_no_remote_bucket(self, test_case): err_msg, expected_err = test_case err_status = 400 expected_text = json.dumps({"status": err_status, "message": err_msg}) mock_text = Mock(spec=bytes) mock_text.decode.return_value = expected_text self.handle_err_exec_assert(expected_err, err_status, err_msg, mock_text) def handle_err_exec_assert(self, err_type, err_status, err_msg, mock_err_text): mock_response = Mock(text=mock_err_text) with self.assertRaises(err_type) as context: utils.handle_errors(mock_response) self.assertEqual(err_msg, context.exception.message) self.assertEqual(err_status, context.exception.status_code) @test_cases((0, 0.1), (-1, 0.1), (64, 1), (128, 2), (100000, 1562.5)) def test_probing_frequency(self, test_case): self.assertEqual(test_case[1], utils.probing_frequency(test_case[0])) @patch("pathlib.Path.is_file") @patch("pathlib.Path.exists") def test_validate_file(self, mock_exists, mock_is_file): mock_exists.return_value = False with self.assertRaises(ValueError): utils.validate_file("any path") mock_exists.return_value = True mock_is_file.return_value = False with self.assertRaises(ValueError): utils.validate_file("any path") mock_is_file.return_value = True utils.validate_file("any path") @patch("pathlib.Path.is_dir") @patch("pathlib.Path.exists") def test_validate_dir(self, mock_exists, mock_is_dir): mock_exists.return_value = False with self.assertRaises(ValueError): utils.validate_directory("any path") mock_exists.return_value = True mock_is_dir.return_value = False with self.assertRaises(ValueError): utils.validate_directory("any path") mock_is_dir.return_value = True utils.validate_directory("any path") def test_read_file_bytes(self): data = b"Test data" with patch("builtins.open", mock_open(read_data=data)): res = utils.read_file_bytes("any path") self.assertEqual(data, res) @test_cases((123, "123 Bytes"), (None, "unknown")) def test_get_file_size(self, test_case): mock_file = Mock() mock_file.stat.return_value = Mock(st_size=test_case[0]) self.assertEqual(test_case[1], utils.get_file_size(mock_file)) @test_cases( ("prefix-", ["prefix-"], None), ("prefix-{}", ["prefix-{}"], None), ("prefix-{0..1..2..3}", ["prefix-{0..1..2..3}"], None), ("prefix-{0..1..2}}", [], ValueError), ( "prefix-{1..6..2}-gap-{12..14..1}-suffix", [ "prefix-1-gap-12-suffix", "prefix-1-gap-13-suffix", "prefix-1-gap-14-suffix", "prefix-3-gap-12-suffix", "prefix-3-gap-13-suffix", "prefix-3-gap-14-suffix", "prefix-5-gap-12-suffix", "prefix-5-gap-13-suffix", "prefix-5-gap-14-suffix", ], None, ), ) def test_expand_braces(self, test_case): input_str, output, expected_error = test_case if not expected_error: self.assertEqual(output, list(utils.expand_braces(input_str))) else: with self.assertRaises(expected_error): utils.expand_braces(input_str) @patch("aistore.sdk.utils.parse_raw_as") def test_decode_response_json(self, mock_parse): response_content = "text content" parsed_content = "parsed content" mock_response = Mock(Response) mock_response.headers = {} mock_response.text = response_content mock_parse.return_value = parsed_content res = utils.decode_response(str, mock_response) self.assertEqual(parsed_content, res) mock_parse.assert_called_with(str, response_content) def test_decode_response_msgpack(self): unpacked_content = {"content key": "content value"} packed_content = msgpack.encode(unpacked_content) mock_response = Mock(Response) mock_response.headers = {HEADER_CONTENT_TYPE: MSGPACK_CONTENT_TYPE} mock_response.content = packed_content res = utils.decode_response(dict, mock_response) self.assertEqual(unpacked_content, res)
aistore-master
python/tests/unit/sdk/test_utils.py
import unittest from unittest.mock import Mock from aistore.sdk.object_iterator import ObjectIterator from aistore.sdk.types import BucketEntry class TestObjectIterator(unittest.TestCase): # pylint: disable=unused-variable def setUp(self) -> None: self.callable_resp = Mock() self.callable_resp.continuation_token = "" self.callable = lambda uuid, token: self.callable_resp self.obj_iterator = ObjectIterator(self.callable) def test_iter(self): self.assertEqual(self.obj_iterator, iter(self.obj_iterator)) def test_next_empty_resp(self): with self.assertRaises(StopIteration): self.callable_resp.entries = [] self.callable_resp.uuid = "" self.callable_resp.continuation_token = "" next(self.obj_iterator) def test_next_iterator_exhausted(self): entry_1 = Mock(BucketEntry) entry_2 = Mock(BucketEntry) entry_3 = Mock(BucketEntry) self.callable_resp.entries = [entry_1, entry_2, entry_3] self.callable_resp.uuid = "UUID" self.assertEqual(entry_1, next(self.obj_iterator)) self.assertEqual(entry_2, next(self.obj_iterator)) self.assertEqual(entry_3, next(self.obj_iterator)) with self.assertRaises(StopIteration): next(self.obj_iterator) def test_next_multiple_pages(self): entry_1 = Mock(BucketEntry) entry_2 = Mock(BucketEntry) entry_3 = Mock(BucketEntry) self.callable_resp.entries = [entry_1, entry_2] self.callable_resp.uuid = "" self.assertEqual(entry_1, next(self.obj_iterator)) self.assertEqual(entry_2, next(self.obj_iterator)) self.callable_resp.entries = [entry_3] self.assertEqual(entry_3, next(self.obj_iterator)) with self.assertRaises(StopIteration): next(self.obj_iterator)
aistore-master
python/tests/unit/sdk/test_object_iterator.py
import base64 import unittest from unittest.mock import Mock from unittest.mock import patch import cloudpickle import aistore from aistore.sdk.const import ( HTTP_METHOD_PUT, HTTP_METHOD_GET, HTTP_METHOD_POST, HTTP_METHOD_DELETE, URL_PATH_ETL, UTF_ENCODING, ) from aistore.sdk.etl_const import ( CODE_TEMPLATE, ETL_COMM_HPUSH, ETL_COMM_HPULL, ETL_COMM_IO, ) from aistore.sdk.etl import Etl, _get_default_runtime from aistore.sdk.types import ETLDetails class TestEtl(unittest.TestCase): # pylint: disable=unused-variable def setUp(self) -> None: self.mock_client = Mock() self.etl_name = "etl-name" self.etl = Etl(self.mock_client, self.etl_name) def test_init_spec_default_params(self): expected_action = { "communication": "hpush://", "timeout": "5m", "argument": "", } self.init_spec_exec_assert(expected_action) def test_init_spec_invalid_comm(self): with self.assertRaises(ValueError): self.etl.init_spec("template", communication_type="invalid") def test_init_spec(self): communication_type = ETL_COMM_HPUSH timeout = "6m" expected_action = { "communication": f"{communication_type}://", "timeout": timeout, "argument": "", } self.init_spec_exec_assert( expected_action, communication_type=communication_type, timeout=timeout ) def init_spec_exec_assert(self, expected_action, **kwargs): template = "pod spec template" expected_action["spec"] = base64.b64encode( template.encode(UTF_ENCODING) ).decode(UTF_ENCODING) expected_action["id"] = self.etl_name expected_response_text = self.etl_name mock_response = Mock() mock_response.text = expected_response_text self.mock_client.request.return_value = mock_response response = self.etl.init_spec(template, **kwargs) self.assertEqual(expected_response_text, response) self.mock_client.request.assert_called_with( HTTP_METHOD_PUT, path=URL_PATH_ETL, json=expected_action ) def test_init_code_default_runtime(self): version_to_runtime = { (3, 7): "python3.8v2", (3, 1234): "python3.8v2", (3, 8): "python3.8v2", (3, 10): "python3.10v2", (3, 11): "python3.11v2", } for version, runtime in version_to_runtime.items(): with patch.object(aistore.sdk.etl.sys, "version_info") as version_info: version_info.major = version[0] version_info.minor = version[1] self.assertEqual(runtime, _get_default_runtime()) def test_init_code_default_params(self): communication_type = ETL_COMM_HPUSH expected_action = { "runtime": _get_default_runtime(), "communication": f"{communication_type}://", "timeout": "5m", "funcs": {"transform": "transform"}, "code": self.encode_fn([], self.transform_fn, communication_type), "dependencies": base64.b64encode(b"cloudpickle==2.2.0").decode( UTF_ENCODING ), "argument": "", } self.init_code_exec_assert(expected_action) def test_init_code_invalid_comm(self): with self.assertRaises(ValueError): self.etl.init_code(Mock(), communication_type="invalid") def test_init_code(self): runtime = "python-non-default" communication_type = ETL_COMM_HPULL timeout = "6m" preimported = ["pytorch"] user_dependencies = ["pytorch"] chunk_size = 123 arg_type = "url" expected_dependencies = user_dependencies.copy() expected_dependencies.append("cloudpickle==2.2.0") expected_dep_str = base64.b64encode( "\n".join(expected_dependencies).encode(UTF_ENCODING) ).decode(UTF_ENCODING) expected_action = { "runtime": runtime, "communication": f"{communication_type}://", "timeout": timeout, "funcs": {"transform": "transform"}, "code": self.encode_fn(preimported, self.transform_fn, communication_type), "dependencies": expected_dep_str, "chunk_size": chunk_size, "argument": arg_type, } self.init_code_exec_assert( expected_action, preimported_modules=preimported, dependencies=user_dependencies, runtime=runtime, communication_type=communication_type, timeout=timeout, chunk_size=chunk_size, arg_type=arg_type, ) @staticmethod def transform_fn(): print("example action") @staticmethod def encode_fn(preimported_modules, func, comm_type): transform = base64.b64encode(cloudpickle.dumps(func)).decode(UTF_ENCODING) io_comm_context = "transform()" if comm_type == ETL_COMM_IO else "" template = CODE_TEMPLATE.format( preimported_modules, transform, io_comm_context ).encode(UTF_ENCODING) return base64.b64encode(template).decode(UTF_ENCODING) def init_code_exec_assert(self, expected_action, **kwargs): expected_action["id"] = self.etl_name expected_response_text = "response text" mock_response = Mock() mock_response.text = expected_response_text self.mock_client.request.return_value = mock_response response = self.etl.init_code(transform=self.transform_fn, **kwargs) self.assertEqual(expected_response_text, response) self.mock_client.request.assert_called_with( HTTP_METHOD_PUT, path=URL_PATH_ETL, json=expected_action ) def test_view(self): mock_response = Mock() self.mock_client.request_deserialize.return_value = mock_response response = self.etl.view() self.assertEqual(mock_response, response) self.mock_client.request_deserialize.assert_called_with( HTTP_METHOD_GET, path=f"etl/{ self.etl_name }", res_model=ETLDetails ) def test_start(self): self.etl.start() self.mock_client.request.assert_called_with( HTTP_METHOD_POST, path=f"etl/{ self.etl_name }/start" ) def test_stop(self): self.etl.stop() self.mock_client.request.assert_called_with( HTTP_METHOD_POST, path=f"etl/{ self.etl_name }/stop" ) def test_delete(self): self.etl.delete() self.mock_client.request.assert_called_with( HTTP_METHOD_DELETE, path=f"etl/{ self.etl_name }" )
aistore-master
python/tests/unit/sdk/test_etl.py
aistore-master
python/tests/unit/sdk/__init__.py
import unittest from aistore.sdk import ListObjectFlag from tests.unit.sdk.test_utils import test_cases # pylint: disable=unused-variable class TestListObjectFlag(unittest.TestCase): @test_cases( ([], 0), ([ListObjectFlag.ALL], 2), ([ListObjectFlag.ONLY_REMOTE_PROPS], 1024), ([ListObjectFlag.DELETED, ListObjectFlag.NAME_ONLY], 20), ) def test_join_flags(self, test_case): self.assertEqual(test_case[1], ListObjectFlag.join_flags(test_case[0]))
aistore-master
python/tests/unit/sdk/test_list_object_flag.py
import unittest from unittest import mock from unittest.mock import Mock, call, patch from aistore.sdk.ais_source import AISSource from aistore.sdk.bucket import Bucket, Header from aistore.sdk.etl_const import DEFAULT_ETL_TIMEOUT from aistore.sdk.object_iterator import ObjectIterator from aistore.sdk import ListObjectFlag from aistore.sdk.const import ( ACT_COPY_BCK, ACT_CREATE_BCK, ACT_DESTROY_BCK, ACT_ETL_BCK, ACT_EVICT_REMOTE_BCK, ACT_LIST, ACT_MOVE_BCK, ACT_SUMMARY_BCK, PROVIDER_AMAZON, PROVIDER_AIS, QPARAM_BCK_TO, QPARAM_NAMESPACE, QPARAM_PROVIDER, QPARAM_KEEP_REMOTE, QPARAM_COUNT_REMOTE_OBJS, QPARAM_FLT_PRESENCE, HTTP_METHOD_DELETE, HTTP_METHOD_GET, HTTP_METHOD_HEAD, HTTP_METHOD_PUT, HTTP_METHOD_POST, URL_PATH_BUCKETS, HEADER_ACCEPT, HEADER_BUCKET_PROPS, HEADER_BUCKET_SUMM, MSGPACK_CONTENT_TYPE, STATUS_ACCEPTED, STATUS_BAD_REQUEST, STATUS_OK, ) from aistore.sdk.errors import ( InvalidBckProvider, ErrBckAlreadyExists, ErrBckNotFound, UnexpectedHTTPStatusCode, ) from aistore.sdk.request_client import RequestClient from aistore.sdk.types import ( ActionMsg, BucketList, BucketEntry, BsummCtrlMsg, Namespace, TCBckMsg, TransformBckMsg, CopyBckMsg, ) BCK_NAME = "bucket_name" # pylint: disable=too-many-public-methods,unused-variable class TestBucket(unittest.TestCase): def setUp(self) -> None: self.mock_client = Mock(RequestClient) self.amz_bck = Bucket( name=BCK_NAME, client=self.mock_client, provider=PROVIDER_AMAZON ) self.amz_bck_params = self.amz_bck.qparam.copy() self.ais_bck = Bucket(name=BCK_NAME, client=self.mock_client) self.ais_bck_params = self.ais_bck.qparam.copy() def test_default_props(self): bucket = Bucket(name=BCK_NAME, client=self.mock_client) self.assertEqual({QPARAM_PROVIDER: PROVIDER_AIS}, bucket.qparam) self.assertEqual(PROVIDER_AIS, bucket.provider) self.assertIsNone(bucket.namespace) def test_properties(self): self.assertEqual(self.mock_client, self.ais_bck.client) expected_ns = Namespace(uuid="ns-id", name="ns-name") client = RequestClient("test client name") bck = Bucket( client=client, name=BCK_NAME, provider=PROVIDER_AMAZON, namespace=expected_ns, ) self.assertEqual(client, bck.client) self.assertEqual(PROVIDER_AMAZON, bck.provider) self.assertEqual( { QPARAM_PROVIDER: PROVIDER_AMAZON, QPARAM_NAMESPACE: expected_ns.get_path(), }, bck.qparam, ) self.assertEqual(BCK_NAME, bck.name) self.assertEqual(expected_ns, bck.namespace) def test_ais_source(self): self.assertIsInstance(self.ais_bck, AISSource) def test_create_invalid_provider(self): self.assertRaises(InvalidBckProvider, self.amz_bck.create) def _assert_bucket_created(self, bck): self.mock_client.request.assert_called_with( HTTP_METHOD_POST, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", json=ActionMsg(action=ACT_CREATE_BCK).dict(), params=self.ais_bck.qparam, ) self.assertIsInstance(bck, Bucket) def test_create_success(self): res = self.ais_bck.create() self._assert_bucket_created(res) def test_create_already_exists(self): already_exists_err = ErrBckAlreadyExists(400, "message") self.mock_client.request.side_effect = already_exists_err with self.assertRaises(ErrBckAlreadyExists): self.ais_bck.create() res = self.ais_bck.create(exist_ok=True) self._assert_bucket_created(res) def test_rename_invalid_provider(self): self.assertRaises(InvalidBckProvider, self.amz_bck.rename, "new_name") def test_rename_success(self): new_bck_name = "new_bucket" expected_response = "rename_op_123" self.ais_bck_params[QPARAM_BCK_TO] = f"{PROVIDER_AIS}/@#/{new_bck_name}/" mock_response = Mock() mock_response.text = expected_response self.mock_client.request.return_value = mock_response response = self.ais_bck.rename(new_bck_name) self.assertEqual(expected_response, response) self.mock_client.request.assert_called_with( HTTP_METHOD_POST, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", json=ActionMsg(action=ACT_MOVE_BCK).dict(), params=self.ais_bck_params, ) self.assertEqual(self.ais_bck.name, new_bck_name) def test_delete_invalid_provider(self): self.assertRaises(InvalidBckProvider, self.amz_bck.delete) def test_delete_success(self): self.ais_bck.delete() self.mock_client.request.assert_called_with( HTTP_METHOD_DELETE, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", json=ActionMsg(action=ACT_DESTROY_BCK).dict(), params=self.ais_bck.qparam, ) def test_delete_missing(self): self.mock_client.request.side_effect = ErrBckNotFound(400, "not found") with self.assertRaises(ErrBckNotFound): Bucket(client=self.mock_client, name="missing-bucket").delete() self.ais_bck.delete(missing_ok=True) self.mock_client.request.assert_called_with( HTTP_METHOD_DELETE, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", json=ActionMsg(action=ACT_DESTROY_BCK).dict(), params=self.ais_bck.qparam, ) def test_evict_invalid_provider(self): self.assertRaises(InvalidBckProvider, self.ais_bck.evict) def test_evict_success(self): for keep_md in [True, False]: self.amz_bck_params[QPARAM_KEEP_REMOTE] = str(keep_md) self.amz_bck.evict(keep_md=keep_md) self.mock_client.request.assert_called_with( HTTP_METHOD_DELETE, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", json=ActionMsg(action=ACT_EVICT_REMOTE_BCK).dict(), params=self.amz_bck_params, ) def test_head(self): mock_header = Mock() mock_header.headers = Header("value") self.mock_client.request.return_value = mock_header headers = self.ais_bck.head() self.mock_client.request.assert_called_with( HTTP_METHOD_HEAD, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", params=self.ais_bck.qparam, ) self.assertEqual(headers, mock_header.headers) def test_copy_default_params(self): dest_bck = Bucket( client=self.mock_client, name="test-bck", namespace=Namespace(uuid="namespace-id", name="ns-name"), provider="any-provider", ) action_value = {"prefix": "", "prepend": "", "dry_run": False, "force": False} self._copy_exec_assert(dest_bck, action_value) def test_copy(self): prefix_filter = "existing-" prepend_val = "prefix-" dry_run = True force = True action_value = { "prefix": prefix_filter, "prepend": prepend_val, "dry_run": dry_run, "force": force, } self._copy_exec_assert( self.ais_bck, action_value, prefix_filter=prefix_filter, prepend=prepend_val, dry_run=dry_run, force=force, ) def _copy_exec_assert(self, to_bck, expected_act_value, **kwargs): expected_response = "copy-action-id" mock_response = Mock() mock_response.text = expected_response self.mock_client.request.return_value = mock_response self.ais_bck_params[QPARAM_BCK_TO] = to_bck.get_path() expected_action = ActionMsg( action=ACT_COPY_BCK, value=expected_act_value ).dict() job_id = self.ais_bck.copy(to_bck=to_bck, **kwargs) self.assertEqual(expected_response, job_id) self.mock_client.request.assert_called_with( HTTP_METHOD_POST, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", json=expected_action, params=self.ais_bck_params, ) def test_list_objects(self): prefix = "prefix-" page_size = 0 uuid = "1234" props = "name" continuation_token = "token" flags = [ListObjectFlag.CACHED, ListObjectFlag.DELETED] flag_value = "5" target_id = "target-node" expected_act_value = { "prefix": prefix, "pagesize": page_size, "uuid": uuid, "props": props, "continuation_token": continuation_token, "flags": flag_value, "target": target_id, } self._list_objects_exec_assert( expected_act_value, prefix=prefix, page_size=page_size, uuid=uuid, props=props, continuation_token=continuation_token, flags=flags, target=target_id, ) def test_list_objects_default_params(self): expected_act_value = { "prefix": "", "pagesize": 0, "uuid": "", "props": "", "continuation_token": "", "flags": "0", "target": "", } self._list_objects_exec_assert(expected_act_value) def _list_objects_exec_assert(self, expected_act_value, **kwargs): action = ActionMsg(action=ACT_LIST, value=expected_act_value).dict() object_names = ["obj_name", "obj_name2"] bucket_entries = [BucketEntry(n=name) for name in object_names] mock_list = Mock(BucketList) mock_list.entries = bucket_entries self.mock_client.request_deserialize.return_value = mock_list result = self.ais_bck.list_objects(**kwargs) self.mock_client.request_deserialize.assert_called_with( HTTP_METHOD_GET, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", headers={HEADER_ACCEPT: MSGPACK_CONTENT_TYPE}, res_model=BucketList, json=action, params=self.ais_bck_params, ) self.assertEqual(result, mock_list) self.assertEqual(object_names, [entry.object.name for entry in result.entries]) def test_list_objects_iter(self): self.assertIsInstance( self.ais_bck.list_objects_iter("prefix-", "obj props", 123), ObjectIterator ) def test_list_all_objects(self): list_1_id = "123" list_1_cont = "cont" prefix = "prefix-" page_size = 5 props = "name" flags = [ListObjectFlag.CACHED, ListObjectFlag.DELETED] flag_value = "5" target_id = "target-node" expected_act_value_1 = { "prefix": prefix, "pagesize": page_size, "uuid": "", "props": props, "continuation_token": "", "flags": flag_value, "target": target_id, } expected_act_value_2 = { "prefix": prefix, "pagesize": page_size, "uuid": list_1_id, "props": props, "continuation_token": list_1_cont, "flags": flag_value, "target": target_id, } self._list_all_objects_exec_assert( list_1_id, list_1_cont, expected_act_value_1, expected_act_value_2, prefix=prefix, page_size=page_size, props=props, flags=flags, target=target_id, ) def test_list_all_objects_default_params(self): list_1_id = "123" list_1_cont = "cont" expected_act_value_1 = { "prefix": "", "pagesize": 0, "uuid": "", "props": "", "continuation_token": "", "flags": "0", "target": "", } expected_act_value_2 = { "prefix": "", "pagesize": 0, "uuid": list_1_id, "props": "", "continuation_token": list_1_cont, "flags": "0", "target": "", } self._list_all_objects_exec_assert( list_1_id, list_1_cont, expected_act_value_1, expected_act_value_2 ) def _list_all_objects_exec_assert( self, list_1_id, list_1_cont, expected_act_value_1, expected_act_value_2, **kwargs, ): entry_1 = BucketEntry(n="entry1") entry_2 = BucketEntry(n="entry2") entry_3 = BucketEntry(n="entry3") list_1 = BucketList( UUID=list_1_id, ContinuationToken=list_1_cont, Flags=0, Entries=[entry_1] ) list_2 = BucketList( UUID="456", ContinuationToken="", Flags=0, Entries=[entry_2, entry_3] ) # Test with empty list of entries self.mock_client.request_deserialize.return_value = BucketList( UUID="empty", ContinuationToken="", Flags=0 ) self.assertEqual([], self.ais_bck.list_all_objects(**kwargs)) # Test with non-empty lists self.mock_client.request_deserialize.side_effect = [list_1, list_2] self.assertEqual( [entry_1, entry_2, entry_3], self.ais_bck.list_all_objects(**kwargs) ) expected_calls = [] for expected_val in [expected_act_value_1, expected_act_value_2]: expected_calls.append( mock.call( HTTP_METHOD_GET, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", headers={HEADER_ACCEPT: MSGPACK_CONTENT_TYPE}, res_model=BucketList, json=ActionMsg(action=ACT_LIST, value=expected_val).dict(), params=self.ais_bck_params, ) ) for expected in expected_calls: self.assertIn(expected, self.mock_client.request_deserialize.call_args_list) def test_transform(self): etl_name = "etl-name" prepend_val = "prefix-" prefix_filter = "required-prefix-" ext = {"jpg": "txt"} timeout = "4m" force = True dry_run = True action_value = TCBckMsg( ext=ext, transform_msg=TransformBckMsg(etl_name=etl_name, timeout=timeout), copy_msg=CopyBckMsg( prefix=prefix_filter, prepend=prepend_val, force=force, dry_run=dry_run ), ).as_dict() self._transform_exec_assert( etl_name, action_value, prepend=prepend_val, prefix_filter=prefix_filter, ext=ext, force=force, dry_run=dry_run, timeout=timeout, ) def test_transform_default_params(self): etl_name = "etl-name" action_value = { "id": etl_name, "prefix": "", "prepend": "", "force": False, "dry_run": False, "request_timeout": DEFAULT_ETL_TIMEOUT, } self._transform_exec_assert(etl_name, action_value) def _transform_exec_assert(self, etl_name, expected_act_value, **kwargs): to_bck = Bucket(name="new-bucket") self.ais_bck_params[QPARAM_BCK_TO] = to_bck.get_path() expected_action = ActionMsg(action=ACT_ETL_BCK, value=expected_act_value).dict() expected_response = "job-id" mock_response = Mock() mock_response.text = expected_response self.mock_client.request.return_value = mock_response result_id = self.ais_bck.transform(etl_name, to_bck, **kwargs) self.mock_client.request.assert_called_with( HTTP_METHOD_POST, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", json=expected_action, params=self.ais_bck_params, ) self.assertEqual(expected_response, result_id) def test_object(self): new_obj = self.ais_bck.object(obj_name="name") self.assertEqual(self.ais_bck, new_obj.bucket) @patch("aistore.sdk.object.read_file_bytes") @patch("aistore.sdk.object.validate_file") @patch("aistore.sdk.bucket.validate_directory") @patch("pathlib.Path.glob") def test_put_files( self, mock_glob, mock_validate_dir, mock_validate_file, mock_read ): path = "directory" file_1_name = "file_1_name" file_2_name = "file_2_name" path_1 = Mock() path_1.is_file.return_value = True path_1.relative_to.return_value = file_1_name path_1.stat.return_value = Mock(st_size=123) path_2 = Mock() path_2.relative_to.return_value = file_2_name path_2.is_file.return_value = True path_2.stat.return_value = Mock(st_size=4567) file_1_data = b"bytes in the first file" file_2_data = b"bytes in the second file" mock_glob.return_value = [path_1, path_2] expected_obj_names = [file_1_name, file_2_name] mock_read.side_effect = [file_1_data, file_2_data] res = self.ais_bck.put_files(path) mock_validate_dir.assert_called_with(path) mock_validate_file.assert_has_calls([call(str(path_1)), call(str(path_2))]) self.assertEqual(expected_obj_names, res) expected_calls = [ call( HTTP_METHOD_PUT, path=f"objects/{BCK_NAME}/{file_1_name}", params=self.ais_bck_params, data=file_1_data, ), call( HTTP_METHOD_PUT, path=f"objects/{BCK_NAME}/{file_2_name}", params=self.ais_bck_params, data=file_2_data, ), ] self.mock_client.request.assert_has_calls(expected_calls) def test_get_path(self): namespace = Namespace(uuid="ns-id", name="ns-name") bucket = Bucket(name=BCK_NAME, namespace=namespace, provider=PROVIDER_AMAZON) expected_path = ( f"{PROVIDER_AMAZON}/@{namespace.uuid}#{namespace.name}/{bucket.name}/" ) self.assertEqual(expected_path, bucket.get_path()) self.assertEqual(f"{PROVIDER_AIS}/@#/{bucket.name}/", self.ais_bck.get_path()) @patch("aistore.sdk.bucket.Bucket.object") @patch("aistore.sdk.bucket.Bucket.list_objects_iter") def test_list_urls(self, mock_list_obj, mock_object): prefix = "my-prefix" etl_name = "my-etl" object_names = ["obj_name", "obj_name2"] expected_obj_calls = [] # Should create an object reference and get url for every object returned by listing for name in object_names: expected_obj_calls.append(call(name)) expected_obj_calls.append(call().get_url(etl_name=etl_name)) mock_list_obj.return_value = [BucketEntry(n=name) for name in object_names] list(self.ais_bck.list_urls(prefix=prefix, etl_name=etl_name)) mock_list_obj.assert_called_with(prefix=prefix, props="name") mock_object.assert_has_calls(expected_obj_calls) def test_make_request_no_client(self): bucket = Bucket(name="name") with self.assertRaises(ValueError): bucket.make_request("method", "action") def test_make_request_default_params(self): method = "method" action = "action" self.ais_bck.make_request(method, action) self.mock_client.request.assert_called_with( method, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", json=ActionMsg(action=action, value=None).dict(), params=self.ais_bck.qparam, ) def test_make_request(self): method = "method" action = "action" value = {"request_key": "value"} params = {"qparamkey": "qparamval"} self.ais_bck.make_request(method, action, value, params) self.mock_client.request.assert_called_with( method, path=f"{URL_PATH_BUCKETS}/{BCK_NAME}", json=ActionMsg(action=action, value=value).dict(), params=params, ) def test_summary(self): # Mock responses for request calls response1 = Mock() response1.status_code = STATUS_ACCEPTED response1.text = '"job_id"' response2 = Mock() response2.status_code = STATUS_OK response2.content = ( b'[{"name":"temporary","provider":"ais","namespace":{"uuid":"","name":""},' b'"ObjCount":{"obj_count_present":"137160","obj_count_remote":"0"},' b'"ObjSize":{"obj_min_size":1024,"obj_avg_size":1024,"obj_max_size":1024},' b'"TotalSize":{"size_on_disk":"148832256","size_all_present_objs":"140451840",' b'"size_all_remote_objs":"0","total_disks_size":"4955520307200"},' b'"used_pct":0,"is_present":false}]\n' ) # Set the side_effect of the request method to return the two responses in sequence self.mock_client.request.side_effect = [response1, response2] # Call the summary method result = self.ais_bck.summary() # Ensure that request was called with the correct sequence of calls bsumm_ctrl_msg = BsummCtrlMsg( uuid="", prefix="", fast=True, cached=True, present=True ).dict() bsumm_ctrl_msg_with_uuid = BsummCtrlMsg( uuid="job_id", prefix="", fast=True, cached=True, present=True ).dict() calls = [ call( HTTP_METHOD_GET, path="buckets/bucket_name", json={"action": ACT_SUMMARY_BCK, "name": "", "value": bsumm_ctrl_msg}, params=self.ais_bck.qparam, ), call( HTTP_METHOD_GET, path="buckets/bucket_name", json={ "action": ACT_SUMMARY_BCK, "name": "", "value": bsumm_ctrl_msg_with_uuid, }, params=self.ais_bck.qparam, ), ] self.mock_client.request.assert_has_calls(calls) # Assert that the result has the expected structure self.assertIsInstance(result, dict) self.assertIn("name", result) self.assertIn("provider", result) self.assertIn("ObjCount", result) self.assertIn("ObjSize", result) self.assertIn("TotalSize", result) def test_summary_error_handling(self): # Mock responses for the first and second request call first_response = Mock() first_response.status_code = STATUS_ACCEPTED second_response = Mock() second_response.status_code = STATUS_BAD_REQUEST second_response.text = '"job_id"' # Set the side_effect of the request method to return the correct mock response self.mock_client.request.side_effect = [first_response, second_response] # Call the summary method and expect an UnexpectedHTTPStatusCode exception with self.assertRaises(UnexpectedHTTPStatusCode): self.ais_bck.summary() # Verify that the request method was called twice assert self.mock_client.request.call_count == 2 def test_info(self): # Mock response for request calls response = Mock() response.status_code = 200 response.headers = { HEADER_BUCKET_PROPS: '{"some": "props"}', HEADER_BUCKET_SUMM: '{"some": "summary"}', } self.mock_client.request.return_value = response # Call the info method bucket_props, bucket_summ = self.ais_bck.info() # Ensure the request was made correctly self.mock_client.request.assert_called_once_with( HTTP_METHOD_HEAD, path=f"{URL_PATH_BUCKETS}/{self.ais_bck.name}", params={ **self.ais_bck.qparam, QPARAM_FLT_PRESENCE: 0, QPARAM_COUNT_REMOTE_OBJS: True, }, ) # Check the return values self.assertEqual(bucket_props, {"some": "props"}) self.assertEqual(bucket_summ, {"some": "summary"}) # Test with invalid flt_presence with self.assertRaises(ValueError): self.ais_bck.info(flt_presence=6) if __name__ == "__main__": unittest.main()
aistore-master
python/tests/unit/sdk/test_bucket.py
import unittest from typing import List, Optional from unittest.mock import Mock, create_autospec from aistore.sdk.bucket import Bucket from aistore.sdk.cluster import Cluster from aistore.sdk.const import ( HTTP_METHOD_GET, QPARAM_WHAT, QPARAM_PROVIDER, ACT_LIST, PROVIDER_AIS, WHAT_SMAP, URL_PATH_DAEMON, URL_PATH_BUCKETS, URL_PATH_HEALTH, QPARAM_PRIMARY_READY_REB, URL_PATH_CLUSTER, WHAT_ALL_XACT_STATUS, WHAT_ALL_RUNNING_STATUS, URL_PATH_ETL, ) from aistore.sdk.request_client import RequestClient from aistore.sdk.types import Smap, ActionMsg, BucketModel, JobStatus, JobQuery, ETLInfo class TestCluster(unittest.TestCase): # pylint: disable=unused-variable def setUp(self) -> None: self.mock_client = Mock(RequestClient) self.cluster = Cluster(self.mock_client) def test_get_info(self): expected_result = create_autospec(Smap) self.mock_client.request_deserialize.return_value = expected_result result = self.cluster.get_info() self.assertEqual(result, expected_result) self.mock_client.request_deserialize.assert_called_with( HTTP_METHOD_GET, path=URL_PATH_DAEMON, res_model=Smap, params={QPARAM_WHAT: WHAT_SMAP}, ) def test_list_buckets(self): provider = "any-provider" expected_params = {QPARAM_PROVIDER: provider} self.list_buckets_exec_assert(expected_params, provider=provider) def test_list_buckets_default_param(self): expected_params = {QPARAM_PROVIDER: PROVIDER_AIS} self.list_buckets_exec_assert(expected_params) def list_buckets_exec_assert(self, expected_params, **kwargs): expected_result = [Mock(Bucket)] self.mock_client.request_deserialize.return_value = expected_result res = self.cluster.list_buckets(**kwargs) self.assertEqual(expected_result, res) self.mock_client.request_deserialize.assert_called_with( HTTP_METHOD_GET, path=URL_PATH_BUCKETS, res_model=List[BucketModel], json=ActionMsg(action=ACT_LIST).dict(), params=expected_params, ) def test_is_aistore_running_exception(self): self.mock_client.request.side_effect = Exception self.assertFalse(self.cluster.is_aistore_running()) def test_is_aistore_running(self): expected_params = {QPARAM_PRIMARY_READY_REB: "true"} response = Mock() response.ok = True self.mock_client.request.return_value = response self.assertTrue(self.cluster.is_aistore_running()) response.ok = False self.mock_client.request.return_value = response self.assertFalse(self.cluster.is_aistore_running()) self.mock_client.request.assert_called_with( HTTP_METHOD_GET, path=URL_PATH_HEALTH, params=expected_params, ) def test_list_jobs_status_default_params(self): expected_request_val = JobQuery().as_dict() self._list_jobs_status_exec_assert(expected_request_val) def test_list_jobs_status(self): job_kind = "kind" target_id = "specific_node" expected_request_val = JobQuery(kind=job_kind, target=target_id).as_dict() self._list_jobs_status_exec_assert( expected_request_val, job_kind=job_kind, target_id=target_id, ) def test_list_jobs_status_no_result(self): self.mock_client.request_deserialize.return_value = None self.assertEqual([], self.cluster.list_jobs_status()) def _list_jobs_status_exec_assert(self, expected_request_val, **kwargs): returned_status = JobStatus() self.mock_client.request_deserialize.return_value = returned_status res = self.cluster.list_jobs_status(**kwargs) self.assertEqual(returned_status, res) self.mock_client.request_deserialize.assert_called_with( HTTP_METHOD_GET, path=URL_PATH_CLUSTER, res_model=Optional[List[JobStatus]], json=expected_request_val, params={QPARAM_WHAT: WHAT_ALL_XACT_STATUS}, ) def test_list_running_jobs_default_params(self): expected_request_val = JobQuery(active=True).as_dict() self._list_running_jobs_exec_assert(expected_request_val) def test_list_running_jobs(self): job_kind = "job-kind" target_id = "my-target" expected_request_val = JobQuery( active=True, kind=job_kind, target=target_id ).as_dict() self._list_running_jobs_exec_assert( expected_request_val, job_kind=job_kind, target_id=target_id ) def _list_running_jobs_exec_assert(self, expected_request_val, **kwargs): mock_response = ["job_1_kind[job_1_id]", "job_2_kind[job_2_id]"] self.mock_client.request_deserialize.return_value = mock_response res = self.cluster.list_running_jobs(**kwargs) self.assertEqual(mock_response, res) self.mock_client.request_deserialize.assert_called_with( HTTP_METHOD_GET, path=URL_PATH_CLUSTER, res_model=List[str], json=expected_request_val, params={QPARAM_WHAT: WHAT_ALL_RUNNING_STATUS}, ) def test_list_running_etls(self): mock_response = Mock() self.mock_client.request_deserialize.return_value = mock_response response = self.cluster.list_running_etls() self.assertEqual(mock_response, response) self.mock_client.request_deserialize.assert_called_with( HTTP_METHOD_GET, path=URL_PATH_ETL, res_model=List[ETLInfo] )
aistore-master
python/tests/unit/sdk/test_cluster.py
import unittest from unittest.mock import Mock, patch, mock_open from requests import Response from requests.structures import CaseInsensitiveDict from aistore.sdk.ais_source import AISSource from aistore.sdk.const import ( HTTP_METHOD_HEAD, DEFAULT_CHUNK_SIZE, HTTP_METHOD_GET, QPARAM_ARCHPATH, QPARAM_ETL_NAME, HTTP_METHOD_PUT, HTTP_METHOD_DELETE, HEADER_CONTENT_LENGTH, AIS_CHECKSUM_VALUE, AIS_CHECKSUM_TYPE, AIS_ACCESS_TIME, AIS_VERSION, AIS_CUSTOM_MD, HTTP_METHOD_POST, ACT_PROMOTE, URL_PATH_OBJECTS, ) from aistore.sdk.object import Object from aistore.sdk.object_reader import ObjectReader from aistore.sdk.types import ActionMsg, PromoteAPIArgs BCK_NAME = "bucket_name" OBJ_NAME = "object_name" REQUEST_PATH = f"{URL_PATH_OBJECTS}/{BCK_NAME}/{OBJ_NAME}" # pylint: disable=unused-variable class TestObject(unittest.TestCase): def setUp(self) -> None: self.mock_client = Mock() self.mock_bucket = Mock() self.mock_bucket.client = self.mock_client self.mock_bucket.name = BCK_NAME self.mock_writer = Mock() self.mock_bucket.qparam = {} self.expected_params = {} self.object = Object(self.mock_bucket, OBJ_NAME) def test_properties(self): self.assertEqual(self.mock_bucket, self.object.bucket) self.assertEqual(OBJ_NAME, self.object.name) def test_ais_source(self): self.assertIsInstance(self.object, AISSource) def test_head(self): self.object.head() self.mock_client.request.assert_called_with( HTTP_METHOD_HEAD, path=REQUEST_PATH, params=self.expected_params, ) def test_get_default_params(self): self.expected_params[QPARAM_ARCHPATH] = "" self.get_exec_assert() def test_get(self): archpath_param = "archpath" etl_name = "etl" self.expected_params[QPARAM_ARCHPATH] = archpath_param self.expected_params[QPARAM_ETL_NAME] = etl_name self.get_exec_assert( archpath=archpath_param, chunk_size=3, etl_name=etl_name, writer=self.mock_writer, ) def get_exec_assert(self, **kwargs): content = b"123456789" content_length = 9 ais_check_val = "xyz" ais_check_type = "md5" ais_atime = "time string" ais_version = "3" custom_metadata_dict = {"key1": "val1", "key2": "val2"} custom_metadata = ", ".join( ["=".join(kv) for kv in custom_metadata_dict.items()] ) resp_headers = CaseInsensitiveDict( { HEADER_CONTENT_LENGTH: content_length, AIS_CHECKSUM_VALUE: ais_check_val, AIS_CHECKSUM_TYPE: ais_check_type, AIS_ACCESS_TIME: ais_atime, AIS_VERSION: ais_version, AIS_CUSTOM_MD: custom_metadata, } ) mock_response = Mock(Response) mock_response.headers = resp_headers mock_response.iter_content.return_value = content mock_response.raw = content expected_obj = ObjectReader( response_headers=resp_headers, stream=mock_response, ) self.mock_client.request.return_value = mock_response res = self.object.get(**kwargs) self.assertEqual(expected_obj.raw(), res.raw()) self.assertEqual(content_length, res.attributes.size) self.assertEqual(ais_check_type, res.attributes.checksum_type) self.assertEqual(ais_check_val, res.attributes.checksum_value) self.assertEqual(ais_atime, res.attributes.access_time) self.assertEqual(ais_version, res.attributes.obj_version) self.assertEqual(custom_metadata_dict, res.attributes.custom_metadata) self.mock_client.request.assert_called_with( HTTP_METHOD_GET, path=REQUEST_PATH, params=self.expected_params, stream=True, ) # Use the object reader iterator to call the stream with the chunk size for _ in res: continue mock_response.iter_content.assert_called_with( chunk_size=kwargs.get("chunk_size", DEFAULT_CHUNK_SIZE) ) if "writer" in kwargs: self.mock_writer.writelines.assert_called_with(res) @patch("aistore.sdk.object.Object.get_url") def test_list_urls(self, mock_get_url): object_url = "single-object-url" mock_get_url.return_value = object_url etl_name = "test-etl" res = self.object.list_urls(etl_name=etl_name) self.assertEqual([object_url], list(res)) mock_get_url.assert_called_with(etl_name=etl_name) def test_get_url(self): expected_res = "full url" archpath = "arch" etl = "test-etl" self.mock_client.get_full_url.return_value = expected_res res = self.object.get_url(archpath=archpath, etl_name=etl) self.assertEqual(expected_res, res) self.mock_client.get_full_url.assert_called_with( REQUEST_PATH, {QPARAM_ARCHPATH: archpath, QPARAM_ETL_NAME: etl} ) @patch("pathlib.Path.is_file") @patch("pathlib.Path.exists") def test_put_file(self, mock_exists, mock_is_file): mock_exists.return_value = True mock_is_file.return_value = True path = "any/filepath" data = b"bytes in the file" with patch("builtins.open", mock_open(read_data=data)): self.object.put_file(path) self.mock_client.request.assert_called_with( HTTP_METHOD_PUT, path=REQUEST_PATH, params=self.expected_params, data=data, ) def test_put_content(self): content = b"user-supplied-bytes" self.object.put_content(content) self.mock_client.request.assert_called_with( HTTP_METHOD_PUT, path=REQUEST_PATH, params=self.expected_params, data=content, ) def test_promote_default_args(self): filename = "promoted file" expected_value = PromoteAPIArgs(source_path=filename, object_name=OBJ_NAME) self.promote_exec_assert(filename, expected_value) def test_promote(self): filename = "promoted file" target_id = "target node" recursive = True overwrite_dest = True delete_source = True src_not_file_share = True expected_value = PromoteAPIArgs( source_path=filename, object_name=OBJ_NAME, target_id=target_id, recursive=recursive, overwrite_dest=overwrite_dest, delete_source=delete_source, src_not_file_share=src_not_file_share, ) self.promote_exec_assert( filename, expected_value, target_id=target_id, recursive=recursive, overwrite_dest=overwrite_dest, delete_source=delete_source, src_not_file_share=src_not_file_share, ) def promote_exec_assert(self, filename, expected_value, **kwargs): request_path = f"{URL_PATH_OBJECTS}/{BCK_NAME}" expected_json = ActionMsg( action=ACT_PROMOTE, name=filename, value=expected_value.as_dict() ).dict() self.object.promote(filename, **kwargs) self.mock_client.request.assert_called_with( HTTP_METHOD_POST, path=request_path, params=self.expected_params, json=expected_json, ) def test_delete(self): self.object.delete() self.mock_client.request.assert_called_with( HTTP_METHOD_DELETE, path=REQUEST_PATH, params=self.expected_params )
aistore-master
python/tests/unit/sdk/test_object.py
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # import unittest from aistore.sdk import Client from aistore.sdk.cluster import Cluster from aistore.sdk.etl import Etl from aistore.sdk.request_client import RequestClient from aistore.sdk.types import Namespace from aistore.sdk.job import Job class TestClient(unittest.TestCase): # pylint: disable=unused-variable def setUp(self) -> None: self.endpoint = "https://aistore-endpoint" self.client = Client(self.endpoint) def test_bucket(self): bck_name = "bucket_123" provider = "bucketProvider" namespace = Namespace(uuid="id", name="namespace") bucket = self.client.bucket(bck_name, provider, namespace) self.assertEqual(self.endpoint, bucket.client.endpoint) self.assertIsInstance(bucket.client, RequestClient) self.assertEqual(bck_name, bucket.name) self.assertEqual(provider, bucket.provider) self.assertEqual(namespace, bucket.namespace) def test_cluster(self): res = self.client.cluster() self.assertEqual(self.endpoint, res.client.endpoint) self.assertIsInstance(res.client, RequestClient) self.assertIsInstance(res, Cluster) def test_job(self): job_id = "1234" job_kind = "test kind" res = self.client.job(job_id, job_kind) self.assertIsInstance(res, Job) self.assertEqual(job_id, res.job_id) self.assertEqual(job_kind, res.job_kind) def test_etl(self): etl_name = "my-etl" res = self.client.etl(etl_name) self.assertIsInstance(res, Etl) self.assertEqual(etl_name, res.name)
aistore-master
python/tests/unit/sdk/test_client.py
import unittest from unittest.mock import patch, Mock from requests import Response from aistore.sdk.const import ( JSON_CONTENT_TYPE, HEADER_USER_AGENT, USER_AGENT_BASE, HEADER_CONTENT_TYPE, ) from aistore.sdk.request_client import RequestClient from aistore.version import __version__ as sdk_version class TestRequestClient(unittest.TestCase): # pylint: disable=unused-variable def setUp(self) -> None: self.endpoint = "https://aistore-endpoint" self.mock_session = Mock() with patch("aistore.sdk.request_client.requests") as mock_requests_lib: mock_requests_lib.session.return_value = self.mock_session self.request_client = RequestClient(self.endpoint) self.request_headers = { HEADER_CONTENT_TYPE: JSON_CONTENT_TYPE, HEADER_USER_AGENT: f"{USER_AGENT_BASE}/{sdk_version}", } def test_properties(self): self.assertEqual(self.endpoint + "/v1", self.request_client.base_url) self.assertEqual(self.endpoint, self.request_client.endpoint) self.assertEqual(self.mock_session, self.request_client.session) @patch("aistore.sdk.request_client.RequestClient.request") @patch("aistore.sdk.request_client.decode_response") def test_request_deserialize(self, mock_decode, mock_request): method = "method" path = "path" decoded_value = "test value" custom_kw = "arg" mock_decode.return_value = decoded_value mock_response = Mock(Response) mock_request.return_value = mock_response res = self.request_client.request_deserialize( method, path, str, keyword=custom_kw ) self.assertEqual(decoded_value, res) mock_request.assert_called_with(method, path, keyword=custom_kw) mock_decode.assert_called_with(str, mock_response) def test_request(self): method = "method" path = "path" req_url = f"{self.request_client.base_url}/{path}" mock_response = Mock() mock_response.status_code = 200 self.mock_session.request.return_value = mock_response res = self.request_client.request("method", "path", keyword="arg") self.mock_session.request.assert_called_with( method, req_url, headers=self.request_headers, keyword="arg" ) self.assertEqual(mock_response, res) for response_code in [199, 300]: with patch("aistore.sdk.request_client.handle_errors") as mock_handle_err: mock_response.status_code = response_code self.mock_session.request.return_value = mock_response res = self.request_client.request("method", "path", keyword="arg") self.mock_session.request.assert_called_with( method, req_url, headers=self.request_headers, keyword="arg" ) self.assertEqual(mock_response, res) mock_handle_err.assert_called_once() def test_get_full_url(self): path = "/testpath/to_obj" params = {"p1key": "p1val", "p2key": "p2val"} res = self.request_client.get_full_url(path, params) self.assertEqual( "https://aistore-endpoint/v1/testpath/to_obj?p1key=p1val&p2key=p2val", res )
aistore-master
python/tests/unit/sdk/test_request_client.py
