url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp | case a.h.e'_4
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
x : VarName
a1 : x β xs'
β’ V x = (V' β Ο') x | case a.h.e'_4
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
x : VarName
a1 : x β xs'
β’ V x = V' (Ο' x) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | by_cases c1 : x β binders' | case a.h.e'_4
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
x : VarName
a1 : x β xs'
β’ V x = V' (Ο' x) | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
x : VarName
a1 : x β xs'
c1 : x β binders'
β’ V x = V' (Ο' x)
case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
x : VarName
a1 : x β xs'
c1 : x β binders'
β’ V x = V' (Ο' x) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact h2 x c1 | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
x : VarName
a1 : x β xs'
c1 : x β binders'
β’ V x = V' (Ο' x) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply h3 | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
x : VarName
a1 : x β xs'
c1 : x β binders'
β’ V x = V' (Ο' x) | case neg.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
x : VarName
a1 : x β xs'
c1 : x β binders'
β’ Ο' x β binders' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact ih_1 x a1 c1 | case neg.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : PredName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
x : VarName
a1 : x β xs'
c1 : x β binders'
β’ Ο' x β binders' | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E (eq_ x y) β Holds D I V' E (eq_ (Ο' x) (Ο' y)) | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ V x = V y β V' (Ο' x) = V' (Ο' y) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | congr! 1 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ V x = V y β V' (Ο' x) = V' (Ο' y) | case a.h.e'_2
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ V x = V' (Ο' x)
case a.h.e'_3
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ V y = V' (Ο' y) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | by_cases c1 : x β binders' | case a.h.e'_2
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ V x = V' (Ο' x) | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ V x = V' (Ο' x)
case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ V x = V' (Ο' x) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact h2 x c1 | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ V x = V' (Ο' x) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply h3 | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ V x = V' (Ο' x) | case neg.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ Ο' x β binders' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply ih_1 | case neg.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ Ο' x β binders' | case neg.a.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ x = x β¨ x = y
case neg.a.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ x β binders' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp | case neg.a.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ x = x β¨ x = y | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact c1 | case neg.a.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : x β binders'
β’ x β binders' | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | by_cases c1 : y β binders' | case a.h.e'_3
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ V y = V' (Ο' y) | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ V y = V' (Ο' y)
case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ V y = V' (Ο' y) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact h2 y c1 | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ V y = V' (Ο' y) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply h3 | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ V y = V' (Ο' y) | case neg.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ Ο' y β binders' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply ih_1 | case neg.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ Ο' y β binders' | case neg.a.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ y = x β¨ y = y
case neg.a.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ y β binders' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp | case neg.a.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ y = x β¨ y = y | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact c1 | case neg.a.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x y : VarName
ih_1 : β (v : VarName), v = x β¨ v = y β v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
c1 : y β binders'
β’ y β binders' | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Οβ : VarName β VarName
bindersβ : Finset VarName
V V' : VarAssignment D
h2 : β v β bindersβ, V v = V' (Οβ v)
h3 : β (v : VarName), Οβ v β bindersβ β V v = V' (Οβ v)
h4 : β v β bindersβ, v = Οβ v
β’ Holds D I V E false_ β Holds D I V' E false_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi phi' : Formula
aβ : IsSubAux Ο' binders' phi phi'
ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E phi.not_ β Holds D I V' E phi'.not_ | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi phi' : Formula
aβ : IsSubAux Ο' binders' phi phi'
ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Β¬Holds D I V E phi β Β¬Holds D I V' E phi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | congr! 1 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi phi' : Formula
aβ : IsSubAux Ο' binders' phi phi'
ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Β¬Holds D I V E phi β Β¬Holds D I V' E phi' | case a.h.e'_1.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi phi' : Formula
aβ : IsSubAux Ο' binders' phi phi'
ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E phi β Holds D I V' E phi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact ih_2 V V' h2 h3 h4 | case a.h.e'_1.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi phi' : Formula
aβ : IsSubAux Ο' binders' phi phi'
ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E phi β Holds D I V' E phi' | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi psi phi' psi' : Formula
aβΒΉ : IsSubAux Ο' binders' phi phi'
aβ : IsSubAux Ο' binders' psi psi'
phi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
psi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E psi β Holds D I V' E psi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E (phi.iff_ psi) β Holds D I V' E (phi'.iff_ psi') | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi psi phi' psi' : Formula
aβΒΉ : IsSubAux Ο' binders' phi phi'
aβ : IsSubAux Ο' binders' psi psi'
phi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
psi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E psi β Holds D I V' E psi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ (Holds D I V E phi β Holds D I V E psi) β (Holds D I V' E phi' β Holds D I V' E psi') |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | congr! 1 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi psi phi' psi' : Formula
aβΒΉ : IsSubAux Ο' binders' phi phi'
aβ : IsSubAux Ο' binders' psi psi'
phi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
psi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E psi β Holds D I V' E psi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ (Holds D I V E phi β Holds D I V E psi) β (Holds D I V' E phi' β Holds D I V' E psi') | case a.h.e'_1.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi psi phi' psi' : Formula
aβΒΉ : IsSubAux Ο' binders' phi phi'
aβ : IsSubAux Ο' binders' psi psi'
phi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
psi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E psi β Holds D I V' E psi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E phi β Holds D I V' E phi'
case a.h.e'_2.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi psi phi' psi' : Formula
aβΒΉ : IsSubAux Ο' binders' phi phi'
aβ : IsSubAux Ο' binders' psi psi'
phi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
psi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E psi β Holds D I V' E psi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E psi β Holds D I V' E psi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply phi_ih_2 V V' h2 h3 h4 | case a.h.e'_1.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi psi phi' psi' : Formula
aβΒΉ : IsSubAux Ο' binders' phi phi'
aβ : IsSubAux Ο' binders' psi psi'
phi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
psi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E psi β Holds D I V' E psi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E phi β Holds D I V' E phi' | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply psi_ih_2 V V' h2 h3 h4 | case a.h.e'_2.a
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
phi psi phi' psi' : Formula
aβΒΉ : IsSubAux Ο' binders' phi phi'
aβ : IsSubAux Ο' binders' psi psi'
phi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E phi β Holds D I V' E phi')
psi_ih_2 :
β (V V' : VarAssignment D),
(β v β binders', V v = V' (Ο' v)) β
(β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)) β
(β v β binders', v = Ο' v) β (Holds D I V E psi β Holds D I V' E psi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E psi β Holds D I V' E psi' | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp at ih_2 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
ih_2 :
β (V V' : VarAssignment D),
(β v β binders' βͺ {x}, V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), Function.updateITE Ο' x x v β binders' βͺ {x} β V v = V' (Function.updateITE Ο' x x v)) β
(β v β binders' βͺ {x}, v = Function.updateITE Ο' x x v) β (Holds D I V E phi β Holds D I V' E phi')
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | have s1 : β (v : VarName), Β¬ v = x β v β binders' β Β¬ Ο' v = x | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
β’ β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | intro v a1 a2 contra | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
β’ β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
v : VarName
a1 : Β¬v = x
a2 : v β binders'
contra : Ο' v = x
β’ False
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply a1 | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
v : VarName
a1 : Β¬v = x
a2 : v β binders'
contra : Ο' v = x
β’ False
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
v : VarName
a1 : Β¬v = x
a2 : v β binders'
contra : Ο' v = x
β’ v = x
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [β contra] | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
v : VarName
a1 : Β¬v = x
a2 : v β binders'
contra : Ο' v = x
β’ v = x
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
v : VarName
a1 : Β¬v = x
a2 : v β binders'
contra : Ο' v = x
β’ v = Ο' v
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact h4 v a2 | case s1
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
v : VarName
a1 : Β¬v = x
a2 : v β binders'
contra : Ο' v = x
β’ v = Ο' v
