url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | rw [hf i (Finset.mem_insert_self i s), mul_one] | ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ I + K = I + K * (I + J i) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | ring | ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ I + K * (I + J i) = (1 + K) * I + K * J i | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | gcongr | ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ (1 + K) * I + K * J i ≤ I + K ⊓ J i | case h₁
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ (1 + K) * I ≤ I
case h₂
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ K * J i ≤ K ⊓ J i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | apply mul_le_left | case h₁
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ (1 + K) * I ≤ I
case h₂
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ K * J i ≤ K ⊓ J i | case h₂
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ K * J i ≤ K ⊓ J i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | apply mul_le_inf | case h₂
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ K * J i ≤ K ⊓ J i | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | intro g | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
⊢ Surjective ⇑(chineseMap I) | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
⊢ ∃ a, (chineseMap I) a = g |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | choose f hf using fun i ↦ Ideal.Quotient.mk_surjective (g i) | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
⊢ ∃ a, (chineseMap I) a = g | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
⊢ ∃ a, (chineseMap I) a = g |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | choose e he using key | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
key : ∀ (i : ι), ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0
⊢ ∃ a, (chineseMap I) a = g | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
⊢ ∃ a, (chineseMap I) a = g |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | use mk _ (∑ i, f i * e i) | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
⊢ ∃ a, (chineseMap I) a = g | case h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
⊢ (chineseMap I) ((mk (⨅ i, I i)) (∑ i : ι, f i * e i)) = g |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | ext i | case h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
⊢ (chineseMap I) ((mk (⨅ i, I i)) (∑ i : ι, f i * e i)) = g | case h.h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
i : ι
⊢ (chineseMap I) ((mk (⨅ i, I i)) (∑ i : ι, f i * e i)) i = g i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | rw [chineseMap_mk', map_sum, Fintype.sum_eq_single i] | case h.h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
i : ι
⊢ (chineseMap I) ((mk (⨅ i, I i)) (∑ i : ι, f i * e i)) i = g i | case h.h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
i : ι
⊢ (mk (I i)) (f i * e i) = g i
case h.h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
i : ι
⊢ ∀ (x : ι), x ≠ i → (mk (I i)) (f x * e x) = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | intro i | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
⊢ ∀ (i : ι), ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
⊢ ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | have hI' : ∀ j ∈ ({i} : Finset ι)ᶜ, IsCoprime (I i) (I j) := by
intros j hj
exact hI _ _ (by simpa [ne_comm, isCoprime_iff_add] using hj) | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
⊢ ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
⊢ ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | rcases isCoprime_iff_exists.mp (isCoprime_Inf hI') with ⟨u, hu, e, he, hue⟩ | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
⊢ ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 | case intro.intro.intro.intro
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
u : R
hu : u ∈ I i
e : R
he : e ∈ ⨅ j ∈ {i}ᶜ, I j
hue : u + e = 1
⊢ ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | replace he : ∀ j, j ≠ i → e ∈ I j := by simpa using he | case intro.intro.intro.intro
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
u : R
hu : u ∈ I i
e : R
he : e ∈ ⨅ j ∈ {i}ᶜ, I j
hue : u + e = 1
⊢ ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 | case intro.intro.intro.intro
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
u : R
hu : u ∈ I i
e : R
hue : u + e = 1
he : ∀ (j : ι), j ≠ i → e ∈ I j
⊢ ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | refine ⟨e, ?_, ?_⟩ | case intro.intro.intro.intro
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
u : R
hu : u ∈ I i
e : R
hue : u + e = 1
