url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean | FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux | [90, 1] | [226, 15] | simp | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο X ds.length).get β―).1 ds) (hd :: tl) ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean | FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux | [90, 1] | [226, 15] | simp only [predVarOccursIn_iff_mem_predVarSet] | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length hd.q β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο X ds.length).get β―).1 ds) (hd :: tl)
((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds) | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β hd.q.predVarSet β
((if h : (Ο P ds.length).isSome = true then
if ds.length = ((Ο P ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο P ds.length).get β―).1 ds) (hd :: tl) ((Ο P ds.length).get β―).2
else I.pred_var_ P ds
else I.pred_var_ P ds) β
I.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean | FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux | [90, 1] | [226, 15] | simp only [hd.h2] | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β hd.q.predVarSet β
((if h : (Ο P ds.length).isSome = true then
if ds.length = ((Ο P ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο P ds.length).get β―).1 ds) (hd :: tl) ((Ο P ds.length).get β―).2
else I.pred_var_ P ds
else I.pred_var_ P ds) β
I.pred_var_ P ds) | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β β
β
((if h : (Ο P ds.length).isSome = true then
if ds.length = ((Ο P ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο P ds.length).get β―).1 ds) (hd :: tl) ((Ο P ds.length).get β―).2
else I.pred_var_ P ds
else I.pred_var_ P ds) β
I.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean | FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux | [90, 1] | [226, 15] | simp | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β β
β
((if h : (Ο P ds.length).isSome = true then
if ds.length = ((Ο P ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο P ds.length).get β―).1 ds) (hd :: tl) ((Ο P ds.length).get β―).2
else I.pred_var_ P ds
else I.pred_var_ P ds) β
I.pred_var_ P ds) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean | FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux | [90, 1] | [226, 15] | apply Holds_coincide_PredVar | D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο X ds.length).get β―).1 ds) (hd :: tl) ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds }
V tl (def_ X xs) β
Holds D I V tl (def_ X xs) | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο X ds.length).get β―).1 ds) (hd :: tl) ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length (def_ X xs) β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο X ds.length).get β―).1 ds) (hd :: tl)
((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean | FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux | [90, 1] | [226, 15] | simp | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο X ds.length).get β―).1 ds) (hd :: tl) ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean | FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux | [90, 1] | [226, 15] | simp only [predVarOccursIn] | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length (def_ X xs) β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο X ds.length).get β―).1 ds) (hd :: tl)
((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds) | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
False β
((if h : (Ο P ds.length).isSome = true then
if ds.length = ((Ο P ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο P ds.length).get β―).1 ds) (hd :: tl) ((Ο P ds.length).get β―).2
else I.pred_var_ P ds
else I.pred_var_ P ds) β
I.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Option/Sub.lean | FOL.NV.Sub.Pred.All.Rec.Option.substitution_theorem_aux | [90, 1] | [226, 15] | simp | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V' x = V x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
False β
((if h : (Ο P ds.length).isSome = true then
if ds.length = ((Ο P ds.length).get β―).1.length then
Holds D I (Function.updateListITE V' ((Ο P ds.length).get β―).1 ds) (hd :: tl) ((Ο P ds.length).get β―).2
else I.pred_var_ P ds
else I.pred_var_ P ds) β
I.pred_var_ P ds) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | induction F generalizing binders V | D : Type
I : Interpretation D
V V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
binders : Finset VarName
F : Formula
h1 : admitsAux Ο binders F
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F) | case pred_const_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (pred_const_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_const_ aβΒΉ aβ) β
Holds D I V E (replace Ο (pred_const_ aβΒΉ aβ))
case pred_var_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ : PredName
aβ : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (pred_var_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ aβΒΉ aβ) β
Holds D I V E (replace Ο (pred_var_ aβΒΉ aβ))
case eq_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ aβ : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (eq_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (eq_ aβΒΉ aβ) β
Holds D I V E (replace Ο (eq_ aβΒΉ aβ))
case true_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders true_
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E true_ β
Holds D I V E (replace Ο true_)
case false_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders false_
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E false_ β
Holds D I V E (replace Ο false_)
case not_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβ : Formula
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβ β
Holds D I V E (replace Ο aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders aβ.not_
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβ.not_ β
Holds D I V E (replace Ο aβ.not_)
case imp_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβΒΉ β
Holds D I V E (replace Ο aβΒΉ))
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβ β