import unittest from typing import Dict from unittest.mock import Mock, patch, mock_open, call from aistore.sdk.const import ( URL_PATH_DSORT, HTTP_METHOD_POST, DSORT_ABORT, HTTP_METHOD_DELETE, DSORT_UUID, HTTP_METHOD_GET, ) from aistore.sdk.dsort import Dsort from aistore.sdk.dsort_types import DsortMetrics, JobInfo from aistore.sdk.errors import Timeout from aistore.sdk.utils import probing_frequency class TestDsort(unittest.TestCase): def setUp(self) -> None: self.mock_client = Mock() self.dsort_id = "123" self.dsort = Dsort(client=self.mock_client, dsort_id=self.dsort_id) @staticmethod def _get_mock_job_info(finished, aborted=False): mock_metrics = Mock(DsortMetrics) mock_metrics.aborted = aborted mock_metrics.shard_creation = Mock(finished=finished) mock_job_info = Mock(JobInfo) mock_job_info.metrics = mock_metrics return mock_job_info def test_properties(self): self.assertEqual(self.dsort_id, self.dsort.dsort_id) @patch("aistore.sdk.dsort.validate_file") @patch("aistore.sdk.dsort.json") # pylint: disable=unused-argument def test_start(self, mock_json, mock_validate_file): new_id = "456" spec = {"test_spec_entry": "test_spec_value"} mock_request_return_val = Mock(text=new_id) mock_json.load.return_value = spec self.mock_client.request.return_value = mock_request_return_val with patch("builtins.open", mock_open()): res = self.dsort.start("spec_file") self.assertEqual(new_id, res) self.assertEqual(new_id, self.dsort.dsort_id) self.mock_client.request.assert_called_with( HTTP_METHOD_POST, path=URL_PATH_DSORT, json=spec ) def test_abort(self): self.dsort.abort() self.mock_client.request.assert_called_with( HTTP_METHOD_DELETE, path=f"{URL_PATH_DSORT}/{DSORT_ABORT}", params={DSORT_UUID: [self.dsort_id]}, ) def test_get_job_info(self): mock_job_info = {"id_1": Mock(JobInfo)} self.mock_client.request_deserialize.return_value = mock_job_info res = self.dsort.get_job_info() self.assertEqual(mock_job_info, res) self.mock_client.request_deserialize.assert_called_with( HTTP_METHOD_GET, path=URL_PATH_DSORT, res_model=Dict[str, JobInfo], params={DSORT_UUID: [self.dsort_id]}, ) @patch("aistore.sdk.dsort.time.sleep") @patch("aistore.sdk.dsort.Dsort.get_job_info") def test_wait_default_timeout(self, mock_get_job_info, mock_sleep): timeout = 300 frequency = probing_frequency(timeout) expected_job_info_calls = [ call(), call(), call(), ] expected_sleep_calls = [call(frequency), call(frequency)] self._wait_test_helper( self.dsort, mock_get_job_info, mock_sleep, expected_job_info_calls, expected_sleep_calls, ) @patch("aistore.sdk.dsort.time.sleep") @patch("aistore.sdk.dsort.Dsort.get_job_info") def test_wait(self, mock_get_job_info, mock_sleep): timeout = 20 frequency = probing_frequency(timeout) expected_job_info_calls = [call(), call(), call()] expected_sleep_calls = [call(frequency), call(frequency)] self._wait_test_helper( self.dsort, mock_get_job_info, mock_sleep, expected_job_info_calls, expected_sleep_calls, timeout=timeout, ) @patch("aistore.sdk.dsort.time.sleep") @patch("aistore.sdk.dsort.Dsort.get_job_info") # pylint: disable=unused-argument def test_wait_timeout(self, mock_get_job_info, mock_sleep): mock_get_job_info.return_value = { "key": self._get_mock_job_info(finished=False, aborted=False) } self.assertRaises(Timeout, self.dsort.wait) @patch("aistore.sdk.dsort.time.sleep") @patch("aistore.sdk.dsort.Dsort.get_job_info") def test_wait_aborted(self, mock_get_job_info, mock_sleep): timeout = 300 frequency = probing_frequency(timeout) expected_metrics_calls = [ call(), call(), ] expected_sleep_calls = [call(frequency)] mock_get_job_info.side_effect = [ {"key": self._get_mock_job_info(finished=False)}, {"key": self._get_mock_job_info(finished=False, aborted=True)}, {"key": self._get_mock_job_info(finished=False)}, ] self._wait_exec_assert( self.dsort, mock_get_job_info, mock_sleep, expected_metrics_calls, expected_sleep_calls, ) # pylint: disable=too-many-arguments def _wait_test_helper( self, dsort, mock_get_job_info, mock_sleep, expected_job_info_calls, expected_sleep_calls, **kwargs, ): mock_get_job_info.side_effect = [ {"job_id": self._get_mock_job_info(finished=False)}, {"job_id": self._get_mock_job_info(finished=False)}, {"job_id": self._get_mock_job_info(finished=True)}, ] self._wait_exec_assert( dsort, mock_get_job_info, mock_sleep, expected_job_info_calls, expected_sleep_calls, **kwargs, ) def _wait_exec_assert( self, dsort, mock_get_job_info, mock_sleep, expected_job_info_calls, expected_sleep_calls, **kwargs, ): dsort.wait(**kwargs) mock_get_job_info.assert_has_calls(expected_job_info_calls) mock_sleep.assert_has_calls(expected_sleep_calls) self.assertEqual(len(expected_job_info_calls), mock_get_job_info.call_count) self.assertEqual(len(expected_sleep_calls), mock_sleep.call_count)
aistore-master
python/tests/unit/sdk/test_dsort.py
import unittest from unittest.mock import patch from aistore.sdk.multiobj import ObjectTemplate # pylint: disable=unused-variable class TestObjectTemplate(unittest.TestCase): def setUp(self): self.template_str = "prefix-{1..6..2}-gap-{12..14..1}-suffix" self.obj_range_template = ObjectTemplate(self.template_str) def test_get_value(self): self.assertEqual( {"template": self.template_str}, self.obj_range_template.get_value() ) @patch("aistore.sdk.multiobj.object_template.utils.expand_braces") def test_iter(self, mock_expand): expansion_result = ["mock expansion result", "result2"] mock_expand.return_value.__next__.side_effect = expansion_result self.assertEqual( expansion_result, list(self.obj_range_template), )
aistore-master
python/tests/unit/sdk/multiobj/test_object_template.py
aistore-master
python/tests/unit/sdk/multiobj/__init__.py
import unittest from aistore.sdk.errors import InvalidObjectRangeIndex from aistore.sdk.multiobj import ObjectRange from tests.unit.sdk.test_utils import test_cases # pylint: disable=unused-variable class TestObjectRange(unittest.TestCase): def setUp(self): self.prefix = "prefix-" self.suffix = "-suffix" self.min_index = 4 self.max_index = 9 self.pad_width = 3 self.step = 2 def test_object_range_defaults(self): object_range = ObjectRange( prefix=self.prefix, min_index=self.min_index, max_index=self.max_index ) self.assertEqual("prefix-{4..9..1}", str(object_range)) def test_object_range(self): object_range = ObjectRange( prefix=self.prefix, min_index=self.min_index, max_index=self.max_index, pad_width=self.pad_width, step=self.step, suffix=self.suffix, ) self.assertEqual("prefix-{004..009..2}-suffix", str(object_range)) def test_object_range_prefix_only(self): object_range = ObjectRange(prefix=self.prefix) self.assertEqual("prefix-", str(object_range)) def test_object_range_invalid_suffix(self): with self.assertRaises(ValueError): ObjectRange(prefix=self.prefix, suffix="anything") @test_cases( (1, 25, 0, True), (25, 1, 0, False), (20, 25, 1, False), (None, 25, 1, False), (0, None, 1, False), (20, 25, 2, True), (20, 25, 3, True), ) def test_validate_indices(self, test_case): min_index, max_index, pad_width, valid = test_case if valid: ObjectRange( prefix=self.prefix, min_index=min_index, max_index=max_index, pad_width=pad_width, ) return with self.assertRaises(InvalidObjectRangeIndex): ObjectRange( prefix=self.prefix, min_index=min_index, max_index=max_index, pad_width=pad_width, ) def test_iter(self): object_range = ObjectRange( prefix=self.prefix, min_index=self.min_index, max_index=self.max_index, pad_width=self.pad_width, step=self.step, suffix=self.suffix, ) expected_range = ["prefix-004-suffix", "prefix-006-suffix", "prefix-008-suffix"] self.assertEqual(expected_range, list(object_range))
aistore-master
python/tests/unit/sdk/multiobj/test_object_range.py
import unittest from unittest.mock import Mock, patch, call from aistore.sdk import Bucket from aistore.sdk.const import ( HTTP_METHOD_DELETE, ACT_DELETE_OBJECTS, ACT_EVICT_OBJECTS, HTTP_METHOD_POST, ACT_PREFETCH_OBJECTS, ACT_COPY_OBJECTS, ACT_TRANSFORM_OBJECTS, ACT_ARCHIVE_OBJECTS, PROVIDER_AMAZON, HTTP_METHOD_PUT, ) from aistore.sdk.etl_const import DEFAULT_ETL_TIMEOUT from aistore.sdk.multiobj import ObjectGroup, ObjectRange from aistore.sdk.types import Namespace, BucketModel, ArchiveMultiObj # pylint: disable=unused-variable,too-many-instance-attributes class TestObjectGroup(unittest.TestCase): def setUp(self) -> None: self.mock_bck = Mock() self.mock_bck.name = "mock-bucket" self.mock_bck.provider = "mock-bck-provider" self.mock_response_text = "Response Text" mock_response = Mock() mock_response.text = self.mock_response_text self.mock_bck.make_request.return_value = mock_response self.mock_bck_model = BucketModel( name=self.mock_bck.name, provider=self.mock_bck.provider ) self.mock_bck.as_model.return_value = self.mock_bck_model namespace = Namespace(name="ns-name", uuid="ns-id") provider = "any provider" self.dest_bucket = Bucket( name="to-bucket", namespace=namespace, provider=provider ) self.obj_names = ["obj-1", "obj-2"] self.object_group = ObjectGroup(self.mock_bck, obj_names=self.obj_names) self.expected_value = {"objnames": self.obj_names} def test_object_group_parameters(self): obj_names = ["list", "of", "names"] obj_range = ObjectRange(prefix="prefix-") obj_template = "prefix-{0..3}" with self.assertRaises(ValueError): ObjectGroup( self.mock_bck, obj_names=obj_names, obj_range=obj_range, ) with self.assertRaises(ValueError): ObjectGroup( self.mock_bck, obj_names=obj_names, obj_template=obj_template, ) with self.assertRaises(ValueError): ObjectGroup( self.mock_bck, obj_range=obj_range, obj_template=obj_template, ) def object_group_test_helper( self, object_group_function, http_method, action, expected_value, **kwargs ): resp_text = object_group_function(**kwargs) self.assertEqual(self.mock_response_text, resp_text) self.mock_bck.make_request.assert_called_with( http_method, action, value=expected_value, ) def test_delete(self): self.object_group_test_helper( self.object_group.delete, HTTP_METHOD_DELETE, ACT_DELETE_OBJECTS, self.expected_value, ) def test_evict(self): self.object_group_test_helper( self.object_group.evict, HTTP_METHOD_DELETE, ACT_EVICT_OBJECTS, self.expected_value, ) def test_prefetch(self): self.object_group_test_helper( self.object_group.prefetch, HTTP_METHOD_POST, ACT_PREFETCH_OBJECTS, self.expected_value, ) def test_copy(self): self.expected_value["prefix"] = "" self.expected_value["prepend"] = "" self.expected_value["dry_run"] = False self.expected_value["force"] = False self.expected_value["tobck"] = self.dest_bucket.as_model() self.expected_value["coer"] = False # Test default args self.object_group_test_helper( self.object_group.copy, HTTP_METHOD_POST, ACT_COPY_OBJECTS, self.expected_value, to_bck=self.dest_bucket, ) # Test provided optional args prepend_val = "new_prefix-" self.expected_value["prepend"] = prepend_val self.expected_value["force"] = True self.expected_value["dry_run"] = True self.expected_value["coer"] = True self.object_group_test_helper( self.object_group.copy, HTTP_METHOD_POST, ACT_COPY_OBJECTS, self.expected_value, to_bck=self.dest_bucket, prepend=prepend_val, force=True, dry_run=True, continue_on_error=True, ) @patch("aistore.sdk.multiobj.object_group.logging") def test_copy_dry_run(self, mock_logging): mock_logger = Mock() mock_logging.getLogger.return_value = mock_logger self.object_group.copy(to_bck=self.dest_bucket, dry_run=True) mock_logger.info.assert_called() def test_transform(self): etl_name = "any active etl" self.expected_value["prefix"] = "" self.expected_value["prepend"] = "" self.expected_value["dry_run"] = False self.expected_value["force"] = False self.expected_value["id"] = etl_name self.expected_value["request_timeout"] = DEFAULT_ETL_TIMEOUT self.expected_value["tobck"] = self.dest_bucket.as_model() self.expected_value["coer"] = False # Test default args self.object_group_test_helper( self.object_group.transform, HTTP_METHOD_POST, ACT_TRANSFORM_OBJECTS, self.expected_value, to_bck=self.dest_bucket, etl_name=etl_name, ) # Test provided optional args timeout = "30s" prepend_val = "new_prefix-" self.expected_value["coer"] = True self.expected_value["prepend"] = prepend_val self.expected_value["request_timeout"] = timeout self.expected_value["dry_run"] = True self.expected_value["force"] = True self.object_group_test_helper( self.object_group.transform, HTTP_METHOD_POST, ACT_TRANSFORM_OBJECTS, self.expected_value, to_bck=self.dest_bucket, prepend=prepend_val, etl_name=etl_name, timeout=timeout, dry_run=True, force=True, continue_on_error=True, ) @patch("aistore.sdk.multiobj.object_group.logging") def test_transform_dry_run(self, mock_logging): mock_logger = Mock() mock_logging.getLogger.return_value = mock_logger self.object_group.transform( to_bck=self.dest_bucket, etl_name="any etl", dry_run=True ) mock_logger.info.assert_called() def test_list_names(self): self.assertEqual(self.obj_names, self.object_group.list_names()) def test_archive_default_params(self): archive_name = "test-arch" expected_value = ArchiveMultiObj( object_selection=self.expected_value, archive_name=archive_name, to_bck=self.mock_bck_model, ).as_dict() self.object_group_test_helper( self.object_group.archive, HTTP_METHOD_PUT, ACT_ARCHIVE_OBJECTS, expected_value=expected_value, archive_name=archive_name, ) def test_archive(self): archive_name = "test-arch" namespace = Namespace(name="ns-name", uuid="ns-id") to_bck = Bucket( name="dest-bck-name", namespace=namespace, provider=PROVIDER_AMAZON ) mime = "text" include_source = True allow_append = True continue_on_err = True expected_value = ArchiveMultiObj( object_selection=self.expected_value, archive_name=archive_name, to_bck=to_bck.as_model(), mime=mime, include_source_name=include_source, allow_append=allow_append, continue_on_err=continue_on_err, ).as_dict() self.object_group_test_helper( self.object_group.archive, HTTP_METHOD_PUT, ACT_ARCHIVE_OBJECTS, expected_value=expected_value, archive_name=archive_name, to_bck=to_bck, mime=mime, include_source_name=include_source, allow_append=allow_append, continue_on_err=continue_on_err, ) def test_list_urls(self): etl_name = "myetl" expected_obj_calls = [] # Should create an object reference and get url for every object returned by listing for name in self.obj_names: expected_obj_calls.append(call(name)) expected_obj_calls.append(call().get_url(etl_name=etl_name)) list(self.object_group.list_urls(etl_name=etl_name)) self.mock_bck.object.assert_has_calls(expected_obj_calls)
aistore-master
python/tests/unit/sdk/multiobj/test_object_group.py
import unittest from aistore.sdk.multiobj import ObjectNames # pylint: disable=unused-variable class TestObjectNames(unittest.TestCase): def setUp(self): self.name_list = ["obj-1", "obj-2"] self.obj_names = ObjectNames(self.name_list) def test_get_value(self): self.assertEqual({"objnames": self.name_list}, self.obj_names.get_value()) def test_iter(self): self.assertEqual(self.name_list, list(self.obj_names))
aistore-master
python/tests/unit/sdk/multiobj/test_object_names.py
aistore-master
python/tests/unit/pytorch/__init__.py
import unittest from unittest.mock import Mock from torch.utils.data import IterDataPipe from aistore.pytorch.aisio import AISSourceLister from aistore.sdk.ais_source import AISSource class TestDataPipes(unittest.TestCase): def test_source_lister(self): ais_source_1 = Mock(AISSource) ais_source_2 = Mock(AISSource) source_1_urls = ["url1", "url2"] source_2_urls = ["url3", "url4"] ais_source_1.list_urls.return_value = source_1_urls ais_source_2.list_urls.return_value = source_2_urls expected_res = source_1_urls + source_2_urls prefix = "obj-prefix-" etl_name = "test-etl" source_lister = AISSourceLister( [ais_source_1, ais_source_2], prefix=prefix, etl_name=etl_name ) self.assertIsInstance(source_lister, IterDataPipe) self.assertEqual(expected_res, list(source_lister)) ais_source_1.list_urls.assert_called_with(prefix=prefix, etl_name=etl_name) ais_source_2.list_urls.assert_called_with(prefix=prefix, etl_name=etl_name)
aistore-master
python/tests/unit/pytorch/test_datapipes.py
import os from aistore.sdk.const import PROVIDER_AIS CLUSTER_ENDPOINT = os.environ.get("AIS_ENDPOINT", "http://localhost:8080") REMOTE_BUCKET = os.environ.get("BUCKET", "") REMOTE_SET = REMOTE_BUCKET != "" and not REMOTE_BUCKET.startswith(PROVIDER_AIS + ":") TEST_TIMEOUT = 30 TEST_TIMEOUT_LONG = 120 OBJECT_COUNT = 10
aistore-master
python/tests/integration/__init__.py
# # Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. # # pylint: disable=missing-module-docstring,import-outside-toplevel,unused-import from tests.botocore_common import BotocoreBaseTest from tests.integration import CLUSTER_ENDPOINT # pylint: disable=unused-variable class IntegrationTestCase(BotocoreBaseTest): """ Run botocore against a real aistore, with our patch in place, expecting it to handle redirects for us without ClientErrors. """ __test__ = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) from aistore.botocore_patch import botocore self.use_moto = False self.endpoint_url = CLUSTER_ENDPOINT + "/s3" self.redirect_errors_expected = False
aistore-master
python/tests/integration/botocore_patch/test_botocore.py
aistore-master
python/tests/integration/botocore_patch/__init__.py
# # Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # import unittest from pathlib import Path import requests from aistore.sdk import ListObjectFlag from aistore.sdk.const import PROVIDER_AIS, UTF_ENCODING from aistore.sdk.errors import InvalidBckProvider, AISError, ErrBckNotFound from tests.integration.sdk.remote_enabled_test import RemoteEnabledTest from tests.unit.sdk.test_utils import test_cases from tests.utils import random_string, cleanup_local from tests.integration import REMOTE_BUCKET, OBJECT_COUNT # If remote bucket is not set, skip all cloud-related tests REMOTE_SET = REMOTE_BUCKET != "" and not REMOTE_BUCKET.startswith(PROVIDER_AIS + ":") INNER_DIR = "directory" TOP_LEVEL_FILES = { "top_level_file.txt": b"test data to verify", "other_top_level_file.txt": b"other file test data to verify", } LOWER_LEVEL_FILES = {"lower_level_file.txt": b"data in inner file"} def _create_files(folder, file_dict): for filename, data in file_dict.items(): lower_file = folder.joinpath(filename) with open(lower_file, "wb") as file: file.write(data) # pylint: disable=unused-variable, too-many-public-methods class TestBucketOps(RemoteEnabledTest): def setUp(self) -> None: super().setUp() self.local_test_files = ( Path().absolute().joinpath("bucket-ops-test-" + random_string(8)) ) def tearDown(self) -> None: super().tearDown() cleanup_local(str(self.local_test_files)) def _create_put_files_structure(self, top_level_files, lower_level_files): self.local_test_files.mkdir(exist_ok=True) _create_files(self.local_test_files, top_level_files) inner_dir = self.local_test_files.joinpath(INNER_DIR) inner_dir.mkdir() _create_files(inner_dir, lower_level_files) def test_bucket(self): new_bck_name = random_string(10) self._create_bucket(new_bck_name) res = self.client.cluster().list_buckets() bucket_names = {bck.name for bck in res} self.assertIn(new_bck_name, bucket_names) def test_bucket_invalid_name(self): with self.assertRaises(ErrBckNotFound): self.client.bucket("INVALID_BCK_NAME").list_objects() def test_bucket_invalid_aws_name(self): with self.assertRaises(AISError): self.client.bucket("INVALID_BCK_NAME", "aws").list_objects() def test_head(self): try: self.bucket.head() except requests.exceptions.HTTPError as err: self.assertEqual(err.response.status_code, 404) def test_rename(self): from_bck_name = self.bck_name + "from" to_bck_name = self.bck_name + "to" from_bck = self._create_bucket(from_bck_name) self.client.cluster().list_buckets() self.assertEqual(from_bck_name, from_bck.name) job_id = from_bck.rename(to_bck_name=to_bck_name) self.assertNotEqual(job_id, "") # wait for rename to finish self.client.job(job_id).wait() # new bucket should be created and accessible to_bck = self.client.bucket(to_bck_name) to_bck.head() self.assertEqual(to_bck_name, to_bck.name) # old bucket should be inaccessible try: from_bck.head() except requests.exceptions.HTTPError as err: self.assertEqual(err.response.status_code, 404) def test_copy(self): from_bck_name = self.bck_name + "from" to_bck_name = self.bck_name + "to" from_bck = self._create_bucket(from_bck_name) to_bck = self._create_bucket(to_bck_name) prefix = "prefix-" new_prefix = "new-" content = b"test" expected_name = prefix + "-obj" from_bck.object(expected_name).put_content(content) from_bck.object("notprefix-obj").put_content(content) job_id = from_bck.copy(to_bck, prefix_filter=prefix, prepend=new_prefix) self.assertNotEqual(job_id, "") self.client.job(job_id).wait() entries = to_bck.list_all_objects() self.assertEqual(1, len(entries)) self.assertEqual(new_prefix + expected_name, entries[0].name) @unittest.skipIf( not REMOTE_SET, "Remote bucket is not set", ) def test_evict(self): self._create_objects() objects = self.bucket.list_objects( props="name,cached", prefix=self.obj_prefix ).entries self._verify_objects_cache_status(objects, True) self.bucket.evict(keep_md=True) objects = self.bucket.list_objects( props="name,cached", prefix=self.obj_prefix ).entries self.assertEqual(OBJECT_COUNT, len(objects)) self._verify_objects_cache_status(objects, False) def test_evict_local(self): # If the bucket is local, eviction should fail if not REMOTE_SET: with self.assertRaises(InvalidBckProvider): self.bucket.evict() return # Create a local bucket to test with if self.bucket is a cloud bucket local_bucket = self._create_bucket(self.bck_name + "-local") with self.assertRaises(InvalidBckProvider): local_bucket.evict() def _verify_objects_cache_status(self, objects, expected_status): self.assertTrue(len(objects) > 0) for obj in objects: self.assertTrue(obj.is_ok()) self.assertEqual(expected_status, obj.is_cached()) def test_put_files_invalid(self): with self.assertRaises(ValueError): self.bucket.put_files("non-existent-dir") self.local_test_files.mkdir() filename = self.local_test_files.joinpath("file_not_dir") with open(filename, "w", encoding=UTF_ENCODING): pass with self.assertRaises(ValueError): self.bucket.put_files(filename) def _verify_obj_res(self, expected_res_dict, expect_err=False): if expect_err: for obj_name in expected_res_dict: with self.assertRaises(AISError): self.bucket.object(self.obj_prefix + obj_name).get() else: for obj_name, expected_data in expected_res_dict.items(): res = self.bucket.object(self.obj_prefix + obj_name).get() self.assertEqual(expected_data, res.read_all()) def test_put_files_default_args(self): self._create_put_files_structure(TOP_LEVEL_FILES, LOWER_LEVEL_FILES) self.bucket.put_files(self.local_test_files, prepend=self.obj_prefix) self._verify_obj_res(TOP_LEVEL_FILES) self._verify_obj_res(LOWER_LEVEL_FILES, expect_err=True) def test_put_files_recursive(self): self._create_put_files_structure(TOP_LEVEL_FILES, LOWER_LEVEL_FILES) self.bucket.put_files( self.local_test_files, recursive=True, prepend=self.obj_prefix ) self._verify_obj_res(TOP_LEVEL_FILES) # Lower level file object names will include their relative path by default expected_lower_res = {} for obj_name, expected_data in LOWER_LEVEL_FILES.items(): obj_name = str(Path(INNER_DIR).joinpath(obj_name)) expected_lower_res[obj_name] = expected_data self._verify_obj_res(expected_lower_res) def test_put_files_recursive_basename(self): self._create_put_files_structure(TOP_LEVEL_FILES, LOWER_LEVEL_FILES) self.bucket.put_files( self.local_test_files, recursive=True, basename=True, prepend=self.obj_prefix, ) # Expect