he : ∀ (j : ι), j ≠ i → e ∈ I j
⊢ ∃ e, (mk (I i)) e = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 | case intro.intro.intro.intro.refine_1
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
u : R
hu : u ∈ I i
e : R
hue : u + e = 1
he : ∀ (j : ι), j ≠ i → e ∈ I j
⊢ (mk (I i)) e = 1
case intro.intro.intro.intro.refine_2
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
u : R
hu : u ∈ I i
e : R
hue : u + e = 1
he : ∀ (j : ι), j ≠ i → e ∈ I j
⊢ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | intros j hj | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
⊢ ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j) | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i j : ι
hj : j ∈ {i}ᶜ
⊢ IsCoprime (I i) (I j) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | exact hI _ _ (by simpa [ne_comm, isCoprime_iff_add] using hj) | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i j : ι
hj : j ∈ {i}ᶜ
⊢ IsCoprime (I i) (I j) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | simpa [ne_comm, isCoprime_iff_add] using hj | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i j : ι
hj : j ∈ {i}ᶜ
⊢ i ≠ j | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | simpa using he | ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
u : R
hu : u ∈ I i
e : R
he : e ∈ ⨅ j ∈ {i}ᶜ, I j
hue : u + e = 1
⊢ ∀ (j : ι), j ≠ i → e ∈ I j | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | simp [eq_sub_of_add_eq' hue, map_sub, eq_zero_iff_mem.mpr hu] | case intro.intro.intro.intro.refine_1
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
u : R
hu : u ∈ I i
e : R
hue : u + e = 1
he : ∀ (j : ι), j ≠ i → e ∈ I j
⊢ (mk (I i)) e = 1 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | exact fun j hj ↦ eq_zero_iff_mem.mpr (he j hj) | case intro.intro.intro.intro.refine_2
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
i : ι
hI' : ∀ j ∈ {i}ᶜ, IsCoprime (I i) (I j)
u : R
hu : u ∈ I i
e : R
hue : u + e = 1
he : ∀ (j : ι), j ≠ i → e ∈ I j
⊢ ∀ (j : ι), j ≠ i → (mk (I j)) e = 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | simp [(he i).1, hf] | case h.h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
i : ι
⊢ (mk (I i)) (f i * e i) = g i | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | intros j hj | case h.h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
i : ι
⊢ ∀ (x : ι), x ≠ i → (mk (I i)) (f x * e x) = 0 | case h.h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
i j : ι
hj : j ≠ i
⊢ (mk (I i)) (f j * e j) = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_surj | [319, 1] | [350, 30] | simp [(he j).2 i hj.symm] | case h.h
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : Fintype ι
I : ι → Ideal R
hI : ∀ (i j : ι), i ≠ j → IsCoprime (I i) (I j)
g : Π (i : ι), R ⧸ I i
f : ι → R
hf : ∀ (i : ι), (mk (I i)) (f i) = g i
e : ι → R
he : ∀ (i : ι), (mk (I i)) (e i) = 1 ∧ ∀ (j : ι), j ≠ i → (mk (I j)) (e i) = 0
i j : ι
hj : j ≠ i
⊢ (mk (I i)) (f j * e j) = 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.add_comm | [137, 11] | [140, 25] | rw [add, add] | a b : Point
⊢ a.add b = b.add a | a b : Point
⊢ { x := a.x + b.x, y := a.y + b.y, z := a.z + b.z } = { x := b.x + a.x, y := b.y + a.y, z := b.z + a.z } |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.add_comm | [137, 11] | [140, 25] | ext <;> dsimp | a b : Point
⊢ { x := a.x + b.x, y := a.y + b.y, z := a.z + b.z } = { x := b.x + a.x, y := b.y + a.y, z := b.z + a.z } | case x
a b : Point
⊢ a.x + b.x = b.x + a.x
case y
a b : Point
⊢ a.y + b.y = b.y + a.y
case z
a b : Point
⊢ a.z + b.z = b.z + a.z |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.add_comm | [137, 11] | [140, 25] | repeat' apply add_comm | case x
a b : Point
⊢ a.x + b.x = b.x + a.x
case y
a b : Point
⊢ a.y + b.y = b.y + a.y
case z
a b : Point
⊢ a.z + b.z = b.z + a.z | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.add_comm | [137, 11] | [140, 25] | apply add_comm | case z
a b : Point
⊢ a.z + b.z = b.z + a.z | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.addAlt_x | [173, 1] | [174, 6] | rfl | a b : Point
⊢ (a.addAlt b).x = a.x + b.x | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.addAlt_comm | [176, 1] | [180, 25] | rw [addAlt, addAlt] | a b : Point
⊢ a.addAlt b = b.addAlt a | a b : Point
⊢ (match a, b with
| { x := x₁, y := y₁, z := z₁ }, { x := x₂, y := y₂, z := z₂ } => { x := x₁ + x₂, y := y₁ + y₂, z := z₁ + z₂ }) =
match b, a with
| { x := x₁, y := y₁, z := z₁ }, { x := x₂, y := y₂, z := z₂ } => { x := x₁ + x₂, y := y₁ + y₂, z := z₁ + z₂ } |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.addAlt_comm | [176, 1] | [180, 25] | ext <;> dsimp | a b : Point