Holds D I V E (replace Ο aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.imp_ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (aβΒΉ.imp_ aβ) β
Holds D I V E (replace Ο (aβΒΉ.imp_ aβ))
case and_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβΒΉ β
Holds D I V E (replace Ο aβΒΉ))
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβ β
Holds D I V E (replace Ο aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.and_ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (aβΒΉ.and_ aβ) β
Holds D I V E (replace Ο (aβΒΉ.and_ aβ))
case or_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβΒΉ β
Holds D I V E (replace Ο aβΒΉ))
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβ β
Holds D I V E (replace Ο aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.or_ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (aβΒΉ.or_ aβ) β
Holds D I V E (replace Ο (aβΒΉ.or_ aβ))
case iff_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβΒΉ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβΒΉ β
Holds D I V E (replace Ο aβΒΉ))
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβ β
Holds D I V E (replace Ο aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (aβΒΉ.iff_ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (aβΒΉ.iff_ aβ) β
Holds D I V E (replace Ο (aβΒΉ.iff_ aβ))
case forall_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβ β
Holds D I V E (replace Ο aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (forall_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (forall_ aβΒΉ aβ) β
Holds D I V E (replace Ο (forall_ aβΒΉ aβ))
case exists_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders aβ β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E aβ β
Holds D I V E (replace Ο aβ))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (exists_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (exists_ aβΒΉ aβ) β
Holds D I V E (replace Ο (exists_ aβΒΉ aβ))
case def_
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
aβΒΉ : DefName
aβ : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ aβΒΉ aβ)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (def_ aβΒΉ aβ) β
Holds D I V E (replace Ο (def_ aβΒΉ aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | case pred_const_ X xs =>
simp only [replace]
simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_const_ X xs) β
Holds D I V E (replace Ο (pred_const_ X xs)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | case eq_ x y =>
simp only [replace]
simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (eq_ x y) β
Holds D I V E (replace Ο (eq_ x y)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | case true_ | false_ =>
simp only [replace]
simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders false_
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E false_ β
Holds D I V E (replace Ο false_) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | case not_ phi phi_ih =>
simp only [admitsAux] at h1
simp only [replace]
simp only [Holds]
congr! 1
exact phi_ih V binders h1 h2 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi.not_
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi.not_ β
Holds D I V E (replace Ο phi.not_) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | case forall_ x phi phi_ih | exists_ x phi phi_ih =>
simp only [admitsAux] at h1
simp only [replace]
simp only [Holds]
first | apply forall_congr' | apply exists_congr
intro d
apply phi_ih (Function.updateITE V x d) (binders βͺ {x}) h1
intro v a1
simp only [Function.updateITE]
simp at a1
push_neg at a1
cases a1
case h.intro a1_left a1_right =>
simp only [if_neg a1_right]
exact h2 v a1_left | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (exists_ x phi)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (exists_ x phi) β
Holds D I V E (replace Ο (exists_ x phi)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [replace] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_const_ X xs) β
Holds D I V E (replace Ο (pred_const_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_const_ X xs) β
Holds D I V E (pred_const_ X xs) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (pred_const_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_const_ X xs) β
Holds D I V E (pred_const_ X xs) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [admitsAux] at h1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (pred_var_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2 β§
(β x β binders, Β¬(isFreeIn x (Ο X xs.length).2 β§ x β (Ο X xs.length).1)) β§ xs.length = (Ο X xs.length).1.length
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp at h1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 :
Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2 β§
(β x β binders, Β¬(isFreeIn x (Ο X xs.length).2 β§ x β (Ο X xs.length).1)) β§ xs.length = (Ο X xs.length).1.length
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1 :
Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2 β§
(β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1) β§ xs.length = (Ο X xs.length).1.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | cases h1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1 :
Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2 β§
(β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1) β§ xs.length = (Ο X xs.length).1.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | case intro
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
leftβ : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
rightβ : (β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1) β§ xs.length = (Ο X xs.length).1.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | cases h1_right | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right : (β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1) β§ xs.length = (Ο X xs.length).1.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | case intro
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
leftβ : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
rightβ : xs.length = (Ο X xs.length).1.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | obtain s1 :=
Sub.Var.All.Rec.substitution_theorem D I V E (Function.updateListITE id (Ο X xs.length).fst xs)