all objects to be prefixed by custom_name and with no relative path in the name due to basename opt joined_file_data = {**TOP_LEVEL_FILES, **LOWER_LEVEL_FILES} expected_res = {} for obj_name, expected_data in joined_file_data.items(): expected_res[obj_name] = expected_data self._verify_obj_res(expected_res) def test_put_files_filtered(self): self.local_test_files.mkdir() included_filename = "prefix-file.txt" excluded_by_pattern = "extra_top_file.py" excluded_by_prefix = "non-prefix-file.txt" for file in [included_filename, excluded_by_pattern, excluded_by_prefix]: with open(self.local_test_files.joinpath(file), "wb"): pass self.bucket.put_files( self.local_test_files, prepend=self.obj_prefix, prefix_filter="prefix-", pattern="*.txt", ) self.bucket.object(self.obj_prefix + included_filename).get() with self.assertRaises(AISError): self.bucket.object(excluded_by_pattern).get() with self.assertRaises(AISError): self.bucket.object(excluded_by_prefix).get() def test_put_files_dry_run(self): self._create_put_files_structure(TOP_LEVEL_FILES, LOWER_LEVEL_FILES) self.bucket.put_files( self.local_test_files, dry_run=True, prepend=self.obj_prefix ) # Verify the put files call does not actually create objects self._verify_obj_res(TOP_LEVEL_FILES, expect_err=True) @test_cases((None, OBJECT_COUNT), (7, 7), (OBJECT_COUNT * 2, OBJECT_COUNT)) def test_list_objects(self, test_case): page_size, response_size = test_case # Only create the bucket entries on the first subtest run if len(self.bucket.list_all_objects(prefix=self.obj_prefix)) == 0: self._create_objects() if page_size: resp = self.bucket.list_objects(page_size=page_size, prefix=self.obj_prefix) else: resp = self.bucket.list_objects(prefix=self.obj_prefix) self.assertEqual(response_size, len(resp.entries)) def test_list_all_objects(self): short_page_len = 17 self._create_objects() objects = self.bucket.list_all_objects(prefix=self.obj_prefix) self.assertEqual(OBJECT_COUNT, len(objects)) objects = self.bucket.list_all_objects( page_size=short_page_len, prefix=self.obj_prefix ) self.assertEqual(OBJECT_COUNT, len(objects)) def test_list_object_iter(self): obj_names = set(self._create_objects()) # Empty iterator if there are no objects matching the prefix. obj_iter = self.bucket.list_objects_iter(prefix="invalid-obj-") self.assertEqual(0, len(list(obj_iter))) # Read all `bucket_size` objects by prefix. obj_iter = self.bucket.list_objects_iter(page_size=10, prefix=self.obj_prefix) for obj in obj_iter: obj_names.remove(obj.name) self.assertEqual(0, len(obj_names)) def test_list_object_flags(self): self._create_objects() objects = self.bucket.list_all_objects( flags=[ListObjectFlag.NAME_ONLY, ListObjectFlag.CACHED], prefix=self.obj_prefix, ) self.assertEqual(OBJECT_COUNT, len(objects)) for obj in objects: self.assertEqual(0, obj.size) objects = self.bucket.list_all_objects( flags=[ListObjectFlag.NAME_SIZE], prefix=self.obj_prefix ) self.assertEqual(OBJECT_COUNT, len(objects)) for obj in objects: self.assertTrue(obj.size > 0) def test_summary(self): summ_test_bck = self._create_bucket("summary-test") # Initially, the bucket should be empty bucket_summary = summ_test_bck.summary() self.assertEqual(bucket_summary["ObjCount"]["obj_count_present"], "0") self.assertEqual(bucket_summary["TotalSize"]["size_all_present_objs"], "0") self.assertEqual(bucket_summary["TotalSize"]["size_all_remote_objs"], "0") self.assertEqual(bucket_summary["used_pct"], 0) summ_test_bck.object("test-object").put_content("test-content") bucket_summary = summ_test_bck.summary() # Now, the bucket should have 1 object self.assertEqual(bucket_summary["ObjCount"]["obj_count_present"], "1") self.assertNotEqual(bucket_summary["TotalSize"]["size_all_present_objs"], "0") summ_test_bck.delete() # Accessing the summary of a deleted bucket should raise an error with self.assertRaises(ErrBckNotFound): summ_test_bck.summary() def test_info(self): info_test_bck = self._create_bucket("info-test") # Initially, the bucket should be empty _, bck_summ = info_test_bck.info(flt_presence=0) # For an empty bucket, the object count and total size should be zero self.assertEqual(bck_summ["ObjCount"]["obj_count_present"], "0") self.assertEqual(bck_summ["TotalSize"]["size_all_present_objs"], "0") self.assertEqual(bck_summ["TotalSize"]["size_all_remote_objs"], "0") self.assertEqual(bck_summ["provider"], "ais") self.assertEqual(bck_summ["name"], "info-test") # Upload an object to the bucket info_test_bck.object("test-object").put_content("test-content") _, bck_summ = info_test_bck.info() # Now the bucket should have one object and non-zero size self.assertEqual(bck_summ["ObjCount"]["obj_count_present"], "1") self.assertNotEqual(bck_summ["TotalSize"]["size_all_present_objs"], "0") self.assertEqual(bck_summ["TotalSize"]["size_all_remote_objs"], "0") self.assertEqual(bck_summ["provider"], "ais") self.assertEqual(bck_summ["name"], "info-test") info_test_bck.delete() # Accessing the info of a deleted bucket should raise an error with self.assertRaises(ErrBckNotFound): info_test_bck.summary() if __name__ == "__main__": unittest.main()
aistore-master
python/tests/integration/sdk/test_bucket_ops.py
aistore-master
python/tests/integration/sdk/__init__.py
import io import json import shutil import tarfile import unittest from pathlib import Path from aistore import Client from tests.integration import CLUSTER_ENDPOINT, TEST_TIMEOUT from tests.unit.sdk.test_utils import test_cases from tests.utils import random_string class TestDsortOps(unittest.TestCase): def setUp(self) -> None: self.client = Client(CLUSTER_ENDPOINT) self.temp_dir = Path("tmp") try: self.temp_dir.mkdir() except FileExistsError: shutil.rmtree(self.temp_dir) self.temp_dir.mkdir() self.buckets = [] def tearDown(self) -> None: shutil.rmtree(self.temp_dir) for bucket in self.buckets: self.client.bucket(bucket).delete(missing_ok=True) def _upload_dir(self, dir_name, bck_name): bck = self.client.bucket(bck_name).create(exist_ok=True) self.buckets.append(bck_name) bck.put_files(dir_name) @staticmethod def _generate_tar(filename, prefix, tar_format, num_files): with tarfile.open(filename, "w|", format=tar_format) as tar: for i in range(num_files): # Create a file name and write random text to it filename = f"shard-{prefix}-file-{i}.txt" with open(filename, "w", encoding="utf-8") as text: text.write(random_string()) # Add the file to the tarfile tar.add(filename) # Remove the file after adding it to the tarfile Path(filename).unlink() def _generate_shards(self, tar_type, tar_enum, num_shards, num_files): shard_names = [] out_dir = Path(self.temp_dir).joinpath(tar_type) out_dir.mkdir(exist_ok=True) for shard_index in range(num_shards): name = f"{tar_type}-{shard_index}.tar" filename = out_dir.joinpath(name) self._generate_tar(filename, shard_index, tar_enum, num_files) shard_names.append(name) self._upload_dir(out_dir, tar_type) return shard_names def _get_object_content_map(self, bucket_name, object_names): expected_contents = {} for obj in object_names: output_bytes = self.client.bucket(bucket_name).object(obj).get().read_all() output = io.BytesIO(output_bytes) with tarfile.open(fileobj=output) as result_tar: for tar in result_tar: expected_contents[tar.name] = result_tar.extractfile( tar.name ).read() return expected_contents def _start_with_spec(self, input_bck_name, out_bck_name, input_object_prefix): spec = { "input_extension": ".tar", "input_bck": {"name": input_bck_name}, "output_bck": {"name": out_bck_name}, "input_format": {"template": input_object_prefix + "-{0..1}"}, "output_format": "out-shard-{0..9}", "output_shard_size": "20MB", "description": "Dsort Integration Test", } spec_file = self.temp_dir.joinpath("spec.json") with open(spec_file, "w", encoding="utf-8") as outfile: outfile.write(json.dumps(spec, indent=4)) dsort = self.client.dsort() dsort.start(spec_file) return dsort @test_cases(("gnu", tarfile.GNU_FORMAT, 2, 3), ("pax", tarfile.PAX_FORMAT, 2, 3)) def test_dsort(self, test_case): tar_type, tar_format, num_shards, num_files = test_case # create bucket for output out_bck_name = tar_type + "-out" self.client.bucket(out_bck_name).create(exist_ok=True) self.buckets.append(out_bck_name) # create tars as objects in buckets shards = self._generate_shards(tar_type, tar_format, num_shards, num_files) # Read created objects to get expected output after dsort expected_contents = self._get_object_content_map( bucket_name=tar_type, object_names=shards ) dsort = self._start_with_spec( input_bck_name=tar_type, out_bck_name=out_bck_name, input_object_prefix=tar_type, ) dsort.wait(timeout=TEST_TIMEOUT) output_bytes = ( self.client.bucket(out_bck_name).object("out-shard-0.tar").get().read_all() ) output = io.BytesIO(output_bytes) result_contents = {} with tarfile.open(fileobj=output) as result_tar: for tar in result_tar: result_contents[tar.name] = result_tar.extractfile(tar.name).read() self.assertEqual(expected_contents, result_contents) def test_abort(self): input_bck_name = "abort" out_bck_name = "out" self.client.bucket(input_bck_name).create(exist_ok=True) self.buckets.append(input_bck_name) self.client.bucket(out_bck_name).create(exist_ok=True) self.buckets.append(out_bck_name) # Create enough files to make the dSort job slow enough to abort self._generate_shards(input_bck_name, tarfile.GNU_FORMAT, 10, 1000) dsort = self._start_with_spec( input_bck_name=input_bck_name, out_bck_name=out_bck_name, input_object_prefix=input_bck_name, ) dsort.abort() dsort.wait(timeout=TEST_TIMEOUT) for job_info in dsort.get_job_info().values(): self.assertTrue(job_info.metrics.aborted) self.assertEqual(1, len(job_info.metrics.errors))
aistore-master
python/tests/integration/sdk/test_dsort_ops.py
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # from itertools import cycle import unittest import hashlib import sys import time import pytest from aistore.sdk import Client, Bucket from aistore.sdk.etl_const import ETL_COMM_HPUSH, ETL_COMM_IO from aistore.sdk.errors import AISError from aistore.sdk.etl_templates import MD5, ECHO from tests.integration import CLUSTER_ENDPOINT from tests.utils import create_and_put_object, random_string ETL_NAME_CODE = "etl-" + random_string(5) ETL_NAME_CODE_IO = "etl-" + random_string(5) ETL_NAME_CODE_STREAM = "etl-" + random_string(5) ETL_NAME_SPEC = "etl-" + random_string(5) ETL_NAME_SPEC_COMP = "etl-" + random_string(5) # pylint: disable=unused-variable class TestETLOps(unittest.TestCase): def setUp(self) -> None: self.bck_name = random_string() print("URL END PT ", CLUSTER_ENDPOINT) self.client = Client(CLUSTER_ENDPOINT) self.bucket = self.client.bucket(bck_name=self.bck_name).create() self.obj_name = "temp-obj1.jpg" self.obj_size = 128 self.content = create_and_put_object( client=self.client, bck_name=self.bck_name, obj_name=self.obj_name, obj_size=self.obj_size, ) create_and_put_object( client=self.client, bck_name=self.bck_name, obj_name="obj2.jpg" ) self.current_etl_count = len(self.client.cluster().list_running_etls()) def tearDown(self) -> None: # Try to destroy all temporary buckets if there are left. for bucket in self.client.cluster().list_buckets(): self.client.bucket(bucket.name).delete(missing_ok=True) # delete all the etls for etl in self.client.cluster().list_running_etls(): self.client.etl(etl.id).stop() self.client.etl(etl.id).delete() # pylint: disable=too-many-statements,too-many-locals @pytest.mark.etl def test_etl_apis(self): # code def transform(input_bytes): md5 = hashlib.md5() md5.update(input_bytes) return md5.hexdigest().encode() code_etl = self.client.etl(ETL_NAME_CODE) code_etl.init_code(transform=transform) obj = self.bucket.object(self.obj_name).get(etl_name=code_etl.name).read_all() self.assertEqual(obj, transform(bytes(self.content))) self.assertEqual( self.current_etl_count + 1, len(self.client.cluster().list_running_etls()) ) # code (io comm) def main(): md5 = hashlib.md5() chunk = sys.stdin.buffer.read() md5.update(chunk) sys.stdout.buffer.write(md5.hexdigest().encode()) code_io_etl = self.client.etl(ETL_NAME_CODE_IO) code_io_etl.init_code(transform=main, communication_type=ETL_COMM_IO) obj_io = ( self.bucket.object(self.obj_name).get(etl_name=code_io_etl.name).read_all() ) self.assertEqual(obj_io, transform(bytes(self.content))) code_io_etl.stop() code_io_etl.delete() # spec template = MD5.format(communication_type=ETL_COMM_HPUSH) spec_etl = self.client.etl(ETL_NAME_SPEC) spec_etl.init_spec(template=template) obj = self.bucket.object(self.obj_name).get(etl_name=spec_etl.name).read_all() self.assertEqual(obj, transform(bytes(self.content))) self.assertEqual( self.current_etl_count + 2, len(self.client.cluster().list_running_etls()) ) self.assertIsNotNone(code_etl.view()) self.assertIsNotNone(spec_etl.view()) temp_bck1 = self.client.bucket(random_string()).create() # Transform Bucket with MD5 Template job_id = self.bucket.transform( etl_name=spec_etl.name, to_bck=temp_bck1, prefix_filter="temp-" ) self.client.job(job_id).wait() starting_obj = self.bucket.list_objects().entries transformed_obj = temp_bck1.list_objects().entries # Should transform only the object defined by the prefix filter self.assertEqual(len(starting_obj) - 1, len(transformed_obj)) md5_obj = temp_bck1.object(self.obj_name).get().read_all() # Verify bucket-level transformation and object-level transformation are the same self.assertEqual(obj, md5_obj) # Start ETL with ECHO template template = ECHO.format(communication_type=ETL_COMM_HPUSH) echo_spec_etl = self.client.etl(ETL_NAME_SPEC_COMP) echo_spec_etl.init_spec(template=template) temp_bck2 = self.client.bucket(random_string()).create() # Transform bucket with ECHO template job_id = self.bucket.transform( etl_name=echo_spec_etl.name, to_bck=temp_bck2, ext={"jpg": "txt"}, ) self.client.job(job_id).wait() # Verify extension rename for obj_iter in temp_bck2.list_objects().entries: self.assertEqual(obj_iter.name.split(".")[1], "txt") echo_obj = temp_bck2.object("temp-obj1.txt").get().read_all() # Verify different bucket-level transformations are not the same (compare ECHO transformation and MD5 # transformation) self.assertNotEqual(md5_obj, echo_obj) echo_spec_etl.stop() echo_spec_etl.delete() # Transform w/ non-existent ETL name raises exception with self.assertRaises(AISError): self.bucket.transform( etl_name="faulty-name", to_bck=Bucket(random_string()) ) # Stop ETLs code_etl.stop() spec_etl.stop() self.assertEqual( len(self.client.cluster().list_running_etls()), self.current_etl_count ) # Start stopped ETLs code_etl.start() spec_etl.start() self.assertEqual( len(self.client.cluster().list_running_etls()), self.current_etl_count + 2 ) # Delete stopped ETLs code_etl.stop() spec_etl.stop() code_etl.delete() spec_etl.delete() # Starting deleted ETLs raises error with self.assertRaises(AISError): code_etl.start() with self.assertRaises(AISError): spec_etl.start() @pytest.mark.etl def test_etl_apis_stress(self): num_objs = 200 content = {} for i in range(num_objs): obj_name = f"obj{ i }" content[obj_name] = create_and_put_object( client=self.client, bck_name=self.bck_name, obj_name=obj_name ) # code (hpush) def transform(input_bytes): md5 = hashlib.md5() md5.update(input_bytes) return md5.hexdigest().encode() md5_hpush_etl = self.client.etl(ETL_NAME_CODE) md5_hpush_etl.init_code(transform=transform) # code (io comm) def main(): md5 = hashlib.md5() chunk = sys.stdin.buffer.read() md5.update(chunk) sys.stdout.buffer.write(md5.hexdigest().encode()) md5_io_etl = self.client.etl(ETL_NAME_CODE_IO) md5_io_etl.init_code(transform=main, communication_type=ETL_COMM_IO) start_time = time.time() job_id = self.bucket.transform( etl_name=md5_hpush_etl.name, to_bck=Bucket("transformed-etl-hpush") ) self.client.job(job_id).wait() print("Transform bucket using HPUSH took ", time.time() - start_time) start_time = time.time() job_id = self.bucket.transform( etl_name=md5_io_etl.name, to_bck=Bucket("transformed-etl-io") ) self.client.job(job_id).wait() print("Transform bucket using IO took ", time.time() - start_time) for key, value in content.items(): transformed_obj_hpush = ( self.bucket.object(key).get(etl_name=md5_hpush_etl.name).read_all() ) transformed_obj_io = ( self.bucket.object(key).get(etl_name=md5_io_etl.name).read_all() ) self.assertEqual(transform(bytes(value)), transformed_obj_hpush) self.assertEqual(transform(bytes(value)), transformed_obj_io) @pytest.mark.etl def test_etl_apis_stream(self): def transform(reader, writer): checksum = hashlib.md5() for byte in reader: checksum.update(byte) writer.write(checksum.hexdigest().encode()) code_stream_etl = self.client.etl(ETL_NAME_CODE_STREAM) code_stream_etl.init_code(transform=transform, chunk_size=32768) obj = ( self.bucket.object(self.obj_name) .get(etl_name=code_stream_etl.name) .read_all() ) md5 = hashlib.md5() md5.update(self.content) self.assertEqual(obj, md5.hexdigest().encode()) @pytest.mark.etl def test_etl_api_xor(self): def transform(reader, writer): checksum = hashlib.md5() key = b"AISTORE" for byte in reader: out = bytes([_a ^ _b for _a, _b in zip(byte, cycle(key))]) writer.write(out) checksum.update(out) writer.write(checksum.hexdigest().encode()) xor_etl = self.client.etl("etl-xor1") xor_etl.init_code(transform=transform, chunk_size=32) transformed_obj = ( self.bucket.object(self.obj_name).get(etl_name=xor_etl.name).read_all() ) data, checksum = transformed_obj[:-32], transformed_obj[-32:] computed_checksum = hashlib.md5(data).hexdigest().encode() self.assertEqual(checksum, computed_checksum) @pytest.mark.etl def test_etl_transform_url(self): def url_transform(url): return url.encode("utf-8") url_etl = self.client.etl("etl-hpull-url") url_etl.init_code( transform=url_transform, arg_type="url", communication_type="hpull" ) res = self.bucket.object(self.obj_name).get(etl_name=url_etl.name).read_all() result_url = res.decode("utf-8") self.assertTrue(self.bucket.name in result_url) self.assertTrue(self.obj_name in result_url) if __name__ == "__main__": unittest.main()
aistore-master
python/tests/integration/sdk/test_etl_ops.py
import unittest from aistore.sdk.const import PROVIDER_AIS from aistore import Client from tests.integration import ( REMOTE_SET, REMOTE_BUCKET, CLUSTER_ENDPOINT, OBJECT_COUNT, TEST_TIMEOUT_LONG, ) from tests.utils import random_string, destroy_bucket, create_and_put_objects class RemoteEnabledTest(unittest.TestCase): """ This class is intended to be used with all tests that work with remote buckets. It provides helper methods for dealing with remote buckets and objects and tracking them for proper cleanup. This includes prefixing all objects with a unique value and deleting all objects after tests finish to avoid collisions with multiple instances using the same bucket. To use this class with another test class, simply inherit from this rather than TestCase. To extend setUp behavior in a child class, define them as normal for a TestCase then call super().setUp() before adding additional setup steps (same process for tearDown) """ def setUp(self) -> None: self.bck_name = random_string() self.client = Client(CLUSTER_ENDPOINT) self.buckets = [] self.obj_prefix = f"{self._testMethodName}-{random_string(6)}-" if REMOTE_SET: self.cloud_objects = [] provider, bck_name = REMOTE_BUCKET.split("://") self.bucket = self.client.bucket(bck_name, provider=provider) self.provider = provider else: self.provider = PROVIDER_AIS self.bucket = self._create_bucket(self.bck_name) def tearDown(self) -> None: """ Cleanup after each test, destroy the bucket if it exists """ if REMOTE_SET: entries = self.bucket.list_all_objects(prefix=self.obj_prefix) obj_names = [entry.name for entry in entries] obj_names.extend(self.cloud_objects) if len(obj_names) > 0: job_id = self.bucket.objects(obj_names=obj_names).delete() self.client.job(job_id).wait(timeout=TEST_TIMEOUT_LONG) for bck in self.buckets: destroy_bucket(self.client, bck) def _create_bucket(self, bck_name, provider=PROVIDER_AIS): """ Create a bucket and store its name for later cleanup Args: bck_name: Name of new bucket provider: Provider for new bucket """ bck = self.client.bucket(bck_name, provider=provider) self.buckets.append(bck_name) bck.create() return bck def _create_objects(self, num_obj=OBJECT_COUNT, suffix=""): """ Create a list of objects using a unique test prefix and track them for later cleanup Args: num_obj: Number of objects to create suffix: Optional suffix for each object name """ obj_names = create_and_put_objects( self.client, self.bucket, self.obj_prefix, suffix, num_obj, ) if REMOTE_SET: self.cloud_objects.extend(obj_names) return obj_names def _check_all_objects_cached(self, num_obj, expected_cached): """ List all objects with this test prefix and validate the cache status Args: num_obj: Number of objects we expect to find expected_cached: Whether we expect them to be cached """ objects = self.bucket.list_objects( props="name,cached", prefix=self.obj_prefix ).entries self.assertEqual(num_obj, len(objects)) self._validate_objects_cached(objects, expected_cached) def _validate_objects_cached(self, objects, expected_cached): """ Validate that all objects provided are either cached or not Args: objects: List of objects to check expected_cached: Whether we expect them to be cached """ for obj in objects: self.assertTrue(obj.is_ok()) if expected_cached: self.assertTrue(obj.is_cached()) else: self.assertFalse(obj.is_cached())
aistore-master
python/tests/integration/sdk/remote_enabled_test.py
# # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # import hashlib import unittest import tarfile import io import pytest from aistore.sdk.const import PROVIDER_AIS from aistore.sdk.errors import InvalidBckProvider from tests.integration import REMOTE_SET, TEST_TIMEOUT, OBJECT_COUNT from tests.integration.sdk.remote_enabled_test import RemoteEnabledTest from tests.utils import random_string # pylint: disable=unused-variable,too-many-instance-attributes class TestObjectGroupOps(RemoteEnabledTest): def setUp(self) -> None: super().setUp() self.obj_names = self._create_objects(suffix="-suffix") def test_delete(self): object_group = self.bucket.objects(obj_names=self.obj_names[1:]) job_id = object_group.delete() self.client.job(job_id).wait(timeout=TEST_TIMEOUT) existing_objects = self.bucket.list_objects(prefix=self.obj_prefix).entries self.assertEqual(1, len(existing_objects)) self.assertEqual(self.obj_names[0], existing_objects[0].name) @unittest.skipIf( not REMOTE_SET, "Remote bucket is not set", ) def test_evict(self): object_group = self.bucket.objects(obj_names=self.obj_names[1:]) job_id = object_group.evict() self.client.job(job_id).wait(timeout=TEST_TIMEOUT) self._verify_cached_objects(OBJECT_COUNT, [0]) def test_evict_objects_local(self): local_bucket = self.client.bucket(random_string(), provider=PROVIDER_AIS) with self.assertRaises(InvalidBckProvider): local_bucket.objects(obj_names=[]).evict() @unittest.skipIf( not REMOTE_SET, "Remote bucket is not set", ) def test_prefetch_list(self): obj_group = self.bucket.objects(obj_names=self.obj_names[1:]) self._evict_all_objects() # Fetch back a specific object group and verify cache status job_id = obj_group.prefetch() self.client.job(job_id).wait(timeout=TEST_TIMEOUT * 2) self._verify_cached_objects(OBJECT_COUNT, range(1, OBJECT_COUNT)) def test_prefetch_objects_local(self): local_bucket = self.client.bucket(random_string(), provider=PROVIDER_AIS) with self.assertRaises(InvalidBckProvider): local_bucket.objects(obj_names=[]).prefetch() def test_copy_objects(self): to_bck_name = "destination-bucket" to_bck = self._create_bucket(to_bck_name) self.assertEqual(0, len(to_bck.list_all_objects(prefix=self.obj_prefix))) self.assertEqual( OBJECT_COUNT, len(self.bucket.list_all_objects(prefix=self.obj_prefix)) ) new_prefix = "prefix-" copy_job = self.bucket.objects(obj_names=self.obj_names[1:5]).copy( to_bck, prepend=new_prefix ) self.client.job(job_id=copy_job).wait_for_idle(timeout=TEST_TIMEOUT) self.assertEqual( 4, len(to_bck.list_all_objects(prefix=new_prefix + self.obj_prefix)) ) def test_archive_objects_without_copy(self): arch_name = self.obj_prefix + "-archive-without-copy.tar" self._archive_exec_assert(arch_name, self.bucket, self.bucket) def test_archive_objects_with_copy(self): arch_name = self.obj_prefix + "-archive-with-copy.tar" dest_bck = self._create_bucket(random_string()) self._archive_exec_assert(arch_name, self.bucket, dest_bck, to_bck=dest_bck) def _archive_exec_assert(self, arch_name, src_bck, res_bck, **kwargs): # Add to object list to clean up on test finish if res_bck.provider != PROVIDER_AIS: self.cloud_objects.append(arch_name) archived_names = self.obj_names[1:5] expected_contents = {} for name in archived_names: expected_contents[name] = src_bck.object(obj_name=name).get().read_all() arch_job = src_bck.objects(obj_names=archived_names).archive( archive_name=arch_name, **kwargs ) self.client.job(job_id=arch_job).wait_for_idle(timeout=TEST_TIMEOUT) # Read the tar archive and assert the object names and contents match res_bytes = res_bck.object(arch_name).get().read_all() with tarfile.open(fileobj=io.BytesIO(res_bytes), mode="r") as tar: member_names = [] for member in tar.getmembers(): inner_file = tar.extractfile(member) self.assertEqual(expected_contents[member.name], inner_file.read()) inner_file.close() member_names.append(member.name) self.assertEqual(set(archived_names), set(member_names)) @pytest.mark.etl def test_transform_objects(self): # Define an etl with code that hashes the contents of each object etl_name = "etl-" + random_string(5) def transform(input_bytes): md5 = hashlib.md5() md5.update(input_bytes) return md5.hexdigest().encode() md5_etl = self.client.etl(etl_name) md5_etl.init_code(transform=transform) to_bck_name = "destination-bucket" to_bck = self._create_bucket(to_bck_name) new_prefix = "prefix-" self.assertEqual(0, len(to_bck.list_all_objects(prefix=self.obj_prefix))) self.assertEqual( OBJECT_COUNT, len(self.bucket.list_all_objects(prefix=self.obj_prefix)) ) transform_job = self.bucket.objects(obj_names=self.obj_names).transform( to_bck, etl_name=md5_etl.name, prepend=new_prefix ) self.client.job(job_id=transform_job).wait_for_idle(timeout=TEST_TIMEOUT) # Get the md5 transform of each source object and verify the destination bucket contains those results from_obj_hashes = [ transform(self.bucket.object(name).get().read_all()) for name in self.obj_names ] to_obj_values = [ to_bck.object(new_prefix + name).get().read_all() for name in self.obj_names ] self.assertEqual(to_obj_values, from_obj_hashes) def _evict_all_objects(self): job_id = self.bucket.objects(obj_names=self.obj_names).evict() self.client.job(job_id).wait(timeout=TEST_TIMEOUT) self._check_all_objects_cached(OBJECT_COUNT, expected_cached=False) def _verify_cached_objects(self, expected_object_count, cached_range): """ List each of the objects and verify the correct count and that all objects matching the cached range are cached and all others are not Args: expected_object_count: expected number of objects to list cached_range: object indices that should be cached, all others should not """ objects = self.bucket.list_objects( props="name,cached", prefix=self.obj_prefix ).entries self.assertEqual(expected_object_count, len(objects)) cached_names = {self.obj_prefix + str(x) + "-suffix" for x in cached_range} cached_objs = [] evicted_objs = [] for obj in objects: if obj.name in cached_names: cached_objs.append(obj) else: evicted_objs.append(obj) self._validate_objects_cached(cached_objs, True) self._validate_objects_cached(evicted_objs, False)
aistore-master
python/tests/integration/sdk/test_object_group_ops.py
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Default provider is AIS, so all Cloud-related tests are skipped. import unittest from aistore.sdk import Client from aistore.sdk.const import ACT_COPY_OBJECTS from tests.integration import CLUSTER_ENDPOINT from tests.utils import random_string class TestClusterOps(unittest.TestCase): # pylint: disable=unused-variable def setUp(self) -> None: self.client = Client(CLUSTER_ENDPOINT) def test_health_success(self): self.assertEqual(Client(CLUSTER_ENDPOINT).cluster().is_aistore_running(), True) def test_health_failure(self): # url not exisiting or URL down self.assertEqual( Client("http://localhost:1234").cluster().is_aistore_running(), False ) def test_cluster_map(self): smap = self.client.cluster().get_info() self.assertIsNotNone(smap) self.assertIsNotNone(smap.proxy_si) self.assertNotEqual(len(smap.pmap), 0) self.assertNotEqual(len(smap.tmap), 0) self.assertNotEqual(smap.version, 0) self.assertIsNot(smap.uuid, "") def _check_jobs_in_result(self, expected_jobs, res, missing_jobs=None): job_ids = [job.uuid for job in res] for job in expected_jobs: self.assertTrue(job in job_ids) if not missing_jobs: return for job in missing_jobs: self.assertFalse(job in job_ids) def test_list_jobs_status(self): job_kind = "lru" job_1_id = self.client.job(job_kind=job_kind).start() job_2_id = self.client.job(job_kind=job_kind).start() job_3_id = self.client.job(job_kind="cleanup").start() self._check_jobs_in_result( [job_1_id, job_2_id], self.client.cluster().list_jobs_status() ) self._check_jobs_in_result( [job_1_id, job_2_id], self.client.cluster().list_jobs_status(job_kind=job_kind), [job_3_id], ) def test_list_running_jobs(self): # First generate a multi-obj copy job that will stay "running" (but idle) long enough to query bck_name = random_string() new_bck_name = random_string() obj_name = random_string() bck = self.client.bucket(bck_name).create() new_bck = self.client.bucket(new_bck_name).create() try: bck.object(obj_name).put_content("any content") idle_job = bck.objects(obj_names=[obj_name]).copy(to_bck=new_bck) expected_res = f"{ACT_COPY_OBJECTS}[{idle_job}]" self.assertIn(expected_res, self.client.cluster().list_running_jobs()) self.assertIn( expected_res, self.client.cluster().list_running_jobs(job_kind=ACT_COPY_OBJECTS), ) self.assertNotIn( expected_res, self.client.cluster().list_running_jobs(job_kind="lru") ) finally: bck.delete() new_bck.delete()
aistore-master
python/tests/integration/sdk/test_cluster_ops.py
# # Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # import unittest from tests.integration.sdk.remote_enabled_test import RemoteEnabledTest from tests.integration import REMOTE_SET, TEST_TIMEOUT, OBJECT_COUNT class TestJobOps(RemoteEnabledTest): # pylint: disable=unused-variable def test_job_start_wait(self): job_id = self.client.job(job_kind="lru").start() self.client.job(job_id=job_id).wait() self.assertNotEqual(0, self.client.job(job_id=job_id).status().end_time) def test_job_wait_for_idle(self): obj_names = self._create_objects() existing_names = { obj.name for obj in self.bucket.list_objects(prefix=self.obj_prefix).entries } self.assertEqual(set(obj_names), existing_names) # Start a deletion job that will reach an idle state when it finishes job_id = self.bucket.objects(obj_names=obj_names).delete() self.client.job(job_id).wait_for_idle(timeout=TEST_TIMEOUT) self.assertEqual( 0, len(self.bucket.list_objects(prefix=self.obj_prefix).entries) ) @unittest.skipIf( not REMOTE_SET, "Remote bucket is not set", ) def test_async_job_wait_for_idle(self): obj_names = self._create_objects() obj_group = self.bucket.objects(obj_names=obj_names) job_id = obj_group.evict() self.client.job(job_id).wait_for_idle(timeout=TEST_TIMEOUT) self._check_all_objects_cached(OBJECT_COUNT, False) job_id = obj_group.prefetch() self.client.job(job_id).wait_for_idle(timeout=TEST_TIMEOUT) self._check_all_objects_cached(OBJECT_COUNT, True) def test_job_wait(self): object_names = self._create_objects() # Delete does not idle when finished job_id = self.bucket.objects(obj_names=object_names).delete() self.client.job(job_id=job_id).wait(timeout=TEST_TIMEOUT) # Check that objects do not exist existing_obj = [entry.name for entry in self.bucket.list_all_objects()] for name in object_names: self.assertNotIn(name, existing_obj) if __name__ == "__main__": unittest.main()
aistore-master
python/tests/integration/sdk/test_job_ops.py
# # Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # import random import unittest from pathlib import Path from aistore.sdk.const import AIS_VERSION, HEADER_CONTENT_LENGTH, UTF_ENCODING from aistore.sdk import Client from tests.utils import ( create_and_put_object, random_string, destroy_bucket, cleanup_local, ) from tests.integration import CLUSTER_ENDPOINT OBJ_READ_TYPE_ALL = "read_all" OBJ_READ_TYPE_CHUNK = "chunk" OBJ_NAME = "test-object" # pylint: disable=unused-variable class TestObjectOps(unittest.TestCase): def setUp(self) -> None: self.bck_name = random_string() self.client = Client(CLUSTER_ENDPOINT) self.bucket = self.client.bucket(self.bck_name) self.bucket.create() self.local_test_files = ( Path().absolute().joinpath("object-ops-test-" + random_string(8)) ) def tearDown(self) -> None: # Try to destroy bucket if there is one left. destroy_bucket(self.client, self.bck_name) # Cleanup local files at end cleanup_local(str(self.local_test_files)) def _test_get_obj(self, read_type, obj_name, exp_content): chunk_size = random.randrange(1, len(exp_content) + 10) stream = self.bucket.object(obj_name).get(chunk_size=chunk_size) self.assertEqual(stream.attributes.size, len(exp_content)) self.assertNotEqual(stream.attributes.checksum_type, "") self.assertNotEqual(stream.attributes.checksum_value, "") self.assertNotEqual(stream.attributes.access_time, "") self.assertNotEqual(stream.attributes.obj_version, "") self.assertEqual(stream.attributes.custom_metadata, {}) if read_type == OBJ_READ_TYPE_ALL: obj = stream.read_all() else: obj = b"" for chunk in stream: obj += chunk self.assertEqual(obj, exp_content) def _put_objects(self, num_obj): name_to_content = {} for i in range(num_obj): obj_name = f"obj{ i }" content = create_and_put_object( client=self.client, bck_name=self.bck_name, obj_name=obj_name ) name_to_content[obj_name] = content return name_to_content def test_put_content(self): content = b"content for the object" obj = self.bucket.object(OBJ_NAME) obj.put_content(content) res = obj.get() self.assertEqual(content, res.read_all()) def test_put_file(self): self.local_test_files.mkdir() content = b"content for the object" filename = self.local_test_files.joinpath("test_file") with open(filename, "wb") as writer: writer.write(content) obj = self.bucket.object(OBJ_NAME) obj.put_file(filename) res = obj.get() self.assertEqual(content, res.read_all()) def test_put_file_invalid(self): with self.assertRaises(ValueError): self.bucket.object("any").put_file("non-existent-file") self.local_test_files.mkdir() inner_dir = self.local_test_files.joinpath("inner_dir_not_file") inner_dir.mkdir() with self.assertRaises(ValueError): self.bucket.object("any").put_file(inner_dir) def test_put_head_get(self): objects = self._put_objects(5) for obj_name, content in objects.items(): properties = self.bucket.object(obj_name).head() self.assertEqual(properties[AIS_VERSION], "1") self.assertEqual(properties[HEADER_CONTENT_LENGTH], str(len(content))) for option in [OBJ_READ_TYPE_ALL, OBJ_READ_TYPE_CHUNK]: self._test_get_obj(option, obj_name, content) def test_get_with_writer(self): self.local_test_files.mkdir() filename = self.local_test_files.joinpath("test_get_with_writer.txt") objects = self._put_objects(10) all_content = b"" for obj_name, content in objects.items(): # Pass a writer that appends to a file with open(filename, "ab") as writer: self.bucket.object(obj_name).get(writer=writer) all_content += content # Verify file contents are written from each object with open(filename, "rb") as reader: output = reader.read() self.assertEqual(all_content, output) filename.unlink() @unittest.skipIf( "localhost" not in CLUSTER_ENDPOINT and "127.0.0.1" not in CLUSTER_ENDPOINT, "Cannot test promote without access to AIS cluster file storage", ) # pylint: disable=too-many-locals def test_promote(self): self.local_test_files.mkdir() top_folder = self.local_test_files.joinpath("promote_folder") top_item = "test_file_top" top_item_contents = "contents in the test file" inner_folder = "inner_folder" inner_item = "test_file_inner" inner_item_contents = "contents of the file in the inner folder" # Create a folder in the current directory local_files_path = Path().absolute().joinpath(top_folder) local_files_path.mkdir() with open( local_files_path.joinpath(top_item), "w", encoding=UTF_ENCODING ) as file: file.write(top_item_contents) inner_folder = local_files_path.joinpath(inner_folder) inner_folder.mkdir() with open( inner_folder.joinpath(inner_item), "w", encoding=UTF_ENCODING ) as file: file.write(inner_item_contents) # Promote to AIS bucket obj_name = "promoted_obj" self.bucket.object(obj_name).promote(str(local_files_path)) # Check bucket, only top object is promoted self.assertEqual(1, len(self.bucket.list_all_objects())) top_object = self.bucket.object(obj_name + "/" + top_item).get() self.assertEqual(top_item_contents, top_object.read_all().decode(UTF_ENCODING)) # Update local top item contents top_item_updated_contents = "new content in top file overwritten" with open( local_files_path.joinpath(top_item), "w", encoding=UTF_ENCODING ) as file: file.write(top_item_updated_contents) # Promote with recursion, delete source, overwrite destination self.bucket.object(obj_name).promote( str(local_files_path), recursive=True, delete_source=True, overwrite_dest=True, ) # Check bucket, both objects promoted, top overwritten self.assertEqual(2, len(self.bucket.list_all_objects())) expected_top_obj = obj_name + "/" + top_item top_obj = self.bucket.object(expected_top_obj).get() self.assertEqual( top_item_updated_contents, top_obj.read_all().decode(UTF_ENCODING) ) inner_obj = self.bucket.object(obj_name + "/inner_folder/" + inner_item).get() self.assertEqual(inner_item_contents, inner_obj.read_all().decode(UTF_ENCODING)) # Check source deleted top_level_files = [ f for f in Path(top_folder).glob("*") if Path(top_folder).joinpath(f).is_file() ] self.assertEqual(0, len(top_level_files)) self.assertEqual(0, len(list(inner_folder.glob("*")))) def test_delete(self): bucket_size = 10 delete_cnt = 7 for obj_id in range(bucket_size): create_and_put_object( self.client, bck_name=self.bck_name, obj_name=f"obj-{ obj_id }" ) objects = self.bucket.list_objects() self.assertEqual(len(objects.entries), bucket_size) for obj_id in range(delete_cnt): self.bucket.object(f"obj-{ obj_id + 1 }").delete() objects = self.bucket.list_objects() self.assertEqual(len(objects.entries), bucket_size - delete_cnt)
aistore-master
python/tests/integration/sdk/test_object_ops.py
aistore-master
python/tests/integration/pytorch/__init__.py
""" Test class for AIStore PyTorch Plugin Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ import unittest import torchdata.datapipes.iter as torch_pipes from aistore.sdk import Client from aistore.sdk.errors import AISError, ErrBckNotFound from aistore.pytorch import AISFileLister, AISFileLoader from tests.integration import CLUSTER_ENDPOINT from tests.utils import create_and_put_object, random_string, destroy_bucket # pylint: disable=unused-variable class TestPytorchPlugin(unittest.TestCase): """ Integration tests for the Pytorch plugin """ def setUp(self) -> None: self.bck_name = random_string() self.client = Client(CLUSTER_ENDPOINT) self.client.bucket(self.bck_name).create() def tearDown(self) -> None: """ Cleanup after each test, destroy the bucket if it exists """ destroy_bucket(self.client, self.bck_name) def test_filelister_with_prefix_variations(self): num_objs = 10 # create 10 objects in the /temp dir for i in range(num_objs): create_and_put_object( self.client, bck_name=self.bck_name, obj_name=f"temp/obj{ i }" ) # create 10 objects in the / dir for i in range(num_objs): obj_name = f"obj{ i }" create_and_put_object( self.client, bck_name=self.bck_name, obj_name=obj_name ) prefixes = [ ["ais://" + self.bck_name], ["ais://" + self.bck_name + "/"], ["ais://" + self.bck_name + "/temp/", "ais://" + self.bck_name + "/obj"], ] for prefix in prefixes: urls = AISFileLister(url=CLUSTER_ENDPOINT, source_datapipe=prefix) ais_loader = AISFileLoader(url=CLUSTER_ENDPOINT, source_datapipe=urls) with self.assertRaises(TypeError): len(urls) self.assertEqual(len(list(urls)), 20) self.assertEqual(sum(1 for _ in ais_loader), 20) def test_incorrect_inputs(self): prefixes = ["ais://asdasd"] # AISFileLister: Bucket not found try: list(AISFileLister(url=CLUSTER_ENDPOINT, source_datapipe=prefixes)) except ErrBckNotFound as err: self.assertEqual(err.status_code, 404) # AISFileLoader: incorrect inputs url_list = [[""], ["ais:"], ["ais://"], ["s3:///unkown-bucket"]] for url in url_list: with self.assertRaises(AISError): s3_loader_dp = AISFileLoader(url=CLUSTER_ENDPOINT, source_datapipe=url) for _ in s3_loader_dp: pass def test_torch_library(self): # Tests the torch library imports of aistore torch_pipes.AISFileLister( url=CLUSTER_ENDPOINT, source_datapipe=["ais://" + self.bck_name] ) torch_pipes.AISFileLoader( url=CLUSTER_ENDPOINT, source_datapipe=["ais://" + self.bck_name] ) if __name__ == "__main__": unittest.main()
aistore-master
python/tests/integration/pytorch/test_pytorch_plugin.py
from unittest import TestCase import boto3 # pylint: disable=unused-import,unused-variable from aistore.botocore_patch import botocore from aistore.sdk.const import UTF_ENCODING from tests import AWS_ACCESS_KEY_ID, AWS_SESSION_TOKEN, AWS_SECRET_ACCESS_KEY from tests.integration import CLUSTER_ENDPOINT from tests.integration.boto3 import NUM_BUCKETS, NUM_OBJECTS, OBJECT_LENGTH, AWS_REGION from tests.utils import random_string class BotoTest(TestCase): def setUp(self) -> None: """ Test basic s3 operations on an AIS cluster using the boto3 client """ self.client = boto3.client( "s3", region_name=AWS_REGION, endpoint_url=CLUSTER_ENDPOINT + "/s3", aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, aws_session_token=AWS_SESSION_TOKEN, ) self.clean_up() def tearDown(self) -> None: self.clean_up() def test_create_bucket(self): bucket_names = {random_string(20) for _ in range(NUM_BUCKETS)} for name in bucket_names: self.client.create_bucket(Bucket=name) existing_buckets = self.client.list_buckets() existing_bucket_names = {b.get("Name") for b in existing_buckets.get("Buckets")} self.assertEqual(bucket_names, existing_bucket_names) def test_update_read_bucket(self): bucket_name = self.create_bucket() objects = [(str(i), random_string(OBJECT_LENGTH)) for i in range(NUM_OBJECTS)] for key, body in objects: self.client.put_object(Bucket=bucket_name, Key=key, Body=body) existing_objects = [ self.client.get_object(Bucket=bucket_name, Key=key) .get("Body") .read() .decode(UTF_ENCODING) for key, body in objects ] object_bodies = [body for key, body in objects] self.assertEqual(object_bodies, existing_objects) def test_delete_bucket(self): bucket_name = self.create_bucket() self.client.delete_bucket(Bucket=bucket_name) self.assertEqual([], self.client.list_buckets().get("Buckets")) def test_multipart_upload(self): key = "object-name" data_len = 100 num_parts = 4 chunk_size = int(data_len / num_parts) data = random_string(data_len) parts = [data[i * chunk_size : (i + 1) * chunk_size] for i in range(num_parts)] bucket_name = self.create_bucket() response = self.client.create_multipart_upload(Bucket=bucket_name, Key=key) upload_id = response.get("UploadId") offset = 0 for part_num, part_data in enumerate(parts): self.client.upload_part( Body=part_data, Bucket=bucket_name, Key=key, PartNumber=part_num + 1, UploadId=upload_id, ) offset += len(part_data) self.client.complete_multipart_upload( Bucket=bucket_name, Key=key, UploadId=upload_id, MultipartUpload={ "Parts": [{"PartNumber": part_num + 1} for part_num in range(num_parts)] }, ) response = self.client.get_object(Bucket=bucket_name, Key=key) uploaded_data = response["Body"].read().decode(UTF_ENCODING) self.assertEqual(data, uploaded_data) def create_bucket(self): bucket_name = random_string(20) self.client.create_bucket(Bucket=bucket_name) return bucket_name def clean_up(self): existing_bucket_names = [ b.get("Name") for b in self.client.list_buckets().get("Buckets") ] for bucket in existing_bucket_names: self.client.delete_bucket(Bucket=bucket)
aistore-master
python/tests/integration/boto3/test_bucket_ops.py
import os NUM_BUCKETS = os.environ.get("BOTOTEST_NUM_BUCKETS", 10) NUM_OBJECTS = os.environ.get("BOTOTEST_NUM_OBJECTS", 20) OBJECT_LENGTH = os.environ.get("BOTOTEST_OBJECT_LENGTH", 1000) AWS_REGION = os.environ.get("AWS_DEFAULT_REGION", "us-east-1")
aistore-master
python/tests/integration/boto3/__init__.py
# # The functions in this file are modified under the Apache 2.0 license as provided by minio # The original code can be found at https://github.com/minio/minio-py # # MinIO Python Library for Amazon S3 Compatible Cloud Storage, # (C) 2015, 2016, 2017, 2018 MinIO, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import shutil import time import traceback from inspect import getfullargspec from minio import Minio from minio.error import S3Error from tests import LimitedRandomReader, MB import tests class TestFailed(Exception): """Indicate test failed error.""" # pylint: disable=unused-variable,protected-access def init_tests(server_endpoint, access_key, secret_key): tests._CLIENT = Minio(server_endpoint, access_key, secret_key, secure=False) test_file = "datafile-1-MB" large_file = "datafile-11-MB" with open(test_file, "wb") as file_data: shutil.copyfileobj(LimitedRandomReader(1 * MB), file_data) with open(large_file, "wb") as file_data: shutil.copyfileobj(LimitedRandomReader(11 * MB), file_data) tests._TEST_FILE = test_file tests._LARGE_FILE = large_file def call_test(func, strict): """Execute given test function.""" log_entry = { "name": func.__name__, "status": "PASS", } start_time = time.time() try: func(log_entry) except S3Error as exc: if exc.code == "NotImplemented": log_entry["alert"] = "Not Implemented" log_entry["status"] = "NA" else: log_entry["message"] = f"{exc}" log_entry["error"] = traceback.format_exc() log_entry["status"] = "FAIL" except Exception as exc: # pylint: disable=broad-except log_entry["message"] = f"{exc}" log_entry["error"] = traceback.format_exc() log_entry["status"] = "FAIL" if log_entry.get("method"): # pylint: disable=deprecated-method args_string = ", ".join(getfullargspec(log_entry["method"]).args[1:]) log_entry["function"] = f"{log_entry['method'].__name__}({args_string})" log_entry["args"] = {k: v for k, v in log_entry.get("args", {}).items() if v} log_entry["duration"] = int(round((time.time() - start_time) * 1000)) log_entry["name"] = "minio-py:" + log_entry["name"] log_entry["method"] = None print(json.dumps({k: v for k, v in log_entry.items() if v})) print() if strict and log_entry["status"] == "FAIL": raise TestFailed()
aistore-master
