url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact h2 x c3
case pos D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x ∈ binders' ⊒ V x = (V' ∘ Οƒ') x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply h3 x
case neg D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x βˆ‰ binders' ⊒ V x = (V' ∘ Οƒ') x
case neg D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x βˆ‰ binders' ⊒ Οƒ' x βˆ‰ binders'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply ih_1 x a2 c3
case neg D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x βˆ‰ binders' ⊒ Οƒ' x βˆ‰ binders'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [List.length_map] at c2
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : Β¬(X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
contradiction
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp at c2
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : X' = hd.name ∧ xs'.length = hd.args.length ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
contradiction
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : X' = hd.name ∧ xs'.length = hd.args.length ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact ih
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : Β¬(X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length) ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem
[276, 1]
[289, 9]
apply substitution_theorem_aux D I (V ∘ Οƒ) V E Οƒ βˆ… F F' h1
D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ Holds D I (V ∘ Οƒ) E F ↔ Holds D I V E F'
case h2 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ v ∈ βˆ…, (V ∘ Οƒ) v = V (Οƒ v) case h3 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ (v : VarName), Οƒ v βˆ‰ βˆ… β†’ (V ∘ Οƒ) v = V (Οƒ v) case h4 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ v ∈ βˆ…, v = Οƒ v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem
[276, 1]
[289, 9]
simp
case h2 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ v ∈ βˆ…, (V ∘ Οƒ) v = V (Οƒ v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem
[276, 1]
[289, 9]
simp
case h3 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ (v : VarName), Οƒ v βˆ‰ βˆ… β†’ (V ∘ Οƒ) v = V (Οƒ v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem
[276, 1]
[289, 9]
simp
case h4 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ v ∈ βˆ…, v = Οƒ v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
simp only [IsValid] at h2
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : F.IsValid ⊒ F'.IsValid
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ F'.IsValid
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
simp only [IsValid]
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ F'.IsValid
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
intro D I V E
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F'
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
simp only [← substitution_theorem D I V E Οƒ F F' h1]
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E F'
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
apply h2
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
induction F generalizing binders V
D : Type I : Interpretation D V V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) binders : Finset VarName F : Formula h1 : admitsAux Ο„ binders F h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E F ↔ Holds D I V E (replace c Ο„ F)
case pred_const_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_const_ a✝¹ a✝) ↔ Holds D I V E (replace c Ο„ (pred_const_ a✝¹ a✝)) case pred_var_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_var_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_var_ a✝¹ a✝) ↔ Holds D I V E (replace c Ο„ (pred_var_ a✝¹ a✝)) case eq_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ a✝ : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ a✝¹ a✝) ↔ Holds D I V E (replace c Ο„ (eq_ a✝¹ a✝)) case true_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders true_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E true_ ↔ Holds D I V E (replace c Ο„ true_) case false_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace c Ο„ false_) case not_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝ : Formula a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace c Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders a✝.not_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝.not_ ↔ Holds D I V E (replace c Ο„ a✝.not_) case imp_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝¹ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace c Ο„ a✝¹)) a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace c Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (a✝¹.imp_ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (a✝¹.imp_ a✝) ↔ Holds D I V E (replace c Ο„ (a✝¹.imp_ a✝)) case and_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝¹ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace c Ο„ a✝¹)) a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace c Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (a✝¹.and_ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (a✝¹.and_ a✝) ↔ Holds D I V E (replace c Ο„ (a✝¹.and_ a✝)) case or_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝¹ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace c Ο„ a✝¹)) a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace c Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (a✝¹.or_ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (a✝¹.or_ a✝) ↔ Holds D I V E (replace c Ο„ (a✝¹.or_ a✝)) case iff_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝¹ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace c Ο„ a✝¹)) a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace c Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (a✝¹.iff_ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (a✝¹.iff_ a✝) ↔ Holds D I V E (replace c Ο„ (a✝¹.iff_ a✝)) case forall_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace c Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (forall_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (forall_ a✝¹ a✝) ↔ Holds D I V E (replace c Ο„ (forall_ a✝¹ a✝)) case exists_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace c Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ a✝¹ a✝) ↔ Holds D I V E (replace c Ο„ (exists_ a✝¹ a✝)) case def_ D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (def_ a✝¹ a✝) ↔ Holds D I V E (replace c Ο„ (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case pred_const_ X xs => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (replace c Ο„ (pred_const_ X xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case eq_ x y => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace c Ο„ (eq_ x y))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case true_ | false_ => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace c Ο„ false_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case not_ phi phi_ih => simp only [admitsAux] at h1 simp only [replace] simp only [Holds] congr! 1 exact phi_ih V binders h1 h2