(Ο X xs.length).snd h1_left | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (V β Function.updateListITE id (Ο X xs.length).1 xs) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Function.updateListITE_comp] at s1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (V β Function.updateListITE id (Ο X xs.length).1 xs) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE (V β id) (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp at s1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE (V β id) (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [s2] at s1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
s2 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s2 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | clear s2 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s2 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (pred_var_ X xs) β
Holds D I V E (replace Ο (pred_var_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ (if (List.map V xs).length = (Ο X (List.map V xs).length).1.length then
Holds D I (Function.updateListITE V' (Ο X (List.map V xs).length).1 (List.map V xs)) E
(Ο X (List.map V xs).length).2
else I.pred_var_ X (List.map V xs)) β
Holds D I V E (replace Ο (pred_var_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [replace] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ (if (List.map V xs).length = (Ο X (List.map V xs).length).1.length then
Holds D I (Function.updateListITE V' (Ο X (List.map V xs).length).1 (List.map V xs)) E
(Ο X (List.map V xs).length).2
else I.pred_var_ X (List.map V xs)) β
Holds D I V E (replace Ο (pred_var_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ (if (List.map V xs).length = (Ο X (List.map V xs).length).1.length then
Holds D I (Function.updateListITE V' (Ο X (List.map V xs).length).1 (List.map V xs)) E
(Ο X (List.map V xs).length).2
else I.pred_var_ X (List.map V xs)) β
Holds D I V E
(if xs.length = (Ο X xs.length).1.length then
Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
else pred_var_ X xs) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ (if (List.map V xs).length = (Ο X (List.map V xs).length).1.length then
Holds D I (Function.updateListITE V' (Ο X (List.map V xs).length).1 (List.map V xs)) E
(Ο X (List.map V xs).length).2
else I.pred_var_ X (List.map V xs)) β
Holds D I V E
(if xs.length = (Ο X xs.length).1.length then
Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
else pred_var_ X xs) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ (if xs.length = (Ο X xs.length).1.length then
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2
else I.pred_var_ X (List.map V xs)) β
Holds D I V E
(if xs.length = (Ο X xs.length).1.length then
Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
else pred_var_ X xs) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [if_pos h1_right_right] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ (if xs.length = (Ο X xs.length).1.length then
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2
else I.pred_var_ X (List.map V xs)) β
Holds D I V E
(if xs.length = (Ο X xs.length).1.length then
Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
else pred_var_ X xs) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | exact s1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | apply Holds_coincide_Var | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I (Function.updateListITE V' (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ β (v : VarName),
isFreeIn v (Ο X xs.length).2 β
Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | intro v a1 | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
β’ β (v : VarName),
isFreeIn v (Ο X xs.length).2 β
Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | by_cases c1 : v β (Ο X xs.length).fst | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | apply Function.updateListITE_mem_eq_len V V' v (Ο X xs.length).fst (List.map V xs) c1 | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ (Ο X xs.length).1.length = (List.map V xs).length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ (Ο X xs.length).1.length = (List.map V xs).length | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ (Ο X xs.length).1.length = xs.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | symm | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ (Ο X xs.length).1.length = xs.length | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ xs.length = (Ο X xs.length).1.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | exact h1_right_right | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ xs.length = (Ο X xs.length).1.length | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | by_cases c2 : v β binders | case neg
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | specialize h1_right_left v c2 a1 | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
h1_right_left : v β (Ο X xs.length).1
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | contradiction | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
h1_right_left : v β (Ο X xs.length).1
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | specialize h2 v c2 | case neg
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v | case neg
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
h2 : V v = V' v
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | apply Function.updateListITE_mem' | case neg
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
h2 : V v = V' v
β’ Function.updateListITE V (Ο X xs.length).1 (List.map V xs) v =
Function.updateListITE V' (Ο X xs.length).1 (List.map V xs) v | case neg.h1
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
h2 : V v = V' v
β’ V v = V' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | exact h2 | case neg.h1
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : PredName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2
h1_right_left : β x β binders, isFreeIn x (Ο X xs.length).2 β x β (Ο X xs.length).1
h1_right_right : xs.length = (Ο X xs.length).1.length
s1 :
Holds D I (Function.updateListITE V (Ο X xs.length).1 (List.map V xs)) E (Ο X xs.length).2 β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο X xs.length).1 xs) (Ο X xs.length).2)