python/tests/s3compat/minio_helpers.py
# # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # import os import minio_helpers import tests as minio_test # pylint: disable=unused-variable,undefined-variable run_all = os.getenv("S3_COMPAT_RUN_ALL", "True").lower() in ("true", "t", 1) strict = os.getenv("S3_COMPAT_STRICT", "False").lower() in ("true", "t", 1) access_key = os.getenv("ACCESS_KEY", "testing") secret_key = os.getenv("SECRET_KEY", "testing") server_endpoint = os.getenv("AIS_ENDPOINT", "localhost:8080") test_list = os.getenv("S3_COMPAT_TEST_LIST") minio_helpers.init_tests(server_endpoint, access_key, secret_key) # Always include verified tests tests = [ minio_test.test_make_bucket_default_region, minio_test.test_get_object, minio_test.test_get_object_version, minio_test.test_presigned_post_policy, minio_test.test_get_bucket_notification, minio_test.test_remove_object, minio_test.test_remove_object_version, minio_test.test_remove_bucket, minio_test.test_make_bucket_with_region, minio_test.test_negative_make_bucket_invalid_name, minio_test.test_fput_object_small_file, minio_test.test_fput_object_large_file, minio_test.test_fput_object_with_content_type, minio_test.test_copy_object_etag_match, minio_test.test_copy_object_negative_etag_match, minio_test.test_copy_object_modified_since, minio_test.test_copy_object_unmodified_since, minio_test.test_negative_put_object_with_path_segment, minio_test.test_fget_object, minio_test.test_fget_object_version, minio_test.test_get_object_with_default_length, minio_test.test_get_partial_object, minio_test.test_thread_safe, ] unverified_tests = [ minio_test.test_list_buckets, minio_test.test_copy_object_no_copy_condition, minio_test.test_copy_object_with_metadata, minio_test.test_put_object, minio_test.test_stat_object, minio_test.test_stat_object_version, minio_test.test_list_objects_v1, minio_test.test_list_object_v1_versions, minio_test.test_list_objects_with_prefix, minio_test.test_list_objects_with_1001_files, minio_test.test_list_objects, minio_test.test_list_object_versions, minio_test.test_presigned_get_object_default_expiry, minio_test.test_presigned_get_object_expiry, minio_test.test_presigned_get_object_response_headers, minio_test.test_presigned_get_object_version, minio_test.test_presigned_put_object_default_expiry, minio_test.test_presigned_put_object_expiry, minio_test.test_get_bucket_policy, minio_test.test_set_bucket_policy_readonly, minio_test.test_set_bucket_policy_readwrite, minio_test.test_select_object_content, minio_test.test_remove_objects, minio_test.test_remove_object_versions, ] if run_all: tests.extend(unverified_tests) if test_list: test_names = str.split(test_list, ",") tests = [getattr(minio_test, test_name) for test_name in test_names] for test_name in tests: minio_helpers.call_test(test_name, strict)
aistore-master
python/tests/s3compat/run_tests.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # MinIO Python Library for Amazon S3 Compatible Cloud Storage, # (C) 2015, 2016, 2017, 2018 MinIO, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=too-many-lines,unused-variable,implicit-str-concat """Functional tests of minio-py.""" from __future__ import absolute_import, division import hashlib import io import json import math import os import random import shutil import sys import tempfile import time import traceback from binascii import crc32 from datetime import datetime, timedelta, timezone from inspect import getfullargspec from threading import Thread from uuid import uuid4 import certifi import urllib3 from minio import Minio from minio.commonconfig import ENABLED, REPLACE, CopySource from minio.datatypes import PostPolicy from minio.deleteobjects import DeleteObject from minio.error import S3Error from minio.select import CSVInputSerialization, CSVOutputSerialization, SelectRequest from minio.sse import SseCustomerKey from minio.time import to_http_header from minio.versioningconfig import VersioningConfig _CLIENT = None # initialized in main(). _TEST_FILE = None # initialized in main(). _LARGE_FILE = None # initialized in main(). _IS_AWS = None # initialized in main(). KB = 1024 MB = 1024 * KB HTTP = urllib3.PoolManager( cert_reqs="CERT_REQUIRED", ca_certs=os.environ.get("SSL_CERT_FILE") or certifi.where(), ) def _gen_bucket_name(): """Generate random bucket name.""" return f"minio-py-test-{uuid4()}" def _get_sha256sum(filename): """Get SHA-256 checksum of given file.""" with open(filename, "rb") as file: contents = file.read() return hashlib.sha256(contents).hexdigest() def _get_random_string(size): """Get random string of given size.""" if not size: return "" chars = "abcdefghijklmnopqrstuvwxyz" chars *= int(math.ceil(size / len(chars))) chars = list(chars[:size]) random.shuffle(chars) return "".join(chars) class LimitedRandomReader: # pylint: disable=too-few-public-methods """Random data reader of specified size.""" def __init__(self, limit): self._limit = limit def read(self, size=64 * KB): """Read random data of specified size.""" if size < 0 or size > self._limit: size = self._limit data = _get_random_string(size) self._limit -= size return data.encode() def _call(log_entry, func, *args, **kwargs): """Execute given function.""" log_entry["method"] = func return func(*args, **kwargs) class TestFailed(Exception): """Indicate test failed error.""" def _call_test(func, *args, **kwargs): """Execute given test function.""" log_entry = { "name": func.__name__, "status": "PASS", } start_time = time.time() try: func(log_entry, *args, **kwargs) except S3Error as exc: if exc.code == "NotImplemented": log_entry["alert"] = "Not Implemented" log_entry["status"] = "NA" else: log_entry["message"] = f"{exc}" log_entry["error"] = traceback.format_exc() log_entry["status"] = "FAIL" except Exception as exc: # pylint: disable=broad-except log_entry["message"] = f"{exc}" log_entry["error"] = traceback.format_exc() log_entry["status"] = "FAIL" if log_entry.get("method"): # pylint: disable=deprecated-method args_string = ", ".join(getfullargspec(log_entry["method"]).args[1:]) log_entry["function"] = f"{log_entry['method'].__name__}({args_string})" log_entry["args"] = {k: v for k, v in log_entry.get("args", {}).items() if v} log_entry["duration"] = int(round((time.time() - start_time) * 1000)) log_entry["name"] = "minio-py:" + log_entry["name"] log_entry["method"] = None print(json.dumps({k: v for k, v in log_entry.items() if v})) if log_entry["status"] == "FAIL": raise TestFailed() def test_make_bucket_default_region(log_entry): """Test make_bucket() with default region.""" # Get a unique bucket_name bucket_name = _gen_bucket_name() log_entry["args"] = { "bucket_name": bucket_name, "location": "default value ('us-east-1')", # Default location } # Create a bucket with default bucket location _call(log_entry, _CLIENT.make_bucket, bucket_name) # Check if bucket was created properly _call(log_entry, _CLIENT.bucket_exists, bucket_name) # Remove bucket _call(log_entry, _CLIENT.remove_bucket, bucket_name) # Test passes log_entry["method"] = _CLIENT.make_bucket def test_make_bucket_with_region(log_entry): """Test make_bucket() with region.""" # Only test make bucket with region against AWS S3 if not _IS_AWS: return # Get a unique bucket_name bucket_name = _gen_bucket_name() # A non-default location location = "us-west-1" log_entry["args"] = { "bucket_name": bucket_name, "location": location, } # Create a bucket with default bucket location _call(log_entry, _CLIENT.make_bucket, bucket_name, location) # Check if bucket was created properly _call(log_entry, _CLIENT.bucket_exists, bucket_name) # Remove bucket _call(log_entry, _CLIENT.remove_bucket, bucket_name) # Test passes log_entry["method"] = _CLIENT.make_bucket def test_negative_make_bucket_invalid_name(log_entry): # pylint: disable=invalid-name """Test make_bucket() with invalid bucket name.""" # Get a unique bucket_name bucket_name = _gen_bucket_name() # Default location log_entry["args"] = { "location": "default value ('us-east-1')", } # Create an array of invalid bucket names to test invalid_bucket_name_list = [ bucket_name + ".", "." + bucket_name, bucket_name + "...abcd", ] for name in invalid_bucket_name_list: log_entry["args"]["bucket_name"] = name try: # Create a bucket with default bucket location _call(log_entry, _CLIENT.make_bucket, name) # Check if bucket was created properly _call(log_entry, _CLIENT.bucket_exists, name) # Remove bucket _call(log_entry, _CLIENT.remove_bucket, name) except ValueError: pass # Test passes log_entry["method"] = _CLIENT.make_bucket log_entry["args"]["bucket_name"] = invalid_bucket_name_list def test_list_buckets(log_entry): """Test list_buckets().""" # Get a unique bucket_name bucket_name = _gen_bucket_name() # Create a bucket with default bucket location _call(log_entry, _CLIENT.make_bucket, bucket_name) try: buckets = _CLIENT.list_buckets() for bucket in buckets: # bucket object should be of a valid value. if bucket.name and bucket.creation_date: continue raise ValueError("list_bucket api failure") finally: # Remove bucket _call(log_entry, _CLIENT.remove_bucket, bucket_name) def test_select_object_content(log_entry): """Test select_object_content().""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() csvfile = "test.csv" log_entry["args"] = { "bucket_name": bucket_name, "object_name": csvfile, } try: _CLIENT.make_bucket(bucket_name) content = io.BytesIO(b"col1,col2,col3\none,two,three\nX,Y,Z\n") _CLIENT.put_object(bucket_name, csvfile, content, len(content.getvalue())) request = SelectRequest( "select * from s3object", CSVInputSerialization(), CSVOutputSerialization(), request_progress=True, ) data = _CLIENT.select_object_content(bucket_name, csvfile, request) # Get the records records = io.BytesIO() for data_bytes in data.stream(16): records.write(data_bytes) expected_crc = crc32(content.getvalue()) & 0xFFFFFFFF generated_crc = crc32(records.getvalue()) & 0xFFFFFFFF if expected_crc != generated_crc: raise ValueError( "Data mismatch Expected : " '"col1,col2,col3\none,two,three\nX,Y,Z\n"', f"Received {records.getvalue().decode()}", ) finally: _CLIENT.remove_object(bucket_name, csvfile) _CLIENT.remove_bucket(bucket_name) def _test_fput_object(bucket_name, object_name, filename, metadata, sse): """Test fput_object().""" try: _CLIENT.make_bucket(bucket_name) if _IS_AWS: _CLIENT.fput_object( bucket_name, object_name, filename, metadata=metadata, sse=sse ) else: _CLIENT.fput_object(bucket_name, object_name, filename, sse=sse) _CLIENT.stat_object(bucket_name, object_name, ssec=sse) finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_bucket(bucket_name) def test_fput_object_small_file(log_entry, sse=None): """Test fput_object() with small file.""" if sse: log_entry["name"] += "_with_SSE-C" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}-f" metadata = {"x-amz-storage-class": "STANDARD_IA"} log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "file_path": _TEST_FILE, "metadata": metadata, } _test_fput_object(bucket_name, object_name, _TEST_FILE, metadata, sse) def test_fput_object_large_file(log_entry, sse=None): """Test fput_object() with large file.""" if sse: log_entry["name"] += "_with_SSE-C" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}-large" metadata = {"x-amz-storage-class": "STANDARD_IA"} log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "file_path": _LARGE_FILE, "metadata": metadata, } # upload local large file through multipart. _test_fput_object(bucket_name, object_name, _LARGE_FILE, metadata, sse) def test_fput_object_with_content_type(log_entry): # pylint: disable=invalid-name """Test fput_object() with content-type.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}-f" metadata = {"x-amz-storage-class": "STANDARD_IA"} content_type = "application/octet-stream" log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "file_path": _TEST_FILE, "metadata": metadata, "content_type": content_type, } _test_fput_object(bucket_name, object_name, _TEST_FILE, metadata, None) def _validate_stat(st_obj, expected_size, expected_meta, version_id=None): """Validate stat information.""" expected_meta = {key.lower(): value for key, value in (expected_meta or {}).items()} received_etag = st_obj.etag received_metadata = { key.lower(): value for key, value in (st_obj.metadata or {}).items() } received_content_type = st_obj.content_type received_size = st_obj.size received_is_dir = st_obj.is_dir if not received_etag: raise ValueError("No Etag value is returned.") if st_obj.version_id != version_id: raise ValueError( f"version-id mismatch. expected={version_id}, " f"got={st_obj.version_id}" ) # content_type by default can be either application/octet-stream or # binary/octet-stream if received_content_type not in ["application/octet-stream", "binary/octet-stream"]: raise ValueError( "Incorrect content type. Expected: ", "'application/octet-stream' or 'binary/octet-stream'," " received: ", received_content_type, ) if received_size != expected_size: raise ValueError( "Incorrect file size. Expected: 11534336", ", received: ", received_size ) if received_is_dir: raise ValueError( "Incorrect file type. Expected: is_dir=False", ", received: is_dir=", received_is_dir, ) if not all(i in received_metadata.items() for i in expected_meta.items()): raise ValueError("Metadata key 'x-amz-meta-testing' not found") def test_copy_object_no_copy_condition( # pylint: disable=invalid-name log_entry, ssec_copy=None, ssec=None ): """Test copy_object() with no conditiions.""" if ssec_copy or ssec: log_entry["name"] += "_SSEC" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" object_source = object_name + "-source" object_copy = object_name + "-copy" log_entry["args"] = { "bucket_name": bucket_name, "object_source": object_source, "object_name": object_copy, } try: _CLIENT.make_bucket(bucket_name) # Upload a streaming object of 1 KiB size = 1 * KB reader = LimitedRandomReader(size) _CLIENT.put_object(bucket_name, object_source, reader, size, sse=ssec) _CLIENT.copy_object( bucket_name, object_copy, sse=ssec, source=CopySource(bucket_name, object_source, ssec=ssec_copy), ) st_obj = _CLIENT.stat_object(bucket_name, object_copy, ssec=ssec) _validate_stat(st_obj, size, {}) finally: _CLIENT.remove_object(bucket_name, object_source) _CLIENT.remove_object(bucket_name, object_copy) _CLIENT.remove_bucket(bucket_name) def test_copy_object_with_metadata(log_entry): """Test copy_object() with metadata.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" object_source = object_name + "-source" object_copy = object_name + "-copy" metadata = { "testing-string": "string", "testing-int": 1, 10: "value", } log_entry["args"] = { "bucket_name": bucket_name, "object_source": object_source, "object_name": object_copy, "metadata": metadata, } try: _CLIENT.make_bucket(bucket_name) # Upload a streaming object of 1 KiB size = 1 * KB reader = LimitedRandomReader(size) _CLIENT.put_object(bucket_name, object_source, reader, size) # Perform a server side copy of an object _CLIENT.copy_object( bucket_name, object_copy, CopySource(bucket_name, object_source), metadata=metadata, metadata_directive=REPLACE, ) # Verification st_obj = _CLIENT.stat_object(bucket_name, object_copy) expected_metadata = { "x-amz-meta-testing-int": "1", "x-amz-meta-testing-string": "string", "x-amz-meta-10": "value", } _validate_stat(st_obj, size, expected_metadata) finally: _CLIENT.remove_object(bucket_name, object_source) _CLIENT.remove_object(bucket_name, object_copy) _CLIENT.remove_bucket(bucket_name) def test_copy_object_etag_match(log_entry): """Test copy_object() with etag match condition.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" object_source = object_name + "-source" object_copy = object_name + "-copy" log_entry["args"] = { "bucket_name": bucket_name, "object_source": object_source, "object_name": object_copy, } try: _CLIENT.make_bucket(bucket_name) # Upload a streaming object of 1 KiB size = 1 * KB reader = LimitedRandomReader(size) _CLIENT.put_object(bucket_name, object_source, reader, size) # Perform a server side copy of an object _CLIENT.copy_object( bucket_name, object_copy, CopySource(bucket_name, object_source), ) # Verification source_etag = _CLIENT.stat_object(bucket_name, object_source).etag log_entry["args"]["conditions"] = {"set_match_etag": source_etag} _CLIENT.copy_object( bucket_name, object_copy, CopySource(bucket_name, object_source, match_etag=source_etag), ) finally: _CLIENT.remove_object(bucket_name, object_source) _CLIENT.remove_object(bucket_name, object_copy) _CLIENT.remove_bucket(bucket_name) def test_copy_object_negative_etag_match(log_entry): # pylint: disable=invalid-name """Test copy_object() with etag not match condition.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" object_source = object_name + "-source" object_copy = object_name + "-copy" log_entry["args"] = { "bucket_name": bucket_name, "object_source": object_source, "object_name": object_copy, } try: _CLIENT.make_bucket(bucket_name) # Upload a streaming object of 1 KiB size = 1 * KB reader = LimitedRandomReader(size) _CLIENT.put_object(bucket_name, object_source, reader, size) try: # Perform a server side copy of an object # with incorrect pre-conditions and fail etag = "test-etag" log_entry["args"]["conditions"] = {"set_match_etag": etag} _CLIENT.copy_object( bucket_name, object_copy, CopySource(bucket_name, object_source, match_etag=etag), ) except S3Error as exc: if exc.code != "PreconditionFailed": raise finally: _CLIENT.remove_object(bucket_name, object_source) _CLIENT.remove_object(bucket_name, object_copy) _CLIENT.remove_bucket(bucket_name) def test_copy_object_modified_since(log_entry): """Test copy_object() with modified since condition.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" object_source = object_name + "-source" object_copy = object_name + "-copy" log_entry["args"] = { "bucket_name": bucket_name, "object_source": object_source, "object_name": object_copy, } try: _CLIENT.make_bucket(bucket_name) # Upload a streaming object of 1 KiB size = 1 * KB reader = LimitedRandomReader(size) _CLIENT.put_object(bucket_name, object_source, reader, size) # Set up the 'modified_since' copy condition mod_since = datetime(2014, 4, 1, tzinfo=timezone.utc) log_entry["args"]["conditions"] = { "set_modified_since": to_http_header(mod_since) } # Perform a server side copy of an object # and expect the copy to complete successfully _CLIENT.copy_object( bucket_name, object_copy, CopySource(bucket_name, object_source, modified_since=mod_since), ) finally: _CLIENT.remove_object(bucket_name, object_source) _CLIENT.remove_object(bucket_name, object_copy) _CLIENT.remove_bucket(bucket_name) def test_copy_object_unmodified_since(log_entry): # pylint: disable=invalid-name """Test copy_object() with unmodified since condition.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" object_source = object_name + "-source" object_copy = object_name + "-copy" log_entry["args"] = { "bucket_name": bucket_name, "object_source": object_source, "object_name": object_copy, } try: _CLIENT.make_bucket(bucket_name) # Upload a streaming object of 1 KiB size = 1 * KB reader = LimitedRandomReader(size) _CLIENT.put_object(bucket_name, object_source, reader, size) # Set up the 'unmodified_since' copy condition unmod_since = datetime(2014, 4, 1, tzinfo=timezone.utc) log_entry["args"]["conditions"] = { "set_unmodified_since": to_http_header(unmod_since) } try: # Perform a server side copy of an object and expect # the copy to fail since the creation/modification # time is now, way later than unmodification time, April 1st, 2014 _CLIENT.copy_object( bucket_name, object_copy, CopySource( bucket_name, object_source, unmodified_since=unmod_since, ), ) except S3Error as exc: if exc.code != "PreconditionFailed": raise finally: _CLIENT.remove_object(bucket_name, object_source) _CLIENT.remove_object(bucket_name, object_copy) _CLIENT.remove_bucket(bucket_name) def test_put_object(log_entry, sse=None): """Test put_object().""" if sse: log_entry["name"] += "_SSE" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" length = 1 * MB log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "length": length, "data": "LimitedRandomReader(1 * MB)", } try: _CLIENT.make_bucket(bucket_name) # Put/Upload a streaming object of 1 MiB reader = LimitedRandomReader(length) _CLIENT.put_object(bucket_name, object_name, reader, length, sse=sse) _CLIENT.stat_object(bucket_name, object_name, ssec=sse) # Put/Upload a streaming object of 11 MiB log_entry["args"]["length"] = length = 11 * MB reader = LimitedRandomReader(length) log_entry["args"]["data"] = "LimitedRandomReader(11 * MB)" log_entry["args"]["metadata"] = metadata = { "x-amz-meta-testing": "value", "test-key": "value2", } log_entry["args"]["content_type"] = content_type = "application/octet-stream" log_entry["args"]["object_name"] = object_name + "-metadata" _CLIENT.put_object( bucket_name, object_name + "-metadata", reader, length, content_type, metadata, sse=sse, ) # Stat on the uploaded object to check if it exists # Fetch saved stat metadata on a previously uploaded object with # metadata. st_obj = _CLIENT.stat_object(bucket_name, object_name + "-metadata", ssec=sse) normalized_meta = { key.lower(): value for key, value in (st_obj.metadata or {}).items() } if "x-amz-meta-testing" not in normalized_meta: raise ValueError("Metadata key 'x-amz-meta-testing' not found") value = normalized_meta["x-amz-meta-testing"] if value != "value": raise ValueError(f"Metadata key has unexpected value {value}") if "x-amz-meta-test-key" not in normalized_meta: raise ValueError("Metadata key 'x-amz-meta-test-key' not found") finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_object(bucket_name, object_name + "-metadata") _CLIENT.remove_bucket(bucket_name) def test_negative_put_object_with_path_segment( # pylint: disable=invalid-name log_entry, ): """Test put_object() failure with path segment.