url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.aux
[275, 1]
[283, 8]
have Bpos : 0 < B := lt_of_le_of_lt (abs_nonneg _) (h₀ N₀ (le_refl _))
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.aux
[275, 1]
[283, 8]
have pos₀ : ε / B > 0 := div_pos εpos Bpos
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.aux
[275, 1]
[283, 8]
rcases ct _ pos₀ with ⟨N₁, h₁⟩
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
case intro.intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.aux
[275, 1]
[283, 8]
sorry
case intro.intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
intro ε εpos
s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ⊢ ConvergesTo (fun n => s n * t n) 0
s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 ⊢ ∃ N, ∀ n ≥ N, |(fun n => s n * t n) n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
dsimp
s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 ⊢ ∃ N, ∀ n ≥ N, |(fun n => s n * t n) n - 0| < ε
s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
rcases exists_abs_le_of_convergesTo cs with ⟨N₀, B, h₀⟩
s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
have Bpos : 0 < B := lt_of_le_of_lt (abs_nonneg _) (h₀ N₀ (le_refl _))
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
have pos₀ : ε / B > 0 := div_pos εpos Bpos
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
rcases ct _ pos₀ with ⟨N₁, h₁⟩
case intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
case intro.intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
use max N₀ N₁
case intro.intro.intro s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B ⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε
case h s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B ⊢ ∀ n ≥ max N₀ N₁, |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
intro n ngt
case h s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B ⊢ ∀ n ≥ max N₀ N₁, |s n * t n - 0| < ε
case h s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B n : ℕ ngt : n ≥ max N₀ N₁ ⊢ |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
have ngeN₀ : n ≥ N₀ := le_of_max_le_left ngt
case h s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B n : ℕ ngt : n ≥ max N₀ N₁ ⊢ |s n * t n - 0| < ε
case h s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B n : ℕ ngt : n ≥ max N₀ N₁ ngeN₀ : n ≥ N₀ ⊢ |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
have ngeN₁ : n ≥ N₁ := le_of_max_le_right ngt
case h s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B n : ℕ ngt : n ≥ max N₀ N₁ ngeN₀ : n ≥ N₀ ⊢ |s n * t n - 0| < ε
case h s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B n : ℕ ngt : n ≥ max N₀ N₁ ngeN₀ : n ≥ N₀ ngeN₁ : n ≥ N₁ ⊢ |s n * t n - 0| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
calc |s n * t n - 0| = |s n| * |t n - 0| := by rw [sub_zero, abs_mul, sub_zero] _ < B * (ε / B) := (mul_lt_mul'' (h₀ n ngeN₀) (h₁ n ngeN₁) (abs_nonneg _) (abs_nonneg _)) _ = ε := mul_div_cancel₀ _ (ne_of_lt Bpos).symm
case h s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B n : ℕ ngt : n ≥ max N₀ N₁ ngeN₀ : n ≥ N₀ ngeN₁ : n ≥ N₁ ⊢ |s n * t n - 0| < ε
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.auxαα
[287, 1]
[302, 52]
rw [sub_zero, abs_mul, sub_zero]
s t : ℕ → ℝ a : ℝ cs : ConvergesTo s a ct : ConvergesTo t 0 ε : ℝ εpos : ε > 0 N₀ : ℕ B : ℝ h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B Bpos : 0 < B pos₀ : ε / B > 0 N₁ : ℕ h₁ : ∀ n ≥ N₁, |t n - 0| < ε / B n : ℕ ngt : n ≥ max N₀ N₁ ngeN₀ : n ≥ N₀ ngeN₁ : n ≥ N₁ ⊢ |s n * t n - 0| = |s n| * |t n - 0|
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_mul
[311, 1]
[321, 7]
have h₁ : ConvergesTo (fun n ↦ s n * (t n + -b)) 0 := by apply aux cs convert convergesTo_add ct (convergesTo_const (-b)) ring
s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b ⊢ ConvergesTo (fun n => s n * t n) (a * b)
s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 ⊢ ConvergesTo (fun n => s n * t n) (a * b)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_mul
[311, 1]
[321, 7]
have := convergesTo_add h₁ (convergesTo_mul_const b cs)
s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 ⊢ ConvergesTo (fun n => s n * t n) (a * b)
s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 this : ConvergesTo (fun n => s n * (t n + -b) + b * s n) (0 + b * a) ⊢ ConvergesTo (fun n => s n * t n) (a * b)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_mul
[311, 1]
[321, 7]
convert convergesTo_add h₁ (convergesTo_mul_const b cs) using 1
s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 this : ConvergesTo (fun n => s n * (t n + -b) + b * s n) (0 + b * a) ⊢ ConvergesTo (fun n => s n * t n) (a * b)