v : VarName
a1 : isFreeIn v (Ο X xs.length).2
c1 : v β (Ο X xs.length).1
c2 : v β binders
h2 : V v = V' v
β’ V v = V' v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [replace] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (eq_ x y) β
Holds D I V E (replace Ο (eq_ x y)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (eq_ x y) β
Holds D I V E (eq_ x y) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x y : VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (eq_ x y)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (eq_ x y) β
Holds D I V E (eq_ x y) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [replace] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders false_
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E false_ β
Holds D I V E (replace Ο false_) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders false_
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E false_ β
Holds D I V E false_ |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders false_
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E false_ β
Holds D I V E false_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [admitsAux] at h1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi.not_
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi.not_ β
Holds D I V E (replace Ο phi.not_) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi.not_ β
Holds D I V E (replace Ο phi.not_) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [replace] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi.not_ β
Holds D I V E (replace Ο phi.not_) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi.not_ β
Holds D I V E (replace Ο phi).not_ |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi.not_ β
Holds D I V E (replace Ο phi).not_ | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi
h2 : β x β binders, V x = V' x
β’ Β¬Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Β¬Holds D I V E (replace Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | congr! 1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi
h2 : β x β binders, V x = V' x
β’ Β¬Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Β¬Holds D I V E (replace Ο phi) | case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | exact phi_ih V binders h1 h2 | case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [admitsAux] at h1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (phi.iff_ psi)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (phi.iff_ psi) β
Holds D I V E (replace Ο (phi.iff_ psi)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi β§ admitsAux Ο binders psi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (phi.iff_ psi) β
Holds D I V E (replace Ο (phi.iff_ psi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [replace] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi β§ admitsAux Ο binders psi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (phi.iff_ psi) β
Holds D I V E (replace Ο (phi.iff_ psi)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi β§ admitsAux Ο binders psi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (phi.iff_ psi) β
Holds D I V E ((replace Ο phi).iff_ (replace Ο psi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi β§ admitsAux Ο binders psi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (phi.iff_ psi) β
Holds D I V E ((replace Ο phi).iff_ (replace Ο psi)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi β§ admitsAux Ο binders psi
h2 : β x β binders, V x = V' x
β’ (Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi) β
(Holds D I V E (replace Ο phi) β Holds D I V E (replace Ο psi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | cases h1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders phi β§ admitsAux Ο binders psi
h2 : β x β binders, V x = V' x
β’ (Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi) β
(Holds D I V E (replace Ο phi) β Holds D I V E (replace Ο psi)) | case intro
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
leftβ : admitsAux Ο binders phi
rightβ : admitsAux Ο binders psi
β’ (Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi) β
(Holds D I V E (replace Ο phi) β Holds D I V E (replace Ο psi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | congr! 1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux Ο binders phi
h1_right : admitsAux Ο binders psi
β’ (Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi) β
(Holds D I V E (replace Ο phi) β Holds D I V E (replace Ο psi)) | case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux Ο binders phi
h1_right : admitsAux Ο binders psi
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi)
case a.h.e'_2.a
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux Ο binders phi
h1_right : admitsAux Ο binders psi
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | exact phi_ih V binders h1_left h2 | case a.h.e'_1.a
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux Ο binders phi
h1_right : admitsAux Ο binders psi
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | exact psi_ih V binders h1_right h2 | case a.h.e'_2.a
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
phi psi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
psi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders psi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi))
V : VarAssignment D
binders : Finset VarName
h2 : β x β binders, V x = V' x
h1_left : admitsAux Ο binders phi
h1_right : admitsAux Ο binders psi
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E psi β
Holds D I V E (replace Ο psi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [admitsAux] at h1 | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (exists_ x phi)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (exists_ x phi) β
Holds D I V E (replace Ο (exists_ x phi)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (exists_ x phi) β
Holds D I V E (replace Ο (exists_ x phi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [replace] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (exists_ x phi) β
