url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right | [8, 1] | [23, 44] | trans C | case left
α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ A ⊆ C ∪ D | α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ A ⊆ C
α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ C ⊆ C ∪ D |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right | [8, 1] | [23, 44] | exact h1 | α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ A ⊆ C | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right | [8, 1] | [23, 44] | exact Finset.subset_union_left C D | α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ C ⊆ C ∪ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right | [8, 1] | [23, 44] | trans D | case right
α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ B ⊆ C ∪ D | α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ B ⊆ D
α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ D ⊆ C ∪ D |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right | [8, 1] | [23, 44] | exact h2 | α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ B ⊆ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right | [8, 1] | [23, 44] | exact Finset.subset_union_right C D | α : Type
inst✝ : DecidableEq α
A B C D : Finset α
h1 : A ⊆ C
h2 : B ⊆ D
⊢ D ⊆ C ∪ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | apply Finset.union_subset_iff.mpr | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ A ∪ B ⊆ C ∪ D ∪ E | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ A ⊆ C ∪ D ∪ E ∧ B ⊆ C ∪ D ∪ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | constructor | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ A ⊆ C ∪ D ∪ E ∧ B ⊆ C ∪ D ∪ E | case left
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ A ⊆ C ∪ D ∪ E
case right
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ B ⊆ C ∪ D ∪ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | trans C ∪ E | case left
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ A ⊆ C ∪ D ∪ E | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ A ⊆ C ∪ E
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ C ∪ E ⊆ C ∪ D ∪ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | exact h1 | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ A ⊆ C ∪ E | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | apply Finset.union_subset_union_left | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ C ∪ E ⊆ C ∪ D ∪ E | case h
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ C ⊆ C ∪ D |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | exact Finset.subset_union_left C D | case h
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ C ⊆ C ∪ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | trans D ∪ E | case right
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ B ⊆ C ∪ D ∪ E | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ B ⊆ D ∪ E
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ D ∪ E ⊆ C ∪ D ∪ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | exact h2 | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ B ⊆ D ∪ E | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | apply Finset.union_subset_union_left | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ D ∪ E ⊆ C ∪ D ∪ E | case h
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ D ⊆ C ∪ D |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_union_left_right | [26, 1] | [43, 42] | exact Finset.subset_union_right C D | case h
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C ∪ E
h2 : B ⊆ D ∪ E
⊢ D ⊆ C ∪ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | apply Finset.union_subset_iff.mpr | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ A ∪ B ⊆ (C ∪ D) \ E | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ A ⊆ (C ∪ D) \ E ∧ B ⊆ (C ∪ D) \ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | constructor | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ A ⊆ (C ∪ D) \ E ∧ B ⊆ (C ∪ D) \ E | case left
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ A ⊆ (C ∪ D) \ E
case right
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ B ⊆ (C ∪ D) \ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | trans C \ E | case left
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ A ⊆ (C ∪ D) \ E | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ A ⊆ C \ E
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ C \ E ⊆ (C ∪ D) \ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | exact h1 | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ A ⊆ C \ E | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | apply Finset.sdiff_subset_sdiff | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ C \ E ⊆ (C ∪ D) \ E | case hst
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ C ⊆ C ∪ D
case hvu
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ E ⊆ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | exact Finset.subset_union_left C D | case hst