case h.e'_1 s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 this : ConvergesTo (fun n => s n * (t n + -b) + b * s n) (0 + b * a) ⊢ (fun n => s n * t n) = fun n => s n * (t n + -b) + b * s n case h.e'_2 s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 this : ConvergesTo (fun n => s n * (t n + -b) + b * s n) (0 + b * a) ⊢ a * b = 0 + b * a
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_mul
[311, 1]
[321, 7]
ring
case h.e'_2 s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 this : ConvergesTo (fun n => s n * (t n + -b) + b * s n) (0 + b * a) ⊢ a * b = 0 + b * a
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_mul
[311, 1]
[321, 7]
apply aux cs
s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b ⊢ ConvergesTo (fun n => s n * (t n + -b)) 0
s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b ⊢ ConvergesTo (fun n => t n + -b) 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_mul
[311, 1]
[321, 7]
convert convergesTo_add ct (convergesTo_const (-b))
s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b ⊢ ConvergesTo (fun n => t n + -b) 0
case h.e'_2 s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b ⊢ 0 = b + -b
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_mul
[311, 1]
[321, 7]
ring
case h.e'_2 s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b ⊢ 0 = b + -b
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_mul
[311, 1]
[321, 7]
ext
case h.e'_1 s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 this : ConvergesTo (fun n => s n * (t n + -b) + b * s n) (0 + b * a) ⊢ (fun n => s n * t n) = fun n => s n * (t n + -b) + b * s n
case h.e'_1.h s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 this : ConvergesTo (fun n => s n * (t n + -b) + b * s n) (0 + b * a) x✝ : ℕ ⊢ s x✝ * t x✝ = s x✝ * (t x✝ + -b) + b * s x✝
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_mul
[311, 1]
[321, 7]
ring
case h.e'_1.h s t : ℕ → ℝ a b : ℝ cs : ConvergesTo s a ct : ConvergesTo t b h₁ : ConvergesTo (fun n => s n * (t n + -b)) 0 this : ConvergesTo (fun n => s n * (t n + -b) + b * s n) (0 + b * a) x✝ : ℕ ⊢ s x✝ * t x✝ = s x✝ * (t x✝ + -b) + b * s x✝
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
by_contra abne
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b ⊢ a = b
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
have : |a - b| > 0 := by sorry
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b ⊢ False
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
let ε := |a - b| / 2
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ⊢ False
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
have εpos : ε > 0 := by change |a - b| / 2 > 0 linarith
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ False
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
rcases sa ε εpos with ⟨Na, hNa⟩
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 ⊢ False
case intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
rcases sb ε εpos with ⟨Nb, hNb⟩
case intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
let N := max Na Nb
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
have absa : |s N - a| < ε := by sorry
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
have absb : |s N - b| < ε := by sorry
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
have : |a - b| < |a - b| := by sorry
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this✝ : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε this : |a - b| < |a - b| ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
exact lt_irrefl _ this
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this✝ : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε this : |a - b| < |a - b| ⊢ False
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
sorry
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b ⊢ |a - b| > 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
change |a - b| / 2 > 0
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ ε > 0
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ |a - b| / 2 > 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
linarith
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ |a - b| / 2 > 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
sorry
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb ⊢ |s N - a| < ε
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
sorry
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε ⊢ |s N - b| < ε
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_unique
[332, 1]
[347, 25]
sorry
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ |a - b| < |a - b|
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
by_contra abne
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b ⊢ a = b