Holds D I V E (replace Ο (exists_ x phi)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (exists_ x phi) β
Holds D I V E (exists_ x (replace Ο phi)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (exists_ x phi) β
Holds D I V E (exists_ x (replace Ο phi)) | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d,
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x d) E phi) β
β d, Holds D I (Function.updateITE V x d) E (replace Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | first | apply forall_congr' | apply exists_congr | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d,
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x d) E phi) β
β d, Holds D I (Function.updateITE V x d) E (replace Ο phi) | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x a) E phi β
Holds D I (Function.updateITE V x a) E (replace Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | intro d | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x a) E phi β
Holds D I (Function.updateITE V x a) E (replace Ο phi) | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x d) E phi β
Holds D I (Function.updateITE V x d) E (replace Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | apply phi_ih (Function.updateITE V x d) (binders βͺ {x}) h1 | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x d) E phi β
Holds D I (Function.updateITE V x d) E (replace Ο phi) | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ β x_1 β binders βͺ {x}, Function.updateITE V x d x_1 = V' x_1 |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | intro v a1 | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
β’ β x_1 β binders βͺ {x}, Function.updateITE V x d x_1 = V' x_1 | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ Function.updateITE V x d v = V' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Function.updateITE] | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ Function.updateITE V x d v = V' v | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ (if v = x then d else V v) = V' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp at a1 | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders βͺ {x}
β’ (if v = x then d else V v) = V' v | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ Β¬v = x
β’ (if v = x then d else V v) = V' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | push_neg at a1 | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ Β¬v = x
β’ (if v = x then d else V v) = V' v | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ v β x
β’ (if v = x then d else V v) = V' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | cases a1 | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1 : v β binders β§ v β x
β’ (if v = x then d else V v) = V' v | case h.intro
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
leftβ : v β binders
rightβ : v β x
β’ (if v = x then d else V v) = V' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | case h.intro a1_left a1_right =>
simp only [if_neg a1_right]
exact h2 v a1_left | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | apply forall_congr' | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β (d : D),
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x d) E phi) β
β (d : D), Holds D I (Function.updateITE V x d) E (replace Ο phi) | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x a) E phi β
Holds D I (Function.updateITE V x a) E (replace Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | apply exists_congr | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ (β d,
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x d) E phi) β
β d, Holds D I (Function.updateITE V x d) E (replace Ο phi) | case h
D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
β’ β (a : D),
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateITE V x a) E phi β
Holds D I (Function.updateITE V x a) E (replace Ο phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [if_neg a1_right] | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ (if v = x then d else V v) = V' v | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ V v = V' v |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | exact h2 v a1_left | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
x : VarName
phi : Formula
phi_ih :
β (V : VarAssignment D) (binders : Finset VarName),
admitsAux Ο binders phi β
(β x β binders, V x = V' x) β
(Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E phi β
Holds D I V E (replace Ο phi))
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο (binders βͺ {x}) phi
h2 : β x β binders, V x = V' x
d : D
v : VarName
a1_left : v β binders
a1_right : v β x
β’ V v = V' v | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | cases E | D : Type
I : Interpretation D
V' : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E (def_ X xs) β
Holds D I V E (replace Ο (def_ X xs)) | case nil
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) [] (Ο X ds.length).2
else I.pred_var_ X ds }
V [] (def_ X xs) β
Holds D I V [] (replace Ο (def_ X xs))
case cons
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
headβ : Definition
tailβ : List Definition
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (headβ :: tailβ) (Ο X ds.length).2
else I.pred_var_ X ds }
V (headβ :: tailβ) (def_ X xs) β
Holds D I V (headβ :: tailβ) (replace Ο (def_ X xs)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | case nil =>
simp only [replace]
simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) [] (Ο X ds.length).2
else I.pred_var_ X ds }
V [] (def_ X xs) β
Holds D I V [] (replace Ο (def_ X xs)) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [replace] | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) [] (Ο X ds.length).2
else I.pred_var_ X ds }
V [] (def_ X xs) β
Holds D I V [] (replace Ο (def_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) [] (Ο X ds.length).2
else I.pred_var_ X ds }
V [] (def_ X xs) β
Holds D I V [] (def_ X xs) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) [] (Ο X ds.length).2
else I.pred_var_ X ds }
V [] (def_ X xs) β
Holds D I V [] (def_ X xs) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [replace] | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V (hd :: tl) (def_ X xs) β