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ C ⊆ C ∪ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | rfl | case hvu
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ E ⊆ E | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | trans D \ E | case right
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ B ⊆ (C ∪ D) \ E | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ B ⊆ D \ E
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ D \ E ⊆ (C ∪ D) \ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | exact h2 | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ B ⊆ D \ E | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | apply Finset.sdiff_subset_sdiff | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ D \ E ⊆ (C ∪ D) \ E | case hst
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ D ⊆ C ∪ D
case hvu
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ E ⊆ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_diff | [46, 1] | [65, 12] | exact Finset.subset_union_right C D | case hst
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A ⊆ C \ E
h2 : B ⊆ D \ E
⊢ D ⊆ C ∪ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | apply Finset.union_subset_iff.mpr | α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ A ∪ B ⊆ E ∪ (C ∪ D) \ F | α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ A ⊆ E ∪ (C ∪ D) \ F ∧ B ⊆ E ∪ (C ∪ D) \ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | constructor | α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ A ⊆ E ∪ (C ∪ D) \ F ∧ B ⊆ E ∪ (C ∪ D) \ F | case left
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ A ⊆ E ∪ (C ∪ D) \ F
case right
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ B ⊆ E ∪ (C ∪ D) \ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | trans E ∪ C \ F | case left
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ A ⊆ E ∪ (C ∪ D) \ F | α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ A ⊆ E ∪ C \ F
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ E ∪ C \ F ⊆ E ∪ (C ∪ D) \ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | exact h1 | α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ A ⊆ E ∪ C \ F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | apply Finset.union_subset_union_right | α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ E ∪ C \ F ⊆ E ∪ (C ∪ D) \ F | case h
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ C \ F ⊆ (C ∪ D) \ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | apply Finset.sdiff_subset_sdiff | case h
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ C \ F ⊆ (C ∪ D) \ F | case h.hst
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ C ⊆ C ∪ D
case h.hvu
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ F ⊆ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | exact Finset.subset_union_left C D | case h.hst
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ C ⊆ C ∪ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | rfl | case h.hvu
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ F ⊆ F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | trans E ∪ D \ F | case right
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ B ⊆ E ∪ (C ∪ D) \ F | α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ B ⊆ E ∪ D \ F
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ E ∪ D \ F ⊆ E ∪ (C ∪ D) \ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | exact h2 | α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ B ⊆ E ∪ D \ F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | apply Finset.union_subset_union_right | α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ E ∪ D \ F ⊆ E ∪ (C ∪ D) \ F | case h
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ D \ F ⊆ (C ∪ D) \ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | apply Finset.sdiff_subset_sdiff | case h
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ D \ F ⊆ (C ∪ D) \ F | case h.hst
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ D ⊆ C ∪ D
case h.hvu
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ F ⊆ F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_subset_left_right_diff | [68, 1] | [89, 12] | exact Finset.subset_union_right C D | case h.hst
α : Type
inst✝ : DecidableEq α
A B C D E F : Finset α
h1 : A ⊆ E ∪ C \ F
h2 : B ⊆ E ∪ D \ F
⊢ D ⊆ C ∪ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.diff_union_subset | [92, 1] | [105, 67] | have s1 : (A ∪ B) \ E = (A \ E) ∪ (B \ E) | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
⊢ (A ∪ B) \ E ⊆ C ∪ D | case s1
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
⊢ (A ∪ B) \ E = A \ E ∪ B \ E
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ (A ∪ B) \ E ⊆ C ∪ D |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.diff_union_subset | [92, 1] | [105, 67] | exact Finset.union_sdiff_distrib A B E | case s1