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Holds] | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ Holds D I V E (exists_ x phi) β Holds D I V' E (exists_ x phi') | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ (β d, Holds D I (Function.updateITE V x d) E phi) β β d, Holds D I (Function.updateITE V' x d) E phi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | first | apply forall_congr'| apply exists_congr | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ (β d, Holds D I (Function.updateITE V x d) E phi) β β d, Holds D I (Function.updateITE V' x d) E phi' | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ β (a : D), Holds D I (Function.updateITE V x a) E phi β Holds D I (Function.updateITE V' x a) E phi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | intro d | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ β (a : D), Holds D I (Function.updateITE V x a) E phi β Holds D I (Function.updateITE V' x a) E phi' | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
β’ Holds D I (Function.updateITE V x d) E phi β Holds D I (Function.updateITE V' x d) E phi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply ih_2 | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
β’ Holds D I (Function.updateITE V x d) E phi β Holds D I (Function.updateITE V' x d) E phi' | case h.h2
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
β’ β (v : VarName),
v β binders' β¨ v = x β Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v)
case h.h3
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
β’ β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v)
case h.h4
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
β’ β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply forall_congr' | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ (β (d : D), Holds D I (Function.updateITE V x d) E phi) β β (d : D), Holds D I (Function.updateITE V' x d) E phi' | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ β (a : D), Holds D I (Function.updateITE V x a) E phi β Holds D I (Function.updateITE V' x a) E phi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply exists_congr | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ (β d, Holds D I (Function.updateITE V x d) E phi) β β d, Holds D I (Function.updateITE V' x d) E phi' | case h
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
β’ β (a : D), Holds D I (Function.updateITE V x a) E phi β Holds D I (Function.updateITE V' x a) E phi' |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | intro v a1 | case h.h2
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
β’ β (v : VarName),
v β binders' β¨ v = x β Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case h.h2
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
β’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | by_cases c1 : v = x | case h.h2
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
β’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : v = x
β’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v)
case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : Β¬v = x
β’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Function.updateITE] | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : v = x
β’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : v = x
β’ (if v = x then d else V v) = if (if v = x then x else Ο' v) = x then d else V' (if v = x then x else Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [if_pos c1] | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : v = x
β’ (if v = x then d else V v) = if (if v = x then x else Ο' v) = x then d else V' (if v = x then x else Ο' v) | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : v = x
β’ d = if True then d else V' x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : v = x
β’ d = if True then d else V' x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Function.updateITE] | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : Β¬v = x
β’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : Β¬v = x
β’ (if v = x then d else V v) = if (if v = x then x else Ο' v) = x then d else V' (if v = x then x else Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [if_neg c1] | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : Β¬v = x
β’ (if v = x then d else V v) = if (if v = x then x else Ο' v) = x then d else V' (if v = x then x else Ο' v) | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : Β¬v = x
β’ V v = if Ο' v = x then d else V' (Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | cases a1 | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : Β¬v = x
β’ V v = if Ο' v = x then d else V' (Ο' v) | case neg.inl
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
hβ : v β binders'
β’ V v = if Ο' v = x then d else V' (Ο' v)
case neg.inr
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
hβ : v = x
β’ V v = if Ο' v = x then d else V' (Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case _ c2 =>
simp only [s1 v c1 c2]
simp
exact h2 v c2 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v β binders'
β’ V v = if Ο' v = x then d else V' (Ο' v) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case _ c2 =>
contradiction | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v = x
β’ V v = if Ο' v = x then d else V' (Ο' v) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [s1 v c1 c2] | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v β binders'
β’ V v = if Ο' v = x then d else V' (Ο' v) | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v β binders'
β’ V v = if False then d else V' (Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v β binders'
β’ V v = if False then d else V' (Ο' v) | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v β binders'