Holds D I V (hd :: tl) (replace Ο (def_ X xs)) | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V (hd :: tl) (def_ X xs) β
Holds D I V (hd :: tl) (def_ X xs) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [Holds] | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V (hd :: tl) (def_ X xs) β
Holds D I V (hd :: tl) (def_ X xs) | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | split_ifs | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
β’ (if X = hd.name β§ xs.length = hd.args.length then
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs)) β
if X = hd.name β§ xs.length = hd.args.length then
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
else Holds D I V tl (def_ X xs) | case pos
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
hβ : X = hd.name β§ xs.length = hd.args.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case neg
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
hβ : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs) β
Holds D I V tl (def_ X xs) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | apply Holds_coincide_PredVar | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
(Function.updateListITE V hd.args (List.map V xs)) tl hd.q β
Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length hd.q β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [predVarOccursIn_iff_mem_predVarSet] | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length hd.q β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds) | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β hd.q.predVarSet β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [hd.h2] | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β hd.q.predVarSet β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds) | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β β
β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : X = hd.name β§ xs.length = hd.args.length
β’ β (P : PredName) (ds : List D),
(P, ds.length) β β
β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | apply Holds_coincide_PredVar | D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }
V tl (def_ X xs) β
Holds D I V tl (def_ X xs) | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_
case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length (def_ X xs) β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp | case h1
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ { nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_const_ =
I.pred_const_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp only [predVarOccursIn] | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length (def_ X xs) β
({ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο X ds.length).1 ds) (hd :: tl) (Ο X ds.length).2
else I.pred_var_ X ds }.pred_var_
P ds β
I.pred_var_ P ds) | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
False β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux | [109, 1] | [238, 15] | simp | case h2
D : Type
I : Interpretation D
V' : VarAssignment D
Ο : PredName β β β List VarName Γ Formula
X : DefName
xs : List VarName
V : VarAssignment D
binders : Finset VarName
h1 : admitsAux Ο binders (def_ X xs)
h2 : β x β binders, V x = V' x
hd : Definition
tl : List Definition
c1 : Β¬(X = hd.name β§ xs.length = hd.args.length)
β’ β (P : PredName) (ds : List D),
False β
((if ds.length = (Ο P ds.length).1.length then
Holds D I (Function.updateListITE V' (Ο P ds.length).1 ds) (hd :: tl) (Ο P ds.length).2
else I.pred_var_ P ds) β
I.pred_var_ P ds) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem | [241, 1] | [266, 8] | apply substitution_theorem_aux D I V V E Ο β
F | D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F) | case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ admitsAux Ο β
F
case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ β x β β
, V x = V x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem | [241, 1] | [266, 8] | simp only [admits] at h1 | case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ admitsAux Ο β
F | case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admitsAux Ο β
F
β’ admitsAux Ο β
F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem | [241, 1] | [266, 8] | exact h1 | case h1
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admitsAux Ο β
F
β’ admitsAux Ο β
F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem | [241, 1] | [266, 8] | intro X _ | case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
β’ β x β β
, V x = V x | case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
X : VarName
aβ : X β β
β’ V X = V X |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_theorem | [241, 1] | [266, 8] | rfl | case h2
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
Ο : PredName β β β List VarName Γ Formula
F : Formula
h1 : admits Ο F
X : VarName
aβ : X β β
β’ V X = V X | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_is_valid | [269, 1] | [282, 11] | simp only [IsValid] at h2 | F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : F.IsValid
β’ (replace Ο F).IsValid | F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replace Ο F).IsValid |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_is_valid | [269, 1] | [282, 11] | simp only [IsValid] | F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ (replace Ο F).IsValid | F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace Ο F) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_is_valid | [269, 1] | [282, 11] | intro D I V E | F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
β’ β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace Ο F) | F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replace Ο F) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/All/Rec/Sub.lean | FOL.NV.Sub.Pred.All.Rec.substitution_is_valid | [269, 1] | [282, 11] | obtain s1 := substitution_theorem D I V E Ο F h1 | F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
β’ Holds D I V E (replace Ο F) | F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D I V E (replace Ο F) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.