⊢ (match a, b with
| { x := x₁, y := y₁, z := z₁ }, { x := x₂, y := y₂, z := z₂ } => { x := x₁ + x₂, y := y₁ + y₂, z := z₁ + z₂ }) =
match b, a with
| { x := x₁, y := y₁, z := z₁ }, { x := x₂, y := y₂, z := z₂ } => { x := x₁ + x₂, y := y₁ + y₂, z := z₁ + z₂ } | case x
a b : Point
⊢ a.x + b.x = b.x + a.x
case y
a b : Point
⊢ a.y + b.y = b.y + a.y
case z
a b : Point
⊢ a.z + b.z = b.z + a.z |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.addAlt_comm | [176, 1] | [180, 25] | repeat' apply add_comm | case x
a b : Point
⊢ a.x + b.x = b.x + a.x
case y
a b : Point
⊢ a.y + b.y = b.y + a.y
case z
a b : Point
⊢ a.z + b.z = b.z + a.z | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.addAlt_comm | [176, 1] | [180, 25] | apply add_comm | case z
a b : Point
⊢ a.z + b.z = b.z + a.z | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.add_assoc | [193, 11] | [197, 24] | simp [add, add_assoc] | a b c : Point
⊢ (a.add b).add c = a.add (b.add c) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C06_Structures/S01_Structures.lean | C06S01.Point.smul_distrib | [207, 1] | [212, 28] | simp [add, smul, mul_add] | r : ℝ
a b : Point
⊢ (smul r a).add (smul r b) = smul r (a.add b) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_const | [108, 1] | [113, 13] | intro ε εpos | a : ℝ
⊢ ConvergesTo (fun x => a) a | a ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun x => a) n - a| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_const | [108, 1] | [113, 13] | use 0 | a ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun x => a) n - a| < ε | case h
a ε : ℝ
εpos : ε > 0
⊢ ∀ n ≥ 0, |(fun x => a) n - a| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_const | [108, 1] | [113, 13] | intro n nge | case h
a ε : ℝ
εpos : ε > 0
⊢ ∀ n ≥ 0, |(fun x => a) n - a| < ε | case h
a ε : ℝ
εpos : ε > 0
n : ℕ
nge : n ≥ 0
⊢ |(fun x => a) n - a| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_const | [108, 1] | [113, 13] | rw [sub_self, abs_zero] | case h
a ε : ℝ
εpos : ε > 0
n : ℕ
nge : n ≥ 0
⊢ |(fun x => a) n - a| < ε | case h
a ε : ℝ
εpos : ε > 0
n : ℕ
nge : n ≥ 0
⊢ 0 < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_const | [108, 1] | [113, 13] | apply εpos | case h
a ε : ℝ
εpos : ε > 0
n : ℕ
nge : n ≥ 0
⊢ 0 < ε | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_add | [143, 1] | [152, 8] | intro ε εpos | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
⊢ ConvergesTo (fun n => s n + t n) (a + b) | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun n => s n + t n) n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_add | [143, 1] | [152, 8] | dsimp | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun n => s n + t n) n - (a + b)| < ε | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_add | [143, 1] | [152, 8] | have ε2pos : 0 < ε / 2 := by linarith | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_add | [143, 1] | [152, 8] | rcases cs (ε / 2) ε2pos with ⟨Ns, hs⟩ | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε | case intro
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_add | [143, 1] | [152, 8] | rcases ct (ε / 2) ε2pos with ⟨Nt, ht⟩ | case intro
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε | case intro.intro
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_add | [143, 1] | [152, 8] | use max Ns Nt | case intro.intro
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
⊢ ∀ n ≥ max Ns Nt, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_add | [143, 1] | [152, 8] | sorry | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
⊢ ∀ n ≥ max Ns Nt, |s n + t n - (a + b)| < ε | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_add | [143, 1] | [152, 8] | linarith | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ 0 < ε / 2 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | intro ε εpos | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
⊢ ConvergesTo (fun n => s n + t n) (a + b) | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun n => s n + t n) n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | dsimp | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun n => s n + t n) n - (a + b)| < ε | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | have ε2pos : 0 < ε / 2 := by linarith | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | rcases cs (ε / 2) ε2pos with ⟨Ns, hs⟩ | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε | case intro
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | rcases ct (ε / 2) ε2pos with ⟨Nt, ht⟩ | case intro
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε | case intro.intro