β’ V v = V' (Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact h2 v c2 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v β binders'
β’ V v = V' (Ο' v) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | contradiction | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v = x
β’ V v = if Ο' v = x then d else V' (Ο' v) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | intro v a1 | case h.h3
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
β’ β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case h.h3
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | by_cases c1 : v = x | case h.h3
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
c1 : v = x
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v)
case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
c1 : Β¬v = x
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Function.updateITE] | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
c1 : v = x
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
c1 : v = x
β’ Β¬(if v = x then x else Ο' v) = x β
(if v = x then d else V v) = if (if v = x then x else Ο' v) = x then d else V' (if v = x then x else Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [if_pos c1] | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
c1 : v = x
β’ Β¬(if v = x then x else Ο' v) = x β
(if v = x then d else V v) = if (if v = x then x else Ο' v) = x then d else V' (if v = x then x else Ο' v) | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
c1 : v = x
β’ Β¬True β d = if True then d else V' x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
c1 : v = x
β’ Β¬True β d = if True then d else V' x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Function.updateITE] at a1 | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : Function.updateITE Ο' x x v β binders'
c1 : Β¬v = x
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : (if v = x then x else Ο' v) β binders'
c1 : Β¬v = x
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [if_neg c1] at a1 | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : (if v = x then x else Ο' v) β binders'
c1 : Β¬v = x
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Function.updateITE] | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
β’ Β¬Function.updateITE Ο' x x v = x β
Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Ο' x x v) | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
β’ Β¬(if v = x then x else Ο' v) = x β
(if v = x then d else V v) = if (if v = x then x else Ο' v) = x then d else V' (if v = x then x else Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [if_neg c1] | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
β’ Β¬(if v = x then x else Ο' v) = x β
(if v = x then d else V v) = if (if v = x then x else Ο' v) = x then d else V' (if v = x then x else Ο' v) | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
β’ Β¬Ο' v = x β V v = if Ο' v = x then d else V' (Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | intro a2 | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
β’ Β¬Ο' v = x β V v = if Ο' v = x then d else V' (Ο' v) | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
a2 : Β¬Ο' v = x
β’ V v = if Ο' v = x then d else V' (Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [if_neg a2] | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
a2 : Β¬Ο' v = x
β’ V v = if Ο' v = x then d else V' (Ο' v) | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
a2 : Β¬Ο' v = x
β’ V v = V' (Ο' v) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply h3 v a1 | case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
a1 : Ο' v β binders'
a2 : Β¬Ο' v = x
β’ V v = V' (Ο' v) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | intro v a1 | case h.h4
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
β’ β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v | case h.h4
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
β’ v = Function.updateITE Ο' x x v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Function.updateITE] | case h.h4
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
β’ v = Function.updateITE Ο' x x v | case h.h4
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
β’ v = if v = x then x else Ο' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | split_ifs | case h.h4
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
β’ v = if v = x then x else Ο' v | case pos
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
hβ : v = x
β’ v = x
case neg
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
hβ : Β¬v = x
β’ v = Ο' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case _ c1 =>
exact c1 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : v = x
β’ v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case _ c1 =>
cases a1
case _ c2 =>
exact h4 v c2
case _ c2 =>
contradiction | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : Β¬v = x
β’ v = Ο' v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact c1 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : v = x
β’ v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | cases a1 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
a1 : v β binders' β¨ v = x
c1 : Β¬v = x
β’ v = Ο' v | case inl
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
hβ : v β binders'
β’ v = Ο' v
case inr
D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
hβ : v = x
β’ v = Ο' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case _ c2 =>
exact h4 v c2 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v β binders'
β’ v = Ο' v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case _ c2 =>