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
let ε := |a - b| / 2
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ⊢ False
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
have εpos : ε > 0 := by change |a - b| / 2 > 0 linarith
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ False
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
rcases sa ε εpos with ⟨Na, hNa⟩
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 ⊢ False
case intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
rcases sb ε εpos with ⟨Nb, hNb⟩
case intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
let N := max Na Nb
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
have absa : |s N - a| < ε := by apply hNa apply le_max_left
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
have absb : |s N - b| < ε := by apply hNb apply le_max_right
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
have : |a - b| < |a - b|
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ False
case this s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ |a - b| < |a - b| case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this✝ : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε this : |a - b| < |a - b| ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
calc |a - b| = |(-(s N - a)) + (s N - b)| := by congr ring _ ≤ |(-(s N - a))| + |s N - b| := (abs_add _ _) _ = |s N - a| + |s N - b| := by rw [abs_neg] _ < ε + ε := (add_lt_add absa absb) _ = |a - b| := by norm_num [ε]
case this s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ |a - b| < |a - b| case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this✝ : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε this : |a - b| < |a - b| ⊢ False
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this✝ : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε this : |a - b| < |a - b| ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
exact lt_irrefl _ this
case intro.intro s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this✝ : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε this : |a - b| < |a - b| ⊢ False
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
apply lt_of_le_of_ne
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b ⊢ |a - b| > 0
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b ⊢ 0 ≤ |a - b| case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b ⊢ 0 ≠ |a - b|
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
intro h''
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b ⊢ 0 ≠ |a - b|
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b h'' : 0 = |a - b| ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
apply abne
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b h'' : 0 = |a - b| ⊢ False
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b h'' : 0 = |a - b| ⊢ a = b
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
apply eq_of_abs_sub_eq_zero h''.symm
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b h'' : 0 = |a - b| ⊢ a = b
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
apply abs_nonneg
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b ⊢ 0 ≤ |a - b|
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
change |a - b| / 2 > 0
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ ε > 0
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ |a - b| / 2 > 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
linarith
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 ⊢ |a - b| / 2 > 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
apply hNa
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb ⊢ |s N - a| < ε
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb ⊢ N ≥ Na
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
apply le_max_left
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb ⊢ N ≥ Na
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
apply hNb
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε ⊢ |s N - b| < ε
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε ⊢ N ≥ Nb
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
apply le_max_right
case a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε ⊢ N ≥ Nb
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
congr
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ |a - b| = |-(s N - a) + (s N - b)|
case e_a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ a - b = -(s N - a) + (s N - b)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
ring
case e_a s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ a - b = -(s N - a) + (s N - b)
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
rw [abs_neg]