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | use max Ns Nt | case intro.intro
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
⊢ ∃ N, ∀ n ≥ N, |s n + t n - (a + b)| < ε | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
⊢ ∀ n ≥ max Ns Nt, |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | intro n hn | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
⊢ ∀ n ≥ max Ns Nt, |s n + t n - (a + b)| < ε | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
⊢ |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | have ngeNs : n ≥ Ns := le_of_max_le_left hn | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
⊢ |s n + t n - (a + b)| < ε | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
ngeNs : n ≥ Ns
⊢ |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | have ngeNt : n ≥ Nt := le_of_max_le_right hn | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
ngeNs : n ≥ Ns
⊢ |s n + t n - (a + b)| < ε | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
ngeNs : n ≥ Ns
ngeNt : n ≥ Nt
⊢ |s n + t n - (a + b)| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | calc
|s n + t n - (a + b)| = |s n - a + (t n - b)| := by
congr
ring
_ ≤ |s n - a| + |t n - b| := (abs_add _ _)
_ < ε / 2 + ε / 2 := (add_lt_add (hs n ngeNs) (ht n ngeNt))
_ = ε := by norm_num | case h
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
ngeNs : n ≥ Ns
ngeNt : n ≥ Nt
⊢ |s n + t n - (a + b)| < ε | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | linarith | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
⊢ 0 < ε / 2 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | congr | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
ngeNs : n ≥ Ns
ngeNt : n ≥ Nt
⊢ |s n + t n - (a + b)| = |s n - a + (t n - b)| | case e_a
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
ngeNs : n ≥ Ns
ngeNt : n ≥ Nt
⊢ s n + t n - (a + b) = s n - a + (t n - b) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | ring | case e_a
s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
ngeNs : n ≥ Ns
ngeNt : n ≥ Nt
⊢ s n + t n - (a + b) = s n - a + (t n - b) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_addαα | [156, 1] | [174, 25] | norm_num | s t : ℕ → ℝ
a b : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t b
ε : ℝ
εpos : ε > 0
ε2pos : 0 < ε / 2
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / 2
Nt : ℕ
ht : ∀ n ≥ Nt, |t n - b| < ε / 2
n : ℕ
hn : n ≥ max Ns Nt
ngeNs : n ≥ Ns
ngeNt : n ≥ Nt
⊢ ε / 2 + ε / 2 = ε | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_const | [199, 1] | [208, 8] | by_cases h : c = 0 | s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
⊢ ConvergesTo (fun n => c * s n) (c * a) | case pos
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ ConvergesTo (fun n => c * s n) (c * a)
case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
⊢ ConvergesTo (fun n => c * s n) (c * a) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_const | [199, 1] | [208, 8] | have acpos : 0 < |c| := abs_pos.mpr h | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
⊢ ConvergesTo (fun n => c * s n) (c * a) | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
⊢ ConvergesTo (fun n => c * s n) (c * a) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_const | [199, 1] | [208, 8] | sorry | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
⊢ ConvergesTo (fun n => c * s n) (c * a) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_const | [199, 1] | [208, 8] | convert convergesTo_const 0 | case pos
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ ConvergesTo (fun n => c * s n) (c * a) | case h.e'_1.h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
x✝ : ℕ
⊢ c * s x✝ = 0
case h.e'_2
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ c * a = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_const | [199, 1] | [208, 8] | rw [h] | case h.e'_2
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ c * a = 0 | case h.e'_2
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ 0 * a = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_const | [199, 1] | [208, 8] | ring | case h.e'_2
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ 0 * a = 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_const | [199, 1] | [208, 8] | rw [h] | case h.e'_1.h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
x✝ : ℕ
⊢ c * s x✝ = 0 | case h.e'_1.h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
x✝ : ℕ
⊢ 0 * s x✝ = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_const | [199, 1] | [208, 8] | ring | case h.e'_1.h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
x✝ : ℕ