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
⊢ (A ∪ B) \ E = A \ E ∪ B \ E
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ (A ∪ B) \ E ⊆ C ∪ D | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ (A ∪ B) \ E ⊆ C ∪ D |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.diff_union_subset | [92, 1] | [105, 67] | trans (A \ E) ∪ (B \ E) | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ (A ∪ B) \ E ⊆ C ∪ D | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ (A ∪ B) \ E ⊆ A \ E ∪ B \ E
α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ A \ E ∪ B \ E ⊆ C ∪ D |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.diff_union_subset | [92, 1] | [105, 67] | simp only [s1] | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ (A ∪ B) \ E ⊆ A \ E ∪ B \ E | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ A \ E ∪ B \ E ⊆ A \ E ∪ B \ E |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.diff_union_subset | [92, 1] | [105, 67] | rfl | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ A \ E ∪ B \ E ⊆ A \ E ∪ B \ E | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.diff_union_subset | [92, 1] | [105, 67] | exact Finset.union_subset_left_right (A \ E) (B \ E) C D h1 h2 | α : Type
inst✝ : DecidableEq α
A B C D E : Finset α
h1 : A \ E ⊆ C
h2 : B \ E ⊆ D
s1 : (A ∪ B) \ E = A \ E ∪ B \ E
⊢ A \ E ∪ B \ E ⊆ C ∪ D | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_right_comm_assoc | [108, 1] | [116, 41] | simp only [Finset.union_right_comm S {x} T] | α : Type
inst✝ : DecidableEq α
x : α
S T : Finset α
⊢ S ∪ (T ∪ {x}) = S ∪ {x} ∪ T | α : Type
inst✝ : DecidableEq α
x : α
S T : Finset α
⊢ S ∪ (T ∪ {x}) = S ∪ T ∪ {x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.union_right_comm_assoc | [108, 1] | [116, 41] | simp only [Finset.union_assoc S T {x}] | α : Type
inst✝ : DecidableEq α
x : α
S T : Finset α
⊢ S ∪ (T ∪ {x}) = S ∪ T ∪ {x} | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | subst h1 | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
h1 : f x = x'
⊢ image f S \ {x'} = image f (S \ {x}) \ {x'} | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
⊢ image f S \ {f x} = image f (S \ {x}) \ {f x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | apply Finset.ext | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
⊢ image f S \ {f x} = image f (S \ {x}) \ {f x} | case a
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
⊢ ∀ (a : β), a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | intro a | case a
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
⊢ ∀ (a : β), a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x} | case a
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
⊢ a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | simp | case a
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
⊢ a ∈ image f S \ {f x} ↔ a ∈ image f (S \ {x}) \ {f x} | case a
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
⊢ ¬a = f x → ((∃ a_2 ∈ S, f a_2 = a) ↔ ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | intro a1 | case a
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
⊢ ¬a = f x → ((∃ a_2 ∈ S, f a_2 = a) ↔ ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a) | case a
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
⊢ (∃ a_1 ∈ S, f a_1 = a) ↔ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | constructor | case a
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
⊢ (∃ a_1 ∈ S, f a_1 = a) ↔ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
⊢ (∃ a_1 ∈ S, f a_1 = a) → ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a
case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
⊢ (∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a) → ∃ a_2 ∈ S, f a_2 = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | intro a2 | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
⊢ (∃ a_1 ∈ S, f a_1 = a) → ∃ a_2, (a_2 ∈ S ∧ ¬a_2 = x) ∧ f a_2 = a | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | apply Exists.elim a2 | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
⊢ ∀ (a_1 : α), a_1 ∈ S ∧ f a_1 = a → ∃ a_3, (a_3 ∈ S ∧ ¬a_3 = x) ∧ f a_3 = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | intro b a3 | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
⊢ ∀ (a_1 : α), a_1 ∈ S ∧ f a_1 = a → ∃ a_3, (a_3 ∈ S ∧ ¬a_3 = x) ∧ f a_3 = a | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
b : α
a3 : b ∈ S ∧ f b = a
⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | apply Exists.intro b | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
b : α
a3 : b ∈ S ∧ f b = a
⊢ ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
b : α
a3 : b ∈ S ∧ f b = a
⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | cases a3 | case a.mp
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
b : α
a3 : b ∈ S ∧ f b = a
⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a | case a.mp.intro