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ |(-(s N - a))| + |s N - b| = |s N - a| + |s N - b|
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S06_Sequences_and_Convergence.lean
C03S06.convergesTo_uniqueαα
[351, 1]
[384, 25]
norm_num [ε]
s : ℕ → ℝ a b : ℝ sa : ConvergesTo s a sb : ConvergesTo s b abne : ¬a = b this : |a - b| > 0 ε : ℝ := |a - b| / 2 εpos : ε > 0 Na : ℕ hNa : ∀ n ≥ Na, |s n - a| < ε Nb : ℕ hNb : ∀ n ≥ Nb, |s n - b| < ε N : ℕ := max Na Nb absa : |s N - a| < ε absb : |s N - b| < ε ⊢ ε + ε = |a - b|
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
eq_bot_iff_card
[453, 1]
[465, 41]
suffices (∀ x ∈ H, x = 1) ↔ ∃ x ∈ H, ∀ a ∈ H, a = x by simpa [eq_bot_iff_forall, card_eq_one_iff]
G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H ⊢ H = ⊥ ↔ card ↥H = 1
G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H ⊢ (∀ x ∈ H, x = 1) ↔ ∃ x ∈ H, ∀ a ∈ H, a = x
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
eq_bot_iff_card
[453, 1]
[465, 41]
constructor
G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H ⊢ (∀ x ∈ H, x = 1) ↔ ∃ x ∈ H, ∀ a ∈ H, a = x
case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H ⊢ (∀ x ∈ H, x = 1) → ∃ x ∈ H, ∀ a ∈ H, a = x case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H ⊢ (∃ x ∈ H, ∀ a ∈ H, a = x) → ∀ x ∈ H, x = 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
eq_bot_iff_card
[453, 1]
[465, 41]
simpa [eq_bot_iff_forall, card_eq_one_iff]
G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H this : (∀ x ∈ H, x = 1) ↔ ∃ x ∈ H, ∀ a ∈ H, a = x ⊢ H = ⊥ ↔ card ↥H = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
eq_bot_iff_card
[453, 1]
[465, 41]
intro h
case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H ⊢ (∀ x ∈ H, x = 1) → ∃ x ∈ H, ∀ a ∈ H, a = x
case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H h : ∀ x ∈ H, x = 1 ⊢ ∃ x ∈ H, ∀ a ∈ H, a = x
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
eq_bot_iff_card
[453, 1]
[465, 41]
use 1, H.one_mem
case mp G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H h : ∀ x ∈ H, x = 1 ⊢ ∃ x ∈ H, ∀ a ∈ H, a = x
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
eq_bot_iff_card
[453, 1]
[465, 41]
rintro ⟨y, -, hy'⟩ x hx
case mpr G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H ⊢ (∃ x ∈ H, ∀ a ∈ H, a = x) → ∀ x ∈ H, x = 1
case mpr.intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H y : G hy' : ∀ a ∈ H, a = y x : G hx : x ∈ H ⊢ x = 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
eq_bot_iff_card
[453, 1]
[465, 41]
calc x = y := hy' x hx _ = 1 := (hy' 1 H.one_mem).symm
case mpr.intro.intro G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Fintype ↥H y : G hy' : ∀ a ∈ H, a = y x : G hx : x ∈ H ⊢ x = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
inf_bot_of_coprime
[471, 1]
[478, 63]
have D₁ : card (H ⊓ K : Subgroup G) ∣ card H := card_dvd_of_le inf_le_left
G : Type u_1 inst✝² : Group G H K : Subgroup G inst✝¹ : Fintype ↥H inst✝ : Fintype ↥K h : (card ↥H).Coprime (card ↥K) ⊢ H ⊓ K = ⊥
G : Type u_1 inst✝² : Group G H K : Subgroup G inst✝¹ : Fintype ↥H inst✝ : Fintype ↥K h : (card ↥H).Coprime (card ↥K) D₁ : card ↥(H ⊓ K) ∣ card ↥H ⊢ H ⊓ K = ⊥
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
inf_bot_of_coprime
[471, 1]
[478, 63]
have D₂ : card (H ⊓ K : Subgroup G) ∣ card K := card_dvd_of_le inf_le_right
G : Type u_1 inst✝² : Group G H K : Subgroup G inst✝¹ : Fintype ↥H inst✝ : Fintype ↥K h : (card ↥H).Coprime (card ↥K) D₁ : card ↥(H ⊓ K) ∣ card ↥H ⊢ H ⊓ K = ⊥
G : Type u_1 inst✝² : Group G H K : Subgroup G inst✝¹ : Fintype ↥H inst✝ : Fintype ↥K h : (card ↥H).Coprime (card ↥K) D₁ : card ↥(H ⊓ K) ∣ card ↥H D₂ : card ↥(H ⊓ K) ∣ card ↥K ⊢ H ⊓ K = ⊥
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
inf_bot_of_coprime
[471, 1]
[478, 63]
exact eq_bot_iff_card.2 (Nat.eq_one_of_dvd_coprimes h D₁ D₂)
G : Type u_1 inst✝² : Group G H K : Subgroup G inst✝¹ : Fintype ↥H inst✝ : Fintype ↥K h : (card ↥H).Coprime (card ↥K) D₁ : card ↥(H ⊓ K) ∣ card ↥H D₂ : card ↥(H ⊓ K) ∣ card ↥K ⊢ H ⊓ K = ⊥
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
compat_myMap
[568, 1]
[572, 9]
rintro _ rfl
⊢ ∀ r ∈ {FreeGroup.of () ^ 3}, (FreeGroup.lift myMap) r = 1
⊢ (FreeGroup.lift myMap) (FreeGroup.of () ^ 3) = 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
compat_myMap
[568, 1]
[572, 9]
simp
⊢ (FreeGroup.lift myMap) (FreeGroup.of () ^ 3) = 1
⊢ myMap () ^ 3 = 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
compat_myMap
[568, 1]
[572, 9]
decide
⊢ myMap () ^ 3 = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
conjugate_one
[698, 1]
[703, 19]
ext x
G : Type u_1 inst✝ : Group G H : Subgroup G ⊢ conjugate 1 H = H