contradiction | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v = x
β’ v = Ο' v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact h4 v c2 | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v β binders'
β’ v = Ο' v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | contradiction | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
x : VarName
phi phi' : Formula
aβ : IsSubAux (Function.updateITE Ο' x x) (binders' βͺ {x}) phi phi'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
ih_2 :
β (V V' : VarAssignment D),
(β (v : VarName), v β binders' β¨ v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName),
Function.updateITE Ο' x x v β binders' β
Β¬Function.updateITE Ο' x x v = x β V v = V' (Function.updateITE Ο' x x v)) β
(β (v : VarName), v β binders' β¨ v = x β v = Function.updateITE Ο' x x v) β
(Holds D I V E phi β Holds D I V' E phi')
s1 : β (v : VarName), Β¬v = x β v β binders' β Β¬Ο' v = x
d : D
v : VarName
c1 : Β¬v = x
c2 : v = x
β’ v = Ο' v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | induction E | D : Type
I : Interpretation D
E : Env
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V E (def_ X' xs') β Holds D I V' E (def_ X' (List.map Ο' xs')) | case nil
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V [] (def_ X' xs') β Holds D I V' [] (def_ X' (List.map Ο' xs'))
case cons
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
headβ : Definition
tailβ : List Definition
tail_ihβ : Holds D I V tailβ (def_ X' xs') β Holds D I V' tailβ (def_ X' (List.map Ο' xs'))
β’ Holds D I V (headβ :: tailβ) (def_ X' xs') β Holds D I V' (headβ :: tailβ) (def_ X' (List.map Ο' xs')) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case nil =>
simp only [Holds] | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V [] (def_ X' xs') β Holds D I V' [] (def_ X' (List.map Ο' xs')) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Holds] | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
β’ Holds D I V [] (def_ X' xs') β Holds D I V' [] (def_ X' (List.map Ο' xs')) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [Holds] | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
β’ Holds D I V (hd :: tl) (def_ X' xs') β Holds D I V' (hd :: tl) (def_ X' (List.map Ο' xs')) | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
β’ (if X' = hd.name β§ xs'.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q
else Holds D I V tl (def_ X' xs')) β
if X' = hd.name β§ (List.map Ο' xs').length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Ο' xs'))) tl hd.q
else Holds D I V' tl (def_ X' (List.map Ο' xs')) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | split_ifs | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
β’ (if X' = hd.name β§ xs'.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q
else Holds D I V tl (def_ X' xs')) β
if X' = hd.name β§ (List.map Ο' xs').length = hd.args.length then
Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Ο' xs'))) tl hd.q
else Holds D I V' tl (def_ X' (List.map Ο' xs')) | case pos
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
hβΒΉ : X' = hd.name β§ xs'.length = hd.args.length
hβ : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
β’ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q β
Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Ο' xs'))) tl hd.q
case neg
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
hβΒΉ : X' = hd.name β§ xs'.length = hd.args.length
hβ : Β¬(X' = hd.name β§ (List.map Ο' xs').length = hd.args.length)
β’ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q β Holds D I V' tl (def_ X' (List.map Ο' xs'))
case pos
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
hβΒΉ : Β¬(X' = hd.name β§ xs'.length = hd.args.length)
hβ : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
β’ Holds D I V tl (def_ X' xs') β Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Ο' xs'))) tl hd.q
case neg
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
hβΒΉ : Β¬(X' = hd.name β§ xs'.length = hd.args.length)
hβ : Β¬(X' = hd.name β§ (List.map Ο' xs').length = hd.args.length)
β’ Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs')) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case _ c1 c2 =>
simp only [List.length_map] at c2
contradiction | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : Β¬(X' = hd.name β§ (List.map Ο' xs').length = hd.args.length)
β’ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q β Holds D I V' tl (def_ X' (List.map Ο' xs')) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case _ c1 c2 =>
simp at c2
contradiction | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : Β¬(X' = hd.name β§ xs'.length = hd.args.length)
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
β’ Holds D I V tl (def_ X' xs') β Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Ο' xs'))) tl hd.q | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | case _ c1 c2 =>
exact ih | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : Β¬(X' = hd.name β§ xs'.length = hd.args.length)
c2 : Β¬(X' = hd.name β§ (List.map Ο' xs').length = hd.args.length)
β’ Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs')) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
β’ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q β
Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Ο' xs'))) tl hd.q | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
β’ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q β
Holds D I (Function.updateListITE V' hd.args (List.map (V' β Ο') xs')) tl hd.q |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply Holds_coincide_Var | D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