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
b : α
left✝ : b ∈ S
right✝ : f b = a
⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | case _ a3_left a3_right =>
subst a3_right
tauto | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
b : α
a3_left : b ∈ S
a3_right : f b = a
⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | subst a3_right | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1 ∈ S, f a_1 = a
b : α
a3_left : b ∈ S
a3_right : f b = a
⊢ (b ∈ S ∧ ¬b = x) ∧ f b = a | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
b : α
a3_left : b ∈ S
a1 : ¬f b = f x
a2 : ∃ a ∈ S, f a = f b
⊢ (b ∈ S ∧ ¬b = x) ∧ f b = f b |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | tauto | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
b : α
a3_left : b ∈ S
a1 : ¬f b = f x
a2 : ∃ a ∈ S, f a = f b
⊢ (b ∈ S ∧ ¬b = x) ∧ f b = f b | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | intro a2 | case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
⊢ (∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a) → ∃ a_2 ∈ S, f a_2 = a | case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
⊢ ∃ a_1 ∈ S, f a_1 = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | apply Exists.elim a2 | case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
⊢ ∃ a_1 ∈ S, f a_1 = a | case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
⊢ ∀ (a_1 : α), (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a → ∃ a_3 ∈ S, f a_3 = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | intro b a3 | case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
⊢ ∀ (a_1 : α), (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a → ∃ a_3 ∈ S, f a_3 = a | case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
b : α
a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a
⊢ ∃ a_1 ∈ S, f a_1 = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | apply Exists.intro b | case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
b : α
a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a
⊢ ∃ a_1 ∈ S, f a_1 = a | case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
b : α
a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a
⊢ b ∈ S ∧ f b = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | cases a3 | case a.mpr
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
b : α
a3 : (b ∈ S ∧ ¬b = x) ∧ f b = a
⊢ b ∈ S ∧ f b = a | case a.mpr.intro
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
b : α
left✝ : b ∈ S ∧ ¬b = x
right✝ : f b = a
⊢ b ∈ S ∧ f b = a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | case _ a3_left a3_right =>
subst a3_right
tauto | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
b : α
a3_left : b ∈ S ∧ ¬b = x
a3_right : f b = a
⊢ b ∈ S ∧ f b = a | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | subst a3_right | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
a : β
a1 : ¬a = f x
a2 : ∃ a_1, (a_1 ∈ S ∧ ¬a_1 = x) ∧ f a_1 = a
b : α
a3_left : b ∈ S ∧ ¬b = x
a3_right : f b = a
⊢ b ∈ S ∧ f b = a | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
b : α
a3_left : b ∈ S ∧ ¬b = x
a1 : ¬f b = f x
a2 : ∃ a, (a ∈ S ∧ ¬a = x) ∧ f a = f b
⊢ b ∈ S ∧ f b = f b |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton | [119, 1] | [152, 12] | tauto | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
f : α → β
b : α
a3_left : b ∈ S ∧ ¬b = x
a1 : ¬f b = f x
a2 : ∃ a, (a ∈ S ∧ ¬a = x) ∧ f a = f b
⊢ b ∈ S ∧ f b = f b | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton_updateITE | [155, 1] | [173, 32] | apply Finset.image_congr | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
⊢ image (Function.updateITE f x x') (S \ {x}) = image f (S \ {x}) | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
⊢ Set.EqOn (Function.updateITE f x x') f ↑(S \ {x}) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton_updateITE | [155, 1] | [173, 32] | simp only [Set.EqOn] | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
⊢ Set.EqOn (Function.updateITE f x x') f ↑(S \ {x}) | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x x' x_1 = f x_1 |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton_updateITE | [155, 1] | [173, 32] | intro a a1 | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x x' x_1 = f x_1 | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
a : α
a1 : a ∈ ↑(S \ {x})
⊢ Function.updateITE f x x' a = f a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton_updateITE | [155, 1] | [173, 32] | simp at a1 | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
a : α
a1 : a ∈ ↑(S \ {x})
⊢ Function.updateITE f x x' a = f a | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
a : α
a1 : a ∈ S ∧ ¬a = x
⊢ Function.updateITE f x x' a = f a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton_updateITE | [155, 1] | [173, 32] | simp only [Function.updateITE] | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