case h G : Type u_1 inst✝ : Group G H : Subgroup G x : G ⊢ x ∈ conjugate 1 H ↔ x ∈ H
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
conjugate_one
[698, 1]
[703, 19]
simp [conjugate]
case h G : Type u_1 inst✝ : Group G H : Subgroup G x : G ⊢ x ∈ conjugate 1 H ↔ x ∈ H
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
aux_card_eq
[832, 1]
[840, 49]
have := calc card (G ⧸ H) * card H = card G := by rw [← H.index_eq_card, H.index_mul_card] _ = card K * card H := by rw [h', mul_comm]
G : Type u_1 inst✝¹ : Group G H K : Subgroup G inst✝ : Fintype G h' : card G = card ↥H * card ↥K ⊢ card (G ⧸ H) = card ↥K
G : Type u_1 inst✝¹ : Group G H K : Subgroup G inst✝ : Fintype G h' : card G = card ↥H * card ↥K this : card (G ⧸ H) * card ↥H = card ↥K * card ↥H ⊢ card (G ⧸ H) = card ↥K
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
aux_card_eq
[832, 1]
[840, 49]
exact Nat.eq_of_mul_eq_mul_right card_pos this
G : Type u_1 inst✝¹ : Group G H K : Subgroup G inst✝ : Fintype G h' : card G = card ↥H * card ↥K this : card (G ⧸ H) * card ↥H = card ↥K * card ↥H ⊢ card (G ⧸ H) = card ↥K
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
aux_card_eq
[832, 1]
[840, 49]
rw [← H.index_eq_card, H.index_mul_card]
G : Type u_1 inst✝¹ : Group G H K : Subgroup G inst✝ : Fintype G h' : card G = card ↥H * card ↥K ⊢ card (G ⧸ H) * card ↥H = card G
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S01_Groups.lean
aux_card_eq
[832, 1]
[840, 49]
rw [h', mul_comm]
G : Type u_1 inst✝¹ : Group G H K : Subgroup G inst✝ : Fintype G h' : card G = card ↥H * card ↥K ⊢ card G = card ↥K * card ↥H
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
inverse_spec
[551, 1]
[553, 32]
rw [inverse, dif_pos h]
α : Type u_1 β : Type u_2 inst✝ : Inhabited α P : α → Prop h✝ : ∃ x, P x f : α → β y : β h : ∃ x, f x = y ⊢ f (inverse f y) = y
α : Type u_1 β : Type u_2 inst✝ : Inhabited α P : α → Prop h✝ : ∃ x, P x f : α → β y : β h : ∃ x, f x = y ⊢ f (choose h) = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
inverse_spec
[551, 1]
[553, 32]
exact Classical.choose_spec h
α : Type u_1 β : Type u_2 inst✝ : Inhabited α P : α → Prop h✝ : ∃ x, P x f : α → β y : β h : ∃ x, f x = y ⊢ f (choose h) = y
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
intro f surjf
α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h : ∃ x, P x α : Type u_3 ⊢ ∀ (f : α → Set α), ¬Surjective f
α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
let S := { i | i ∉ f i }
α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f ⊢ False
α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
rcases surjf S with ⟨j, h⟩
α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} ⊢ False
case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
have h₁ : j ∉ f j := by intro h' have : j ∉ f j := by rwa [h] at h' contradiction
case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S ⊢ False
case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
have h₂ : j ∈ S
case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j ⊢ False
case h₂ α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j ⊢ j ∈ S case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
sorry
case h₂ α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j ⊢ j ∈ S case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S ⊢ False
case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
have h₃ : j ∉ S
case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S ⊢ False
case h₃ α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S ⊢ j ∉ S case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S h₃ : j ∉ S ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
sorry
case h₃ α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S ⊢ j ∉ S case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S h₃ : j ∉ S ⊢ False
case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S h₃ : j ∉ S ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
contradiction
case intro α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h₁ : j ∉ f j h₂ : j ∈ S h₃ : j ∉ S ⊢ False
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
intro h'
α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S ⊢ j ∉ f j
α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h' : j ∈ f j ⊢ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S02_Functions.lean
Cantor
[671, 1]
[683, 16]
have : j ∉ f j := by rwa [h] at h'
α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h' : j ∈ f j ⊢ False
α✝ : Type u_1 β : Type u_2 inst✝ : Inhabited α✝ P : α✝ → Prop h✝ : ∃ x, P x α : Type u_3 f : α → Set α surjf : Surjective f S : Set α := {i | i ∉ f i} j : α h : f j = S h' : j ∈ f j this : j ∉ f j ⊢ False