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"/a/b/c/{uuid4()}" length = 0 log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "length": length, "data": "", } try: _CLIENT.make_bucket(bucket_name) _CLIENT.put_object(bucket_name, object_name, io.BytesIO(b""), 0) _CLIENT.remove_object(bucket_name, object_name) except S3Error as err: if err.code != "XMinioInvalidObjectName": raise finally: _CLIENT.remove_bucket(bucket_name) def _test_stat_object(log_entry, sse=None, version_check=False): """Test stat_object().""" if sse: log_entry["name"] += "_SSEC" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" length = 1 * MB log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "length": length, "data": "LimitedRandomReader(1 * MB)", } version_id1 = None version_id2 = None _CLIENT.make_bucket(bucket_name) try: if version_check: _CLIENT.set_bucket_versioning( bucket_name, VersioningConfig(ENABLED), ) # Put/Upload a streaming object of 1 MiB reader = LimitedRandomReader(length) result = _CLIENT.put_object( bucket_name, object_name, reader, length, sse=sse, ) version_id1 = result.version_id _CLIENT.stat_object( bucket_name, object_name, ssec=sse, version_id=version_id1, ) # Put/Upload a streaming object of 11 MiB log_entry["args"]["length"] = length = 11 * MB reader = LimitedRandomReader(length) log_entry["args"]["data"] = "LimitedRandomReader(11 * MB)" log_entry["args"]["metadata"] = metadata = {"X-Amz-Meta-Testing": "value"} log_entry["args"]["content_type"] = content_type = "application/octet-stream" log_entry["args"]["object_name"] = object_name + "-metadata" result = _CLIENT.put_object( bucket_name, object_name + "-metadata", reader, length, content_type, metadata, sse=sse, ) version_id2 = result.version_id # Stat on the uploaded object to check if it exists # Fetch saved stat metadata on a previously uploaded object with # metadata. st_obj = _CLIENT.stat_object( bucket_name, object_name + "-metadata", ssec=sse, version_id=version_id2, ) # Verify the collected stat data. _validate_stat( st_obj, length, metadata, version_id=version_id2, ) finally: _CLIENT.remove_object(bucket_name, object_name, version_id=version_id1) _CLIENT.remove_object( bucket_name, object_name + "-metadata", version_id=version_id2, ) _CLIENT.remove_bucket(bucket_name) def test_stat_object(log_entry, sse=None): """Test stat_object().""" _test_stat_object(log_entry, sse) def test_stat_object_version(log_entry, sse=None): """Test stat_object() of versioned object.""" _test_stat_object(log_entry, sse, version_check=True) def _test_remove_object(log_entry, version_check=False): """Test remove_object().""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" length = 1 * KB log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, } _CLIENT.make_bucket(bucket_name) try: if version_check: _CLIENT.set_bucket_versioning( bucket_name, VersioningConfig(ENABLED), ) result = _CLIENT.put_object( bucket_name, object_name, LimitedRandomReader(length), length, ) _CLIENT.remove_object( bucket_name, object_name, version_id=result.version_id, ) finally: _CLIENT.remove_bucket(bucket_name) def test_remove_object(log_entry): """Test remove_object().""" _test_remove_object(log_entry) def test_remove_object_version(log_entry): """Test remove_object() of versioned object.""" _test_remove_object(log_entry, version_check=True) def _test_get_object(log_entry, sse=None, version_check=False): """Test get_object().""" if sse: log_entry["name"] += "_SSEC" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" length = 1 * MB log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, } _CLIENT.make_bucket(bucket_name) version_id = None try: if version_check: _CLIENT.set_bucket_versioning( bucket_name, VersioningConfig(ENABLED), ) result = _CLIENT.put_object( bucket_name, object_name, LimitedRandomReader(length), length, sse=sse, ) version_id = result.version_id # Get/Download a full object, iterate on response to save to disk object_data = _CLIENT.get_object( bucket_name, object_name, ssec=sse, version_id=version_id, ) newfile = "newfile جديد" with open(newfile, "wb") as file_data: shutil.copyfileobj(object_data, file_data) os.remove(newfile) finally: _CLIENT.remove_object(bucket_name, object_name, version_id=version_id) _CLIENT.remove_bucket(bucket_name) def test_get_object(log_entry, sse=None): """Test get_object().""" _test_get_object(log_entry, sse) def test_get_object_version(log_entry, sse=None): """Test get_object() for versioned object.""" _test_get_object(log_entry, sse, version_check=True) def _test_fget_object(log_entry, sse=None, version_check=False): """Test fget_object().""" if sse: log_entry["name"] += "_SSEC" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" tmpfd, tmpfile = tempfile.mkstemp() os.close(tmpfd) length = 1 * MB log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "file_path": tmpfile, } _CLIENT.make_bucket(bucket_name) version_id = None try: if version_check: _CLIENT.set_bucket_versioning( bucket_name, VersioningConfig(ENABLED), ) result = _CLIENT.put_object( bucket_name, object_name, LimitedRandomReader(length), length, sse=sse, ) version_id = result.version_id # Get/Download a full object and save locally at path _CLIENT.fget_object( bucket_name, object_name, tmpfile, ssec=sse, version_id=version_id, ) os.remove(tmpfile) finally: _CLIENT.remove_object(bucket_name, object_name, version_id=version_id) _CLIENT.remove_bucket(bucket_name) def test_fget_object(log_entry, sse=None): """Test fget_object().""" _test_fget_object(log_entry, sse) def test_fget_object_version(log_entry, sse=None): """Test fget_object() of versioned object.""" _test_fget_object(log_entry, sse, version_check=True) def test_get_object_with_default_length( # pylint: disable=invalid-name log_entry, sse=None ): """Test get_object() with default length.""" if sse: log_entry["name"] += "_SSEC" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" size = 1 * MB length = 1000 offset = size - length log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "offset": offset, } _CLIENT.make_bucket(bucket_name) try: _CLIENT.put_object( bucket_name, object_name, LimitedRandomReader(size), size, sse=sse ) # Get half of the object object_data = _CLIENT.get_object( bucket_name, object_name, offset=offset, ssec=sse ) newfile = "newfile" with open(newfile, "wb") as file_data: for data in object_data: file_data.write(data) # Check if the new file is the right size new_file_size = os.path.getsize(newfile) os.remove(newfile) if new_file_size != length: raise ValueError("Unexpected file size after running ") finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_bucket(bucket_name) def test_get_partial_object(log_entry, sse=None): """Test get_object() by offset/length.""" if sse: log_entry["name"] += "_SSEC" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" size = 1 * MB offset = int(size / 2) length = offset - 1000 log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "offset": offset, } _CLIENT.make_bucket(bucket_name) try: _CLIENT.put_object( bucket_name, object_name, LimitedRandomReader(size), size, sse=sse ) # Get half of the object object_data = _CLIENT.get_object( bucket_name, object_name, offset=offset, length=length, ssec=sse ) newfile = "newfile" with open(newfile, "wb") as file_data: for data in object_data: file_data.write(data) # Check if the new file is the right size new_file_size = os.path.getsize(newfile) os.remove(newfile) if new_file_size != length: raise ValueError("Unexpected file size after running ") finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_bucket(bucket_name) def _test_list_objects(log_entry, use_api_v1=False, version_check=False): """Test list_objects().""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" is_recursive = True log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "recursive": is_recursive, } _CLIENT.make_bucket(bucket_name) version_id1 = None version_id2 = None try: if version_check: _CLIENT.set_bucket_versioning( bucket_name, VersioningConfig(ENABLED), ) size = 1 * KB result = _CLIENT.put_object( bucket_name, object_name + "-1", LimitedRandomReader(size), size, ) version_id1 = result.version_id result = _CLIENT.put_object( bucket_name, object_name + "-2", LimitedRandomReader(size), size, ) version_id2 = result.version_id # List all object paths in bucket. objects = _CLIENT.list_objects( bucket_name, "", is_recursive, include_version=version_check, use_api_v1=use_api_v1, ) for obj in objects: _ = ( obj.bucket_name, obj.object_name, obj.last_modified, obj.etag, obj.size, obj.content_type, ) if obj.version_id not in [version_id1, version_id2]: raise ValueError( f"version ID mismatch. " f"expected=any{[version_id1, version_id2]}, " f"got:{obj.version_id}" ) finally: _CLIENT.remove_object( bucket_name, object_name + "-1", version_id=version_id1, ) _CLIENT.remove_object( bucket_name, object_name + "-2", version_id=version_id2, ) _CLIENT.remove_bucket(bucket_name) def test_list_objects_v1(log_entry): """Test list_objects().""" _test_list_objects(log_entry, use_api_v1=True) def test_list_object_v1_versions(log_entry): """Test list_objects().""" _test_list_objects(log_entry, use_api_v1=True, version_check=True) def _test_list_objects_api(bucket_name, expected_no, *argv): """Test list_objects().""" # argv is composed of prefix and recursive arguments of # list_objects api. They are both supposed to be passed as strings. objects = _CLIENT.list_objects(bucket_name, *argv) # expect all objects to be listed no_of_files = 0 for obj in objects: _ = ( obj.bucket_name, obj.object_name, obj.last_modified, obj.etag, obj.size, obj.content_type, ) no_of_files += 1 if expected_no != no_of_files: raise ValueError( f"Listed no of objects ({no_of_files}), does not match the " f"expected no of objects ({expected_no})" ) def test_list_objects_with_prefix(log_entry): """Test list_objects() with prefix.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, } _CLIENT.make_bucket(bucket_name) try: size = 1 * KB no_of_created_files = 4 path_prefix = "" # Create files and directories for i in range(no_of_created_files): _CLIENT.put_object( bucket_name, f"{path_prefix}{i}_{object_name}", LimitedRandomReader(size), size, ) path_prefix = f"{path_prefix}{i}/" # Created files and directory structure # ._<bucket_name>/ # |___0_<object_name> # |___0/ # |___1_<object_name> # |___1/ # |___2_<object_name> # |___2/ # |___3_<object_name> # # Test and verify list_objects api outputs # List objects recursively with NO prefix log_entry["args"]["prefix"] = prefix = "" # no prefix log_entry["args"]["recursive"] = recursive = "" _test_list_objects_api(bucket_name, no_of_created_files, prefix, True) # List objects at the top level with no prefix and no recursive option # Expect only the top 2 objects to be listed _test_list_objects_api(bucket_name, 2) # List objects for '0' directory/prefix without recursive option # Expect 2 object (directory '0' and '0_' object) to be listed log_entry["args"]["prefix"] = prefix = "0" _test_list_objects_api(bucket_name, 2, prefix) # List objects for '0/' directory/prefix without recursive option # Expect only 2 objects under directory '0/' to be listed, # non-recursive log_entry["args"]["prefix"] = prefix = "0/" _test_list_objects_api(bucket_name, 2, prefix) # List objects for '0/' directory/prefix, recursively # Expect 2 objects to be listed log_entry["args"]["prefix"] = prefix = "0/" log_entry["args"]["recursive"] = recursive = "True" _test_list_objects_api(bucket_name, 3, prefix, recursive) # List object with '0/1/2/' directory/prefix, non-recursive # Expect the single object under directory '0/1/2/' to be listed log_entry["args"]["prefix"] = prefix = "0/1/2/" _test_list_objects_api(bucket_name, 1, prefix) finally: path_prefix = "" for i in range(no_of_created_files): _CLIENT.remove_object( bucket_name, f"{path_prefix}{i}_{object_name}", ) path_prefix = f"{path_prefix}{i}/" _CLIENT.remove_bucket(bucket_name) # Test passes log_entry["args"]["prefix"] = "Several prefix/recursive combinations are tested" log_entry["args"]["recursive"] = "Several prefix/recursive combinations are tested" def test_list_objects_with_1001_files(log_entry): # pylint: disable=invalid-name """Test list_objects() with more 1000 objects.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" log_entry["args"] = { "bucket_name": bucket_name, "object_name": f"{object_name}_0 ~ {0}_1000", } _CLIENT.make_bucket(bucket_name) try: size = 1 * KB no_of_created_files = 2000 # Create files and directories for i in range(no_of_created_files): _CLIENT.put_object( bucket_name, f"{object_name}_{i}", LimitedRandomReader(size), size ) # List objects and check if 1001 files are returned _test_list_objects_api(bucket_name, no_of_created_files) finally: for i in range(no_of_created_files): _CLIENT.remove_object(bucket_name, f"{object_name}_{i}") _CLIENT.remove_bucket(bucket_name) def test_list_objects(log_entry): """Test list_objects().""" _test_list_objects(log_entry) def test_list_object_versions(log_entry): """Test list_objects() of versioned object.""" _test_list_objects(log_entry, version_check=True) def test_presigned_get_object_default_expiry(log_entry): # pylint: disable=invalid-name """Test presigned_get_object() with default expiry.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, } _CLIENT.make_bucket(bucket_name) try: size = 1 * KB _CLIENT.put_object(bucket_name, object_name, LimitedRandomReader(size), size) presigned_get_object_url = _CLIENT.presigned_get_object( bucket_name, object_name ) response = HTTP.urlopen("GET", presigned_get_object_url) if response.status != 200: raise Exception( f"Presigned GET object URL {presigned_get_object_url} failed; " f"code: {response.code}, error: {response.data}" ) finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_bucket(bucket_name) def test_presigned_get_object_expiry(log_entry): # pylint: disable=invalid-name """Test presigned_get_object() with expiry.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, } _CLIENT.make_bucket(bucket_name) try: size = 1 * KB _CLIENT.put_object(bucket_name, object_name, LimitedRandomReader(size), size) presigned_get_object_url = _CLIENT.presigned_get_object( bucket_name, object_name, timedelta(seconds=120) ) response = HTTP.urlopen("GET", presigned_get_object_url) if response.status != 200: raise Exception( f"Presigned GET object URL {presigned_get_object_url} failed; " f"code: {response.code}, error: {response.data}" ) log_entry["args"]["presigned_get_object_url"] = presigned_get_object_url response = HTTP.urlopen("GET", presigned_get_object_url) log_entry["args"]["response.status"] = response.status log_entry["args"]["response.reason"] = response.reason log_entry["args"]["response.headers"] = json.dumps(response.headers.__dict__) # pylint: disable=protected-access log_entry["args"]["response._body"] = response._body.decode("utf-8") if response.status != 200: raise Exception( f"Presigned GET object URL {presigned_get_object_url} failed; " f"code: {response.code}, error: {response.data}" ) presigned_get_object_url = _CLIENT.presigned_get_object( bucket_name, object_name, timedelta(seconds=1) ) # Wait for 2 seconds for the presigned url to expire time.sleep(2) response = HTTP.urlopen("GET", presigned_get_object_url) log_entry["args"]["response.status-2"] = response.status log_entry["args"]["response.reason-2"] = response.reason log_entry["args"]["response.headers-2"] = json.dumps(response.headers.__dict__) log_entry["args"]["response._body-2"] = response._body.decode("utf-8") # Success with an expired url is considered to be a failure if response.status == 200: raise ValueError("Presigned get url failed to expire!") finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_bucket(bucket_name) def test_presigned_get_object_response_headers( # pylint: disable=invalid-name log_entry, ): """Test presigned_get_object() with headers.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" content_type = "text/plain" content_language = "en_US" log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, "content_type": content_type, "content_language": content_language, } _CLIENT.make_bucket(bucket_name) try: size = 1 * KB _CLIENT.put_object(bucket_name, object_name, LimitedRandomReader(size), size) presigned_get_object_url = _CLIENT.presigned_get_object( bucket_name, object_name, timedelta(seconds=120) ) response_headers = { "response-content-type": content_type, "response-content-language": content_language, } presigned_get_object_url = _CLIENT.presigned_get_object( bucket_name, object_name, timedelta(seconds=120), response_headers ) log_entry["args"]["presigned_get_object_url"] = presigned_get_object_url response = HTTP.urlopen("GET", presigned_get_object_url) returned_content_type = response.headers["Content-Type"] returned_content_language = response.headers["Content-Language"] log_entry["args"]["response.status"] = response.status log_entry["args"]["response.reason"] = response.reason log_entry["args"]["response.headers"] = json.dumps(response.headers.__dict__) # pylint: disable=protected-access log_entry["args"]["response._body"] = response._body.decode("utf-8") log_entry["args"]["returned_content_type"] = returned_content_type log_entry["args"]["returned_content_language"] = returned_content_language if ( response.status != 200 or returned_content_type != content_type or returned_content_language != content_language ): raise Exception( "Presigned GET object URL {presigned_get_object_url} failed; " "code: {response.code}, error: {response.data}" ) finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_bucket(bucket_name) def test_presigned_get_object_version(log_entry): # pylint: disable=invalid-name """Test presigned_get_object() of versioned object.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, } _CLIENT.make_bucket(bucket_name) version_id = None try: _CLIENT.set_bucket_versioning(bucket_name, VersioningConfig(ENABLED)) size = 1 * KB result = _CLIENT.put_object( bucket_name, object_name, LimitedRandomReader(size), size, ) version_id = result.version_id presigned_get_object_url = _CLIENT.presigned_get_object( bucket_name, object_name, version_id=version_id, ) response = HTTP.urlopen("GET", presigned_get_object_url) if response.status != 200: raise Exception( f"Presigned GET object URL {presigned_get_object_url} failed; " f"code: {response.code}, error: {response.data}" ) finally: _CLIENT.remove_object(bucket_name, object_name, version_id=version_id) _CLIENT.remove_bucket(bucket_name) def test_presigned_put_object_default_expiry(log_entry): # pylint: disable=invalid-name """Test presigned_put_object() with default expiry.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, } _CLIENT.make_bucket(bucket_name) try: presigned_put_object_url = _CLIENT.presigned_put_object( bucket_name, object_name ) response = HTTP.urlopen( "PUT", presigned_put_object_url, LimitedRandomReader(1 * KB) ) if response.status != 200: raise Exception( f"Presigned PUT object URL {presigned_put_object_url} failed; " f"code: {response.code}, error: {response.data}" ) _CLIENT.stat_object(bucket_name, object_name) finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_bucket(bucket_name) def test_presigned_put_object_expiry(log_entry): # pylint: disable=invalid-name """Test presigned_put_object() with expiry.""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, } _CLIENT.make_bucket(bucket_name) try: presigned_put_object_url = _CLIENT.presigned_put_object( bucket_name, object_name, timedelta(seconds=1) ) # Wait for 2 seconds for the presigned url to expire time.sleep(2) response = HTTP.urlopen( "PUT", presigned_put_object_url, LimitedRandomReader(1 * KB) ) if response.status == 200: raise ValueError("Presigned put url failed to expire!") finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_bucket(bucket_name) def test_presigned_post_policy(log_entry): """Test presigned_post_policy().""" # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() log_entry["args"] = { "bucket_name": bucket_name, } _CLIENT.make_bucket(bucket_name) try: no_of_days = 10 prefix = "objectPrefix/" policy = PostPolicy( bucket_name, datetime.utcnow() + timedelta(days=no_of_days), ) policy.add_starts_with_condition("key", prefix) policy.add_content_length_range_condition(64 * KB, 10 * MB) policy.add_starts_with_condition("Content-Type", "image/") log_entry["args"]["post_policy"] = { "prefix": prefix, "expires_in_days": no_of_days, "content_length_range": "64KiB to 10MiB", "Content-Type": "image/", } _CLIENT.presigned_post_policy(policy) finally: _CLIENT.remove_bucket(bucket_name) def test_thread_safe(log_entry): """Test thread safety.""" # Create sha-sum value for the user provided # source file, 'test_file' test_file_sha_sum = _get_sha256sum(_LARGE_FILE) # Get a unique bucket_name and object_name bucket_name = _gen_bucket_name() object_name = f"{uuid4()}" log_entry["args"] = { "bucket_name": bucket_name, "object_name": object_name, } # A list of exceptions raised by get_object_and_check # called in multiple threads. exceptions = [] # get_object_and_check() downloads an object, stores it in a file # and then calculates its checksum. In case of mismatch, a new # exception is generated and saved in exceptions. def get_object_and_check(index): try: local_file = f"copied_file_{index}" _CLIENT.fget_object(bucket_name, object_name, local_file) copied_file_sha_sum = _get_sha256sum(local_file) # Compare sha-sum values of the source file and the copied one if test_file_sha_sum != copied_file_sha_sum: raise ValueError( "Sha-sum mismatch on multi-threaded put and " "get objects" ) except Exception as exc: # pylint: disable=broad-except exceptions.append(exc) finally: # Remove downloaded file _ = os.path.isfile(local_file) and os.remove(local_file) _CLIENT.make_bucket(bucket_name) no_of_threads = 5 try: # Put/Upload 'no_of_threads' many objects # simultaneously using multi-threading for _ in range(no_of_threads): thread = Thread( target=_CLIENT.fput_object, args=(bucket_name, object_name, _LARGE_FILE) ) thread.start() thread.join() # Get/Download 'no_of_threads' many objects # simultaneously using multi-threading thread_list = [] for i in range(no_of_threads): # Create dynamic/varying names for to be created threads thread_name = f"thread_{i}" vars()[thread_name] = Thread(target=get_object_and_check, args=(i,)) vars()[thread_name].start() thread_list.append(vars()[thread_name]) # Wait until all threads to finish for thread in thread_list: thread.join() if exceptions: raise exceptions[0] finally: _CLIENT.remove_object(bucket_name, object_name) _CLIENT.remove_bucket(bucket_name) def test_get_bucket_policy(log_entry): """Test get_bucket_policy().""" # Get a unique bucket_name bucket_name = _gen_bucket_name() log_entry["args"] = { "bucket_name": bucket_name, } _CLIENT.make_bucket(bucket_name) try: _CLIENT.get_bucket_policy(bucket_name) except S3Error as exc: if exc.code != "NoSuchBucketPolicy": raise finally: _CLIENT.remove_bucket(bucket_name) def _get_policy_actions(stat): """Get policy actions from stat information.""" def listit(value): return value if isinstance(value, list) else [value] actions = [listit(s.get("Action")) for s in stat if s.get("Action")] actions = list( set(item.replace("s3:", "") for sublist in actions for item in sublist) ) actions.sort() return actions def _validate_policy(bucket_name, policy): """Validate policy.""" policy_dict = json.loads(_CLIENT.get_bucket_policy(bucket_name)) actions = _get_policy_actions(policy_dict.get("Statement")) expected_actions = _get_policy_actions(policy.get("Statement")) return expected_actions == actions def test_get_bucket_notification(log_entry): """Test get_bucket_notification().""" # Get a unique bucket_name bucket_name = _gen_bucket_name() log_entry["args"] = { "bucket_name": bucket_name, } _CLIENT.make_bucket(bucket_name) try: config = _CLIENT.get_bucket_notification(bucket_name) if ( config.cloud_func_config_list or config.queue_config_list or config.topic_config_list ): raise ValueError("Failed to receive an empty bucket notification") finally: _CLIENT.remove_bucket(bucket_name) def test_set_bucket_policy_readonly(log_entry): """Test set_bucket_policy() with readonly policy.""" # Get a unique bucket_name bucket_name = _gen_bucket_name() log_entry["args"] = { "bucket_name": bucket_name, } _CLIENT.make_bucket(bucket_name) try: # read-only policy policy = { "Version": "2012-10-17", "Statement": [ { "Sid": "", "Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "s3:GetBucketLocation", "Resource": "arn:aws:s3:::" + bucket_name, }, { "Sid": "", "Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "s3:ListBucket", "Resource": "arn:aws:s3:::" + bucket_name, }, { "Sid": "", "Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "s3:GetObject", "Resource": f"arn:aws:s3:::{bucket_name}/*", }, ], } # Set read-only policy _CLIENT.set_bucket_policy(bucket_name, json.dumps(policy)) # Validate if the policy is set correctly if not _validate_policy(bucket_name, policy): raise ValueError("Failed to set ReadOnly bucket policy") finally: _CLIENT.remove_bucket(bucket_name) def test_set_bucket_policy_readwrite(log_entry): # pylint: disable=invalid-name """Test set_bucket_policy() with read/write policy.""" # Get a unique bucket_name bucket_name = _gen_bucket_name() log_entry["args"] = { "bucket_name": bucket_name, } _CLIENT.make_bucket(bucket_name) try: # Read-write policy policy = { "Version": "2012-10-17", "Statement": [ { "Action": ["s3:GetBucketLocation"], "Sid": "", "Resource": ["arn:aws:s3:::" + bucket_name], "Effect": "Allow", "Principal": {"AWS": "*"}, }, { "Action": ["s3:ListBucket"], "Sid": "", "Resource": ["arn:aws:s3:::" + bucket_name], "Effect": "Allow", "Principal": {"AWS": "*"}, }, { "Action": ["s3:ListBucketMultipartUploads"], "Sid": "", "Resource": ["arn:aws:s3:::" + bucket_name], "Effect": "Allow", "Principal": {"AWS": "*"}, }, { "Action": [ "s3:ListMultipartUploadParts", "s3:GetObject", "s3:AbortMultipartUpload", "s3:DeleteObject", "s3:PutObject", ], "Sid": "", "Resource": [f"arn:aws:s3:::{bucket_name}/*"], "Effect": "Allow", "Principal": {"AWS": "*"}, }, ], } # Set read-write policy _CLIENT.set_bucket_policy(bucket_name, json.dumps(policy)) # Validate if the policy is set correctly if not _validate_policy(bucket_name, policy): raise ValueError("Failed to set ReadOnly bucket policy") finally: _CLIENT.remove_bucket(bucket_name) def _test_remove_objects(log_entry, version_check=False): """Test remove_objects().""" # Get a unique bucket_name bucket_name = _gen_bucket_name() log_entry["args"] = { "bucket_name": bucket_name, } _CLIENT.make_bucket(bucket_name) object_names = [] delete_object_list = [] try: if version_check: _CLIENT.set_bucket_versioning( bucket_name, VersioningConfig(ENABLED), ) size = 1 * KB # Upload some new objects to prepare for multi-object delete test. for i in range(10): object_name = f"prefix-{i}" result = _CLIENT.put_object( bucket_name, object_name, LimitedRandomReader(size), size, ) object_names.append( (object_name, result.version_id) if version_check else object_name, ) log_entry["args"]["delete_object_list"] = object_names for args in object_names: delete_object_list.append( DeleteObject(args) if isinstance(args, str) else DeleteObject(args[0], args[1]) ) # delete the objects in a single library call. errs = _CLIENT.remove_objects(bucket_name, delete_object_list) for err in errs: raise ValueError(f"Remove objects err: {err}") finally: # Try to clean everything to keep our server intact errs = _CLIENT.remove_objects(bucket_name, delete_object_list) for err in errs: raise ValueError(f"Remove objects err: {err}") _CLIENT.remove_bucket(bucket_name) def test_remove_objects(log_entry): """Test remove_objects().""" _test_remove_objects(log_entry) def test_remove_object_versions(log_entry): """Test remove_objects().""" _test_remove_objects(log_entry, version_check=True) def test_remove_bucket(log_entry): """Test remove_bucket().""" # Get a unique bucket_name bucket_name = _gen_bucket_name() if _IS_AWS: bucket_name += ".unique" log_entry["args"] = { "bucket_name": bucket_name, } if _IS_AWS: log_entry["args"]["location"] = location = "us-east-1" _CLIENT.make_bucket(bucket_name, location) else: _CLIENT.make_bucket(bucket_name) # Removing bucket. This operation will only work if your bucket is empty. _CLIENT.remove_bucket(bucket_name) def main(): """ Functional testing of minio python library. """ # pylint: disable=global-statement global _CLIENT, _TEST_FILE, _LARGE_FILE, _IS_AWS access_key = os.getenv("ACCESS_KEY") secret_key = os.getenv("SECRET_KEY") server_endpoint = os.getenv("SERVER_ENDPOINT", "play.min.io") secure = os.getenv("ENABLE_HTTPS", "1") == "1" if server_endpoint == "play.min.io": access_key = "Q3AM3UQ867SPQQA43P2F" secret_key = "zuf+tfteSlswRu7BJ86wekitnifILbZam1KYY3TG" secure = True _CLIENT = Minio(server_endpoint, access_key, secret_key, secure=secure) _IS_AWS = ".amazonaws.com" in server_endpoint # Check if we are running in the mint environment. data_dir = os.getenv("DATA_DIR", "/mint/data") is_mint_env = ( os.path.exists(data_dir) and os.path.exists(os.path.join(data_dir, "datafile-1-MB")) and os.path.exists(os.path.join(data_dir, "datafile-11-MB")) ) # Enable trace # _CLIENT.trace_on(sys.stderr) _TEST_FILE = "datafile-1-MB" _LARGE_FILE = "datafile-11-MB" if is_mint_env: # Choose data files _TEST_FILE = os.path.join(data_dir, "datafile-1-MB") _LARGE_FILE = os.path.join(data_dir, "datafile-11-MB") else: with open(_TEST_FILE, "wb") as file_data: shutil.copyfileobj(LimitedRandomReader(1 * MB), file_data) with open(_LARGE_FILE, "wb") as file_data: shutil.copyfileobj(LimitedRandomReader(11 * MB), file_data) ssec = None if secure: # Create a Customer Key of 32 Bytes for Server Side Encryption (SSE-C) cust_key = b"AABBCCDDAABBCCDDAABBCCDDAABBCCDD" # Create an SSE-C object with provided customer key ssec = SseCustomerKey(cust_key) if os.getenv("MINT_MODE") == "full": tests = { test_make_bucket_default_region: None, test_make_bucket_with_region: None, test_negative_make_bucket_invalid_name: None, test_list_buckets: None, test_fput_object_small_file: {"sse": ssec} if ssec else None, test_fput_object_large_file: {"sse": ssec} if ssec else None, test_fput_object_with_content_type: None, test_copy_object_no_copy_condition: {"ssec_copy": ssec, "ssec": ssec} if ssec else None, test_copy_object_etag_match: None, test_copy_object_with_metadata: None, test_copy_object_negative_etag_match: None, test_copy_object_modified_since: None, test_copy_object_unmodified_since: None, test_put_object: {"sse": ssec} if ssec else None, test_negative_put_object_with_path_segment: None, test_stat_object: {"sse": ssec} if ssec else None, test_stat_object_version: {"sse": ssec} if ssec else None, test_get_object: {"sse": ssec} if ssec else None, test_get_object_version: {"sse": ssec} if ssec else None, test_fget_object: {"sse": ssec} if ssec else None, test_fget_object_version: {"sse": ssec} if ssec else None, test_get_object_with_default_length: None, test_get_partial_object: {"sse": ssec} if ssec else None, test_list_objects_v1: None, test_list_object_v1_versions: None, test_list_objects_with_prefix: None, test_list_objects_with_1001_files: None, test_list_objects: None, test_list_object_versions: None, test_presigned_get_object_default_expiry: None, test_presigned_get_object_expiry: None, test_presigned_get_object_response_headers: None, test_presigned_get_object_version: None, test_presigned_put_object_default_expiry: None, test_presigned_put_object_expiry: None, test_presigned_post_policy: None, test_thread_safe: None, test_get_bucket_policy: None, test_set_bucket_policy_readonly: None, test_set_bucket_policy_readwrite: None, test_get_bucket_notification: None, test_select_object_content: None, } else: tests = { test_make_bucket_default_region: None, test_list_buckets: None, test_put_object: {"sse": ssec} if ssec else None, test_stat_object: {"sse": ssec} if ssec else None, test_stat_object_version: {"sse": ssec} if ssec else None, test_get_object: {"sse": ssec} if ssec else None, test_get_object_version: {"sse": ssec} if ssec else None, test_list_objects: None, test_presigned_get_object_default_expiry: None, test_presigned_put_object_default_expiry: None, test_presigned_post_policy: None, test_copy_object_no_copy_condition: {"ssec_copy": ssec, "ssec": ssec} if ssec else None, test_select_object_content: None, test_get_bucket_policy: None, test_set_bucket_policy_readonly: None, test_get_bucket_notification: None, } tests.update( { test_remove_object: None, test_remove_object_version: None, test_remove_objects: None, test_remove_object_versions: None, test_remove_bucket: None, }, ) for test_name, arg_list in tests.items(): args = () kwargs = {} _call_test(test_name, *args, **kwargs) if arg_list: args = () kwargs = arg_list _call_test(test_name, *args, **kwargs) # pylint: disable=not-a-mapping # Remove temporary files. if not is_mint_env: os.remove(_TEST_FILE) os.remove(_LARGE_FILE) if __name__ == "__main__": try: main() except TestFailed: sys.exit(1) except Exception as excp: # pylint: disable=broad-except print(excp) sys.exit(-1)
aistore-master
python/tests/s3compat/tests.py
""" ETL to convert images to numpy arrays. Communication Type: hpush:// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ from aistore import Client import numpy as np import cv2 client = Client( "http://192.168.49.2:8080" ) # ip addr of aistore cluster (in k8s or minikube) def transform(input_bytes): nparr = np.fromstring(input_bytes, np.uint8) return cv2.imdecode(nparr, cv2.IMREAD_COLOR) # other opencv packages dont work in dockerized environments deps = ["opencv-python-headless==4.5.3.56"] # initialize ETL client.etl("etl-img-to-npy").init_code(transform=transform, dependencies=deps) to_bck = client.bucket("to-bck") # Transform bucket with given ETL name job_id = client.bucket("from-bck").transform( etl_name="etl-img-to-npy", to_bck=to_bck, ext={"jpg": "npy"} ) client.job(job_id).wait() # load an object from transformed bucket print(np.frombuffer(to_bck.object("obj-id.npy").get().read_all(), dtype=np.uint8))
aistore-master
python/examples/ais-etl/etl_convert_img_to_npy.py
""" ETL to transform images using torchvision. Communication Type: hpush:// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ import io from torchvision import transforms from PIL import Image import torch import numpy as np from aistore import Client from aistore.sdk import Bucket client = Client("http://192.168.49.2:8080") # cannot apply transforms.PILToTensor() as the expected return type is bytes and not tensor # if you want to convert it to tensor, return it in "bytes-like" object def apply_image_transforms(reader, writer): transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.PILToTensor()] ) for b in reader: buffer = io.BytesIO() torch.save(transform(Image.open(io.BytesIO(b))), buffer) buffer.seek(0) writer.write(buffer.read()) # initialize ETL client.etl("etl-torchvision").init_code( transform=apply_image_transforms, dependencies=["Pillow", "torchvision"], timeout="10m", ) # Transform bucket with given ETL name job_id = client.bucket("from-bck").transform( etl_name="etl-torchvision", to_bck=Bucket("to-bck"), ext={"jpg": "npy"} ) client.job(job_id).wait() # read the numpy array np.frombuffer( client.bucket("to-bck").object("obj-id.npy").get().read_all(), dtype=np.uint8 )
aistore-master
python/examples/ais-etl/etl_torchvision_hpush.py
""" ETL to calculate md5 of an object. Communication Type: io:// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ from aistore import Client import hashlib import sys from aistore.sdk import Bucket from aistore.sdk.etl_const import ETL_COMM_IO client = Client("http://192.168.49.2:8080") def etl(): md5 = hashlib.md5() chunk = sys.stdin.buffer.read() md5.update(chunk) sys.stdout.buffer.write(md5.hexdigest().encode()) client.etl("etl-md5-io-code").init_code(transform=etl, communication_type=ETL_COMM_IO) job_id = client.bucket("from-bck").transform( etl_name="etl-md5-io-code", to_bck=Bucket("to-bck"), ext={"jpg": "txt"} ) client.job(job_id).wait()
aistore-master
python/examples/ais-etl/etl_md5_io.py
""" ETL to calculate md5 of an object. Communication Type: hpush:// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ import hashlib from aistore import Client from aistore.sdk import Bucket client = Client("http://192.168.49.2:8080") def transform(input_bytes): md5 = hashlib.md5() md5.update(input_bytes) return md5.hexdigest().encode() client.etl("etl-md5").init_code(transform=transform) job_id = client.bucket("from-bck").transform( etl_name="etl-md5", to_bck=Bucket("to-bck"), ext={"jpg": "txt"} ) client.job(job_id).wait()
aistore-master
python/examples/ais-etl/etl_md5_hpush.py
""" ETL to calculate md5 of an object with streaming. Communication Type: hpush:// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ import hashlib from aistore import Client from aistore.sdk import Bucket client = Client("http://192.168.49.2:8080") def transform(reader, writer): checksum = hashlib.md5() for b in reader: checksum.update(b) writer.write(checksum.hexdigest().encode()) client.etl("etl-stream").init_code( transform=transform, chunk_size=32768, ) job_id = client.bucket("from-bck").transform( etl_name="etl-stream", to_bck=Bucket("to-bck"), ext={"jpg": "txt"} ) client.job(job_id).wait()
aistore-master
python/examples/ais-etl/etl_md5_hpush_streaming.py
""" ETL to transform images using torchvision. Communication Type: io:// Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. """ import io import sys from torchvision import transforms from PIL import Image from aistore import Client from aistore.sdk import Bucket from aistore.sdk.const import ETL_COMM_IO client = Client("http://192.168.49.2:8080") # cannot apply transforms.PILToTensor() as the expected return type is bytes and not tensor # if you want to convert it to tensor, return it in "bytes-like" object def apply_image_transforms(): transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.PILToTensor()] ) input_bytes = sys.stdin.buffer.read() sys.stdout.buffer.write(transform(Image.open(io.BytesIO(input_bytes)))) deps = ["Pillow", "torchvision"] # initialize ETL client.etl(etl_name="etl_torchvision_io").init_code( transform=apply_image_transforms, dependencies=deps, communication_type=ETL_COMM_IO, ) # Transform bucket with given ETL name job_id = client.bucket("from-bck").transform( etl_name="etl_torchvision_io", to_bck=Bucket("to-bck"), ext={"jpg": "npy"} ) client.job(job_id).wait()
aistore-master
python/examples/ais-etl/etl_torchvision_io.py
import io import os import torchvision import webdataset as wds from PIL import Image from aistore.sdk import Client from torch.utils.data import IterableDataset from torch.utils.data.dataset import T_co AIS_ENDPOINT = os.getenv("AIS_ENDPOINT") bucket_name = "images" etl_name = "wd-transform" def show_image(image_data): with Image.open(io.BytesIO(image_data)) as image: image.show() def wd_etl(object_url): def img_to_bytes(img): buf = io.BytesIO() img = img.convert("RGB") img.save(buf, format="JPEG") return buf.getvalue() def process_trimap(trimap_bytes): image = Image.open(io.BytesIO(trimap_bytes)) preprocessing = torchvision.transforms.Compose( [ torchvision.transforms.CenterCrop(350), torchvision.transforms.Lambda(img_to_bytes) ] ) return preprocessing(image) def process_image(image_bytes): image = Image.open(io.BytesIO(image_bytes)).convert("RGB") preprocessing = torchvision.transforms.Compose( [ torchvision.transforms.CenterCrop(350), torchvision.transforms.ToTensor(), # Means and stds from ImageNet torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), torchvision.transforms.ToPILImage(), torchvision.transforms.Lambda(img_to_bytes), ] ) return preprocessing(image) # Initialize a WD object from the AIS URL dataset = wds.WebDataset(object_url) # Map the files for each individual sample to the appropriate processing function processed_shard = dataset.map_dict(**{"image.jpg": process_image, "trimap.png": process_trimap}) # Write the output to a memory buffer and return the value buffer = io.BytesIO() with wds.TarWriter(fileobj=buffer) as dst: for sample in processed_shard: dst.write(sample) return buffer.getvalue() def create_wd_etl(client): client.etl(etl_name).init_code( transform=wd_etl, preimported_modules=["torch"], dependencies=["webdataset", "pillow", "torch", "torchvision"], communication_type="hpull", transform_url=True ) class LocalTarDataset(IterableDataset): """ Builds a PyTorch IterableDataset from bytes in memory as if was read from a URL by WebDataset. This lets us initialize a WebDataset Pipeline without writing to local disk and iterate over each record from a shard. """ def __getitem__(self, index) -> T_co: raise NotImplemented def __init__(self, input_bytes): self.data = [{"url": "input_data", "stream": io.BytesIO(input_bytes)}] def __iter__(self): files = wds.tariterators.tar_file_expander(self.data) samples = wds.tariterators.group_by_keys(files) return samples def read_object_tar(shard_data): local_dataset = LocalTarDataset(shard_data) sample = next(iter(local_dataset)) show_image(sample.get('image.jpg')) def transform_object_inline(): single_object = client.bucket(bucket_name).object("samples-00.tar") # Get object contents with ETL applied processed_shard = single_object.get(etl_name=etl_name).read_all() read_object_tar(processed_shard) def transform_bucket_offline(): dest_bucket = client.bucket("processed-samples").create(exist_ok=True) # Transform the entire bucket, placing the output in the destination bucket transform_job = client.bucket(bucket_name).transform(to_bck=dest_bucket, etl_name=etl_name) client.job(transform_job).wait(verbose=True) processed_shard = dest_bucket.object("samples-00.tar").get().read_all() read_object_tar(processed_shard) if __name__ == "__main__": client = Client(AIS_ENDPOINT) image_bucket = client.bucket(bucket_name) create_wd_etl(client) transform_object_inline() transform_bucket_offline()
aistore-master
docs/examples/aisio_webdataset/etl_webdataset.py
import os import torchvision from aistore.pytorch import AISSourceLister from aistore.sdk import Client import webdataset as wds AIS_ENDPOINT = os.getenv("AIS_ENDPOINT") client = Client(AIS_ENDPOINT) bucket_name = "images" etl_name = "wd-transform" def show_image_tensor(image_data): transform = torchvision.transforms.ToPILImage() image = transform(image_data) image.show() def create_dataset() -> wds.WebDataset: bucket = client.bucket(bucket_name) # Get a list of urls for each object in AIS, with ETL applied, converted to the format WebDataset expects sources = AISSourceLister(ais_sources=[bucket], etl_name=etl_name).map(lambda source_url: {"url": source_url})\ .shuffle() # Load shuffled list of transformed shards into WebDataset pipeline dataset = wds.WebDataset(sources) # Shuffle samples and apply built-in webdataset decoder for image files dataset = dataset.shuffle(size=1000).decode("torchrgb") # Return iterator over samples as tuples in batches return dataset.to_tuple("cls", "image.jpg", "trimap.png").batched(16) def create_dataloader(dataset) -> wds.WebLoader: loader = wds.WebLoader(dataset, num_workers=4, batch_size=None) return loader.unbatched().shuffle(1000).batched(64) def view_data(dataloader): # Get the first batch batch = next(iter(dataloader)) classes, images, trimaps = batch # Result is a set of tensors with the first dimension being the batch size print(classes.shape, images.shape, trimaps.shape) # View the first images in the first batch show_image_tensor(images[0]) show_image_tensor(trimaps[0]) if __name__ == '__main__': wd_dataset = create_dataset() wd_dataloader = create_dataloader(wd_dataset) view_data(wd_dataloader) first_batch = next(iter(wd_dataloader)) classes, images, trimaps = first_batch
aistore-master
docs/examples/aisio_webdataset/pytorch_webdataset.py
import os from pathlib import Path from aistore.sdk import Client import webdataset as wds AIS_ENDPOINT = os.getenv("AIS_ENDPOINT") bucket_name = "images" def parse_annotations(annotations_file): classes = {} # Parse the annotations file into a dictionary from file name -> pet class with open(annotations_file, "r") as annotations: for line in annotations.readlines(): if line[0] == "#": continue file_name, pet_class = line.split(" ")[:2] classes[file_name] = pet_class return classes def create_sample_generator(image_dir, trimap_dir, annotations_file): classes = parse_annotations(annotations_file) # Iterate over all image files for index, image_file in enumerate(Path(image_dir).glob("*.jpg")): # Use the image name to look up class and trimap files and create a sample entry sample = create_sample(classes, trimap_dir, index, image_file) if sample is None: continue # Yield optimizes memory by returning a generator that only generates samples as requested yield sample def create_sample(classes, trimap_dir, index, image_file): file_name = str(image_file).split("/")[-1].split(".")[0] try: with open(image_file, "rb") as f: image_data = f.read() pet_class = classes.get(file_name) with open(trimap_dir.joinpath(file_name + ".png"), "rb") as f: trimap_data = f.read() if not image_data or not pet_class or not trimap_data: # Ignore incomplete records return None return { "__key__": "sample_%04d" % index, "image.jpg": image_data, "cls": pet_class, "trimap.png": trimap_data } # Ignoring records with any missing files except FileNotFoundError as err: print(err) return None def load_data(bucket, sample_generator): def upload_shard(filename): bucket.object(filename).put_file(filename) os.unlink(filename) # Writes data as tar to disk, uses callback function "post" to upload to AIS and delete with wds.ShardWriter("samples-%02d.tar", maxcount=400, post=upload_shard) as writer: for sample in sample_generator: writer.write(sample) def view_shuffled_shards(): objects = client.bucket("images").list_all_objects(prefix="shuffled") print([entry.name for entry in objects]) if __name__ == "__main__": client = Client(AIS_ENDPOINT) image_bucket = client.bucket(bucket_name).create(exist_ok=True) base_dir = Path("/home/aaron/pets") pet_image_dir = base_dir.joinpath("images") pet_trimap_dir = base_dir.joinpath("annotations").joinpath("trimaps") pet_annotations_file = base_dir.joinpath("annotations").joinpath("list.txt") samples = create_sample_generator(pet_image_dir, pet_trimap_dir, pet_annotations_file) load_data(image_bucket, samples)
aistore-master
docs/examples/aisio_webdataset/load_webdataset_example.py