a : α
a1 : a ∈ S ∧ ¬a = x
⊢ Function.updateITE f x x' a = f a | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
a : α
a1 : a ∈ S ∧ ¬a = x
⊢ (if a = x then x' else f a) = f a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton_updateITE | [155, 1] | [173, 32] | cases a1 | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
a : α
a1 : a ∈ S ∧ ¬a = x
⊢ (if a = x then x' else f a) = f a | case h.intro
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
a : α
left✝ : a ∈ S
right✝ : ¬a = x
⊢ (if a = x then x' else f a) = f a |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton_updateITE | [155, 1] | [173, 32] | case _ a1_left a1_right =>
simp only [if_neg a1_right] | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
a : α
a1_left : a ∈ S
a1_right : ¬a = x
⊢ (if a = x then x' else f a) = f a | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_sdiff_singleton_updateITE | [155, 1] | [173, 32] | simp only [if_neg a1_right] | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
x' : β
f : α → β
a : α
a1_left : a ∈ S
a1_right : ¬a = x
⊢ (if a = x then x' else f a) = f a | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_congr_update_ite | [176, 1] | [194, 32] | apply Finset.image_congr | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
⊢ image (Function.updateITE f x a) (S \ {x}) = image (Function.updateITE f x b) (S \ {x}) | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
⊢ Set.EqOn (Function.updateITE f x a) (Function.updateITE f x b) ↑(S \ {x}) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_congr_update_ite | [176, 1] | [194, 32] | simp only [Set.EqOn] | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
⊢ Set.EqOn (Function.updateITE f x a) (Function.updateITE f x b) ↑(S \ {x}) | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x a x_1 = Function.updateITE f x b x_1 |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_congr_update_ite | [176, 1] | [194, 32] | intro v a1 | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
⊢ ∀ ⦃x_1 : α⦄, x_1 ∈ ↑(S \ {x}) → Function.updateITE f x a x_1 = Function.updateITE f x b x_1 | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
v : α
a1 : v ∈ ↑(S \ {x})
⊢ Function.updateITE f x a v = Function.updateITE f x b v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_congr_update_ite | [176, 1] | [194, 32] | simp at a1 | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
v : α
a1 : v ∈ ↑(S \ {x})
⊢ Function.updateITE f x a v = Function.updateITE f x b v | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
v : α
a1 : v ∈ S ∧ ¬v = x
⊢ Function.updateITE f x a v = Function.updateITE f x b v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_congr_update_ite | [176, 1] | [194, 32] | simp only [Function.updateITE] | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
v : α
a1 : v ∈ S ∧ ¬v = x
⊢ Function.updateITE f x a v = Function.updateITE f x b v | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
v : α
a1 : v ∈ S ∧ ¬v = x
⊢ (if v = x then a else f v) = if v = x then b else f v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_congr_update_ite | [176, 1] | [194, 32] | cases a1 | case h
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
v : α
a1 : v ∈ S ∧ ¬v = x
⊢ (if v = x then a else f v) = if v = x then b else f v | case h.intro
α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
v : α
left✝ : v ∈ S
right✝ : ¬v = x
⊢ (if v = x then a else f v) = if v = x then b else f v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_congr_update_ite | [176, 1] | [194, 32] | case intro a1_left a1_right =>
simp only [if_neg a1_right] | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
v : α
a1_left : v ∈ S
a1_right : ¬v = x
⊢ (if v = x then a else f v) = if v = x then b else f v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.image_congr_update_ite | [176, 1] | [194, 32] | simp only [if_neg a1_right] | α β : Type
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
S : Finset α
x : α
a b : β
f : α → β
v : α
a1_left : v ∈ S
a1_right : ¬v = x
⊢ (if v = x then a else f v) = if v = x then b else f v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.mem_image_update | [197, 1] | [212, 26] | simp only [Finset.mem_image] | α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ f y ∈ image (Function.updateITE f x x) S | α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ ∃ a ∈ S, Function.updateITE f x x a = f y |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.mem_image_update | [197, 1] | [212, 26] | apply Exists.intro y | α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ ∃ a ∈ S, Function.updateITE f x x a = f y | α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ y ∈ S ∧ Function.updateITE f x x y = f y |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.mem_image_update | [197, 1] | [212, 26] | constructor | α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ y ∈ S ∧ Function.updateITE f x x y = f y | case left
α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ y ∈ S
case right
α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ Function.updateITE f x x y = f y |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.mem_image_update | [197, 1] | [212, 26] | exact h2 | case left
α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ y ∈ S | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.mem_image_update | [197, 1] | [212, 26] | simp only [Function.updateITE] | case right
α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ Function.updateITE f x x y = f y | case right
α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ (if y = x then x else f y) = f y |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Finset.lean | Finset.mem_image_update | [197, 1] | [212, 26] | simp only [if_neg h1] | case right
α : Type
inst✝ : DecidableEq α
x y : α
f : α → α
S : Finset α
h1 : ¬y = x
h2 : y ∈ S
⊢ (if y = x then x else f y) = f y | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | induction h1 generalizing V V' | D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
h1 : IsSubAux σ binders F F'
h2 : ∀ v ∈ binders, V v = V' (σ v)
h3 : ∀ (v : VarName), σ v ∉ binders → V v = V' (σ v)
h4 : ∀ v ∈ binders, v = σ v
⊢ Holds D I V E F ↔ Holds D I V' E F' | case pred_const_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
X✝ : PredName
xs✝ : List VarName
a✝ : ∀ v ∈ xs✝, v ∉ binders✝ → σ✝ v ∉ binders✝
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (pred_const_ X✝ xs✝) ↔ Holds D I V' E (pred_const_ X✝ (List.map σ✝ xs✝))
case pred_var_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
X✝ : PredName
xs✝ : List VarName
a✝ : ∀ v ∈ xs✝, v ∉ binders✝ → σ✝ v ∉ binders✝
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (pred_var_ X✝ xs✝) ↔ Holds D I V' E (pred_var_ X✝ (List.map σ✝ xs✝))
case eq_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
x✝ y✝ : VarName
a✝ : ∀ (v : VarName), v = x✝ ∨ v = y✝ → v ∉ binders✝ → σ✝ v ∉ binders✝
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (eq_ x✝ y✝) ↔ Holds D I V' E (eq_ (σ✝ x✝) (σ✝ y✝))
case true_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E true_ ↔ Holds D I V' E true_
case false_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E false_ ↔ Holds D I V' E false_
case not_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
phi✝ phi'✝ : Formula
a✝ : IsSubAux σ✝ binders✝ phi✝ phi'✝
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝, V v = V' (σ✝ v)) →
(∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)) →
(∀ v ∈ binders✝, v = σ✝ v) → (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝)
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E phi✝.not_ ↔ Holds D I V' E phi'✝.not_
case imp_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
phi✝ psi✝ phi'✝ psi'✝ : Formula
a✝¹ : IsSubAux σ✝ binders✝ phi✝ phi'✝
a✝ : IsSubAux σ✝ binders✝ psi✝ psi'✝
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝, V v = V' (σ✝ v)) →
(∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)) →
(∀ v ∈ binders✝, v = σ✝ v) → (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝, V v = V' (σ✝ v)) →
(∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)) →
(∀ v ∈ binders✝, v = σ✝ v) → (Holds D I V E psi✝ ↔ Holds D I V' E psi'✝)
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (phi✝.imp_ psi✝) ↔ Holds D I V' E (phi'✝.imp_ psi'✝)
case and_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
phi✝ psi✝ phi'✝ psi'✝ : Formula
a✝¹ : IsSubAux σ✝ binders✝ phi✝ phi'✝
a✝ : IsSubAux σ✝ binders✝ psi✝ psi'✝
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝, V v = V' (σ✝ v)) →
(∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)) →
(∀ v ∈ binders✝, v = σ✝ v) → (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝, V v = V' (σ✝ v)) →
(∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)) →
(∀ v ∈ binders✝, v = σ✝ v) → (Holds D I V E psi✝ ↔ Holds D I V' E psi'✝)
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (phi✝.and_ psi✝) ↔ Holds D I V' E (phi'✝.and_ psi'✝)
case or_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
phi✝ psi✝ phi'✝ psi'✝ : Formula
a✝¹ : IsSubAux σ✝ binders✝ phi✝ phi'✝
a✝ : IsSubAux σ✝ binders✝ psi✝ psi'✝
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝, V v = V' (σ✝ v)) →
(∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)) →
(∀ v ∈ binders✝, v = σ✝ v) → (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝, V v = V' (σ✝ v)) →
(∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)) →
(∀ v ∈ binders✝, v = σ✝ v) → (Holds D I V E psi✝ ↔ Holds D I V' E psi'✝)
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (phi✝.or_ psi✝) ↔ Holds D I V' E (phi'✝.or_ psi'✝)
case iff_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
phi✝ psi✝ phi'✝ psi'✝ : Formula
a✝¹ : IsSubAux σ✝ binders✝ phi✝ phi'✝