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi.not_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi.not_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [admitsAux] at h1 simp only [replace] simp only [Holds] first | apply forall_congr' | apply exists_congr intro d apply phi_ih (Function.updateITE V x d) (binders βˆͺ {x}) h1 intro v a1 simp only [Function.updateITE] simp at a1 push_neg at a1 cases a1 case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace c Ο„ (exists_ x phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (replace c Ο„ (pred_const_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (pred_const_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (pred_const_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_var_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace c Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True else True ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace c Ο„ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True else True ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace c Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace c Ο„ (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace c Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2 else pred_var_ X xs else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2 else pred_var_ X xs else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True ⊒ (if h : (Ο„ X (List.map V xs).length).isSome = true then if (List.map V xs).length = ((Ο„ X (List.map V xs).length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X (List.map V xs).length).get β‹―).1 (List.map V xs)) E ((Ο„ X (List.map V xs).length).get β‹―).2 else I.pred_var_ X (List.map V xs) else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2 else pred_var_ X xs else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True ⊒ (if h : (Ο„ X (List.map V xs).length).isSome = true then if (List.map V xs).length = ((Ο„ X (List.map V xs).length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X (List.map V xs).length).get β‹―).1 (List.map V xs)) E ((Ο„ X (List.map V xs).length).get β‹―).2 else I.pred_var_ X (List.map V xs) else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2 else pred_var_ X xs else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True ⊒ (if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 else I.pred_var_ X (List.map V xs) else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2 else pred_var_ X xs else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
split_ifs
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True ⊒ (if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 else I.pred_var_ X (List.map V xs) else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if h : (Ο„ X xs.length).isSome = true then if xs.length = ((Ο„ X xs.length).get β‹―).1.length then Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2 else pred_var_ X xs else pred_var_ X xs)
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True h✝¹ : (Ο„ X xs.length).isSome = true h✝ : xs.length = ((Ο„ X xs.length).get β‹―).1.length ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2) case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True h✝¹ : (Ο„ X xs.length).isSome = true h✝ : Β¬xs.length = ((Ο„ X xs.length).get β‹―).1.length ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs) case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True h✝ : Β¬(Ο„ X xs.length).isSome = true ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case _ c1 c2 => simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : Β¬xs.length = ((Ο„ X xs.length).get β‹―).1.length ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case _ c1 => simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : Β¬(Ο„ X xs.length).isSome = true ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
let opt := Ο„ X xs.length
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
let val := Option.get opt c1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
let zs := val.fst
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
let H := val.snd
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
obtain s1 := Sub.Var.All.Rec.Fresh.substitution_theorem D I V E (Function.updateListITE id zs xs) c H
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (V ∘ Function.updateListITE id zs xs) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Function.updateListITE_comp] at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (V ∘ Function.updateListITE id zs xs) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE (V ∘ id) zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE (V ∘ id) zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [s1]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο„ X xs.length).get β‹―).1 xs) c ((Ο„ X xs.length).get β‹―).2)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply Holds_coincide_Var
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ Holds D I (Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs)) E ((Ο„ X xs.length).get β‹―).2 ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ βˆ€ (v : VarName), isFreeIn v ((Ο„ X xs.length).get β‹―).2 β†’ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
intro v a1
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H ⊒ βˆ€ (v : VarName), isFreeIn v ((Ο„ X xs.length).get β‹―).2 β†’ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
by_cases c3 : v ∈ zs
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply Function.updateListITE_mem_eq_len V' V v zs (List.map V xs) c3
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = (List.map V xs).length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = (List.map V xs).length
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = xs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [← c2]
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v ∈ zs ⊒ zs.length = xs.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Function.updateListITE_not_mem V v zs (List.map V xs) c3]
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = Function.updateListITE V zs (List.map V xs) v
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Function.updateListITE_not_mem V' v zs (List.map V xs) c3]
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ Function.updateListITE V' ((Ο„ X xs.length).get β‹―).1 (List.map V xs) v = V v
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ V' v = V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply h2
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ V' v = V v
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
intro contra
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs ⊒ v βˆ‰ binders
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs contra : v ∈ binders ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName a1 : isFreeIn v ((Ο„ X xs.length).get β‹―).2 c3 : v βˆ‰ zs contra : v ∈ binders ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Finset.eq_empty_iff_forall_not_mem] at h1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [c1] at h1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [← c2] at h1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then True β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp at h1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : if h : True then True β†’ βˆ€ (x : VarName), x βˆ‰ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) else True ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : βˆ€ x ∈ binders, x ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet β†’ x ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
specialize h1 v contra a1
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : βˆ€ x ∈ binders, x ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet β†’ x ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : v ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
contradiction
case neg.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x c1 : (Ο„ X xs.length).isSome = true c2 : xs.length = ((Ο„ X xs.length).get β‹―).1.length opt : Option (List VarName Γ— Formula) := Ο„ X xs.length val : List VarName Γ— Formula := opt.get c1 zs : List VarName := val.1 H : Formula := val.2 s1 : Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs xs) c H) ↔ Holds D I (Function.updateListITE V zs (List.map V xs)) E H v : VarName c3 : v βˆ‰ zs contra : v ∈ binders a1 : v ∈ ((Ο„ X xs.length).get β‹―).2.freeVarSet h1 : v ∈ ((Ο„ X xs.length).get β‹―).1 ⊒ False