β’ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q β
Holds D I (Function.updateListITE V' hd.args (List.map (V' β Ο') xs')) tl hd.q | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
β’ β (v : VarName),
isFreeIn v hd.q β
Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | intro v a1 | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
β’ β (v : VarName),
isFreeIn v hd.q β
Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | have s1 : List.map V xs' = List.map (V' β Ο') xs' | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v | case s1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
β’ List.map V xs' = List.map (V' β Ο') xs'
case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [List.map_eq_map_iff] | case s1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
β’ List.map V xs' = List.map (V' β Ο') xs'
case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v | case s1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
β’ β x β xs', V x = (V' β Ο') x
case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | intro x a2 | case s1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
β’ β x β xs', V x = (V' β Ο') x
case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v | case s1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
x : VarName
a2 : x β xs'
β’ V x = (V' β Ο') x
case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | by_cases c3 : x β binders' | case s1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
x : VarName
a2 : x β xs'
β’ V x = (V' β Ο') x
case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v | case pos
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
x : VarName
a2 : x β xs'
c3 : x β binders'
β’ V x = (V' β Ο') x
case neg
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
x : VarName
a2 : x β xs'
c3 : x β binders'
β’ V x = (V' β Ο') x
case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [s1] | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map (V' β Ο') xs') v =
Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | apply Function.updateListITE_mem_eq_len | case h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ Function.updateListITE V hd.args (List.map (V' β Ο') xs') v =
Function.updateListITE V' hd.args (List.map (V' β Ο') xs') v | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ v β hd.args
case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp only [isFreeIn_iff_mem_freeVarSet] at a1 | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ v β hd.args
case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
s1 : List.map V xs' = List.map (V' β Ο') xs'
a1 : v β hd.q.freeVarSet
β’ v β hd.args
case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | obtain s2 := hd.h1 a1 | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
s1 : List.map V xs' = List.map (V' β Ο') xs'
a1 : v β hd.q.freeVarSet
β’ v β hd.args
case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
s1 : List.map V xs' = List.map (V' β Ο') xs'
a1 : v β hd.q.freeVarSet
s2 : v β hd.args.toFinset
β’ v β hd.args
case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp at s2 | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
s1 : List.map V xs' = List.map (V' β Ο') xs'
a1 : v β hd.q.freeVarSet
s2 : v β hd.args.toFinset
β’ v β hd.args
case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
s1 : List.map V xs' = List.map (V' β Ο') xs'
a1 : v β hd.q.freeVarSet
s2 : v β hd.args
β’ v β hd.args
case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | exact s2 | case h1.h1
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
s1 : List.map V xs' = List.map (V' β Ο') xs'
a1 : v β hd.q.freeVarSet
s2 : v β hd.args
β’ v β hd.args
case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length | case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp at c2 | case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
c2 : X' = hd.name β§ (List.map Ο' xs').length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
β’ hd.args.length = (List.map (V' β Ο') xs').length | case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
c2 : X' = hd.name β§ xs'.length = hd.args.length
β’ hd.args.length = (List.map (V' β Ο') xs').length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | simp | case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
c2 : X' = hd.name β§ xs'.length = hd.args.length
β’ hd.args.length = (List.map (V' β Ο') xs').length | case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
c2 : X' = hd.name β§ xs'.length = hd.args.length
β’ hd.args.length = xs'.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/All/Ind/Sub.lean | FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux | [129, 1] | [273, 17] | tauto | case h1.h2
D : Type
I : Interpretation D
Ο : VarName β VarName
binders : Finset VarName
F F' : Formula
Ο' : VarName β VarName
binders' : Finset VarName
X' : DefName
xs' : List VarName
ih_1 : β v β xs', v β binders' β Ο' v β binders'
V V' : VarAssignment D
h2 : β v β binders', V v = V' (Ο' v)
h3 : β (v : VarName), Ο' v β binders' β V v = V' (Ο' v)
h4 : β v β binders', v = Ο' v
hd : Definition
tl : List Definition
ih : Holds D I V tl (def_ X' xs') β Holds D I V' tl (def_ X' (List.map Ο' xs'))
c1 : X' = hd.name β§ xs'.length = hd.args.length
v : VarName
a1 : isFreeIn v hd.q
s1 : List.map V xs' = List.map (V' β Ο') xs'
c2 : X' = hd.name β§ xs'.length = hd.args.length
β’ hd.args.length = xs'.length | no goals |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.