a✝ : IsSubAux σ✝ binders✝ psi✝ psi'✝
a_ih✝¹ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝, V v = V' (σ✝ v)) →
(∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)) →
(∀ v ∈ binders✝, v = σ✝ v) → (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝)
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝, V v = V' (σ✝ v)) →
(∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)) →
(∀ v ∈ binders✝, v = σ✝ v) → (Holds D I V E psi✝ ↔ Holds D I V' E psi'✝)
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (phi✝.iff_ psi✝) ↔ Holds D I V' E (phi'✝.iff_ psi'✝)
case forall_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
x✝ : VarName
phi✝ phi'✝ : Formula
a✝ : IsSubAux (Function.updateITE σ✝ x✝ x✝) (binders✝ ∪ {x✝}) phi✝ phi'✝
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝ ∪ {x✝}, V v = V' (Function.updateITE σ✝ x✝ x✝ v)) →
(∀ (v : VarName), Function.updateITE σ✝ x✝ x✝ v ∉ binders✝ ∪ {x✝} → V v = V' (Function.updateITE σ✝ x✝ x✝ v)) →
(∀ v ∈ binders✝ ∪ {x✝}, v = Function.updateITE σ✝ x✝ x✝ v) → (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝)
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (forall_ x✝ phi✝) ↔ Holds D I V' E (forall_ x✝ phi'✝)
case exists_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
x✝ : VarName
phi✝ phi'✝ : Formula
a✝ : IsSubAux (Function.updateITE σ✝ x✝ x✝) (binders✝ ∪ {x✝}) phi✝ phi'✝
a_ih✝ :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders✝ ∪ {x✝}, V v = V' (Function.updateITE σ✝ x✝ x✝ v)) →
(∀ (v : VarName), Function.updateITE σ✝ x✝ x✝ v ∉ binders✝ ∪ {x✝} → V v = V' (Function.updateITE σ✝ x✝ x✝ v)) →
(∀ v ∈ binders✝ ∪ {x✝}, v = Function.updateITE σ✝ x✝ x✝ v) → (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝)
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (exists_ x✝ phi✝) ↔ Holds D I V' E (exists_ x✝ phi'✝)
case def_
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
X✝ : DefName
xs✝ : List VarName
a✝ : ∀ v ∈ xs✝, v ∉ binders✝ → σ✝ v ∉ binders✝
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E (def_ X✝ xs✝) ↔ Holds D I V' E (def_ X✝ (List.map σ✝ xs✝)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case true_ | false_ =>
simp only [Holds] | D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ✝ : VarName → VarName
binders✝ : Finset VarName
V V' : VarAssignment D
h2 : ∀ v ∈ binders✝, V v = V' (σ✝ v)
h3 : ∀ (v : VarName), σ✝ v ∉ binders✝ → V v = V' (σ✝ v)
h4 : ∀ v ∈ binders✝, v = σ✝ v
⊢ Holds D I V E false_ ↔ Holds D I V' E false_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case not_ σ' binders' phi phi' _ ih_2 =>
simp only [Holds]
congr! 1
exact ih_2 V V' h2 h3 h4 | D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
phi phi' : Formula
a✝ : IsSubAux σ' binders' phi phi'
ih_2 :
∀ (V V' : VarAssignment D),
(∀ v ∈ binders', V v = V' (σ' v)) →
(∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)) →
(∀ v ∈ binders', v = σ' v) → (Holds D I V E phi ↔ Holds D I V' E phi')
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ Holds D I V E phi.not_ ↔ Holds D I V' E phi'.not_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ Holds D I V E (pred_var_ X' xs') ↔ Holds D I V' E (pred_var_ X' (List.map σ' xs')) | D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ I.pred_var_ X' (List.map V xs') ↔ I.pred_var_ X' (List.map V' (List.map σ' xs')) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp | D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ I.pred_var_ X' (List.map V xs') ↔ I.pred_var_ X' (List.map V' (List.map σ' xs')) | D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ I.pred_var_ X' (List.map V xs') ↔ I.pred_var_ X' (List.map (V' ∘ σ') xs') |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | congr! 1 | D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ I.pred_var_ X' (List.map V xs') ↔ I.pred_var_ X' (List.map (V' ∘ σ') xs') | case a.h.e'_4
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ List.map V xs' = List.map (V' ∘ σ') xs' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [List.map_eq_map_iff] | case a.h.e'_4
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ List.map V xs' = List.map (V' ∘ σ') xs' | case a.h.e'_4
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ ∀ x ∈ xs', V x = (V' ∘ σ') x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | intro x a1 | case a.h.e'_4
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
⊢ ∀ x ∈ xs', V x = (V' ∘ σ') x | case a.h.e'_4
D : Type
I : Interpretation D
E : Env
σ : VarName → VarName
binders : Finset VarName
F F' : Formula
σ' : VarName → VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : ∀ v ∈ xs', v ∉ binders' → σ' v ∉ binders'
V V' : VarAssignment D
h2 : ∀ v ∈ binders', V v = V' (σ' v)
h3 : ∀ (v : VarName), σ' v ∉ binders' → V v = V' (σ' v)
h4 : ∀ v ∈ binders', v = σ' v
x : VarName
a1 : x ∈ xs'
⊢ V x = (V' ∘ σ') x |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.