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : (Ο„ X xs.length).isSome = true c2 : Β¬xs.length = ((Ο„ X xs.length).get β‹―).1.length ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1 : if h : (Ο„ X xs.length).isSome = true then xs.length = ((Ο„ X xs.length).get β‹―).1.length β†’ binders ∩ (((Ο„ X xs.length).get β‹―).2.freeVarSet \ ((Ο„ X xs.length).get β‹―).1.toFinset) = βˆ… else True c1 : Β¬(Ο„ X xs.length).isSome = true ⊒ I.pred_var_ X (List.map V xs) ↔ Holds D I V E (pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace c Ο„ (eq_ x y))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace c Ο„ false_)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi.not_ h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi.not_)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi.not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi.not_)
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace c Ο„ phi).not_
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Β¬Holds D I V E (replace c Ο„ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Β¬Holds D I V E (replace c Ο„ phi)
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
exact phi_ih V binders h1 h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (phi.iff_ psi) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace c Ο„ (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace c Ο„ (phi.iff_ psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace c Ο„ (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace c Ο„ phi).iff_ (replace c Ο„ psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace c Ο„ phi).iff_ (replace c Ο„ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
cases h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi))
case intro D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x left✝ : admitsAux Ο„ binders phi right✝ : admitsAux Ο„ binders psi ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace c Ο„ phi) ↔ Holds D I V E (replace c Ο„ psi))
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi) case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
exact phi_ih V binders h1_left h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
exact psi_ih V binders h1_right h2
case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V' x = V x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace c Ο„ psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace c Ο„ (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace c Ο„ (exists_ x phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace c Ο„ (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace c Ο„ phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace c Ο„ phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace c Ο„ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
intro d
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply phi_ih (Function.updateITE V x d) (binders βˆͺ {x}) h1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, V' x_1 = Function.updateITE V x d x_1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
intro v a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, V' x_1 = Function.updateITE V x d x_1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = Function.updateITE V x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Function.updateITE]
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = Function.updateITE V x d v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = if v = x then d else V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp at a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ V' v = if v = x then d else V v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ V' v = if v = x then d else V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
push_neg at a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ V' v = if v = x then d else V v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ V' v = if v = x then d else V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
cases a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ V' v = if v = x then d else V v
case h.intro D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName left✝ : v βˆ‰ binders right✝ : v β‰  x ⊒ V' v = if v = x then d else V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = if v = x then d else V v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply forall_congr'
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆ€ (d : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆ€ (d : D), Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace c Ο„ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace c Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) E ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace c Ο„ phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [if_neg a1_right]
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = if v = x then d else V v
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = V v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V' x = V x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace c Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V' x = V x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V' v = V v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
cases E
D : Type I : Interpretation D V' : VarAssignment D E : Env c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E H else I.pred_var_ X ds else I.pred_var_ X ds } V E (def_ X xs) ↔ Holds D I V E (replace c Ο„ (def_ X xs))
case nil D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) [] H else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace c Ο„ (def_ X xs)) case cons D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x head✝ : Definition tail✝ : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (head✝ :: tail✝) H else I.pred_var_ X ds else I.pred_var_ X ds } V (head✝ :: tail✝) (def_ X xs) ↔ Holds D I V (head✝ :: tail✝) (replace c Ο„ (def_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
case nil => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) [] H else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace c Ο„ (def_ X xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) [] H else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace c Ο„ (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) [] ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) [] ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => let opt := Ο„ X ds.length; if h : opt.isSome = true then let val := opt.get h; let zs := val.1; let H := val.2; if ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ X ds else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (replace c Ο„ (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
split_ifs
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)
case pos D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition h✝ : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q case neg D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition h✝ : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean
FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux
[90, 1]
[226, 15]
apply Holds_coincide_PredVar
D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds } (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case h1 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_const_ = I.pred_const_ case h2 D : Type I : Interpretation D V' : VarAssignment D c : Char Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V' x = V x hd : Definition tl : List Definition c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length hd.q β†’ ({ nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if h : (Ο„ X ds.length).isSome = true then if ds.length = ((Ο„ X ds.length).get β‹―).1.length then Holds D I (Function.updateListITE V' ((Ο„ X ds.length).get β‹―).1 ds) (hd :: tl) ((Ο„ X ds.length).get β‹―).2 else I.pred_var_ X ds else I.pred_var_ X ds }.pred_var_ P ds ↔ I.pred_var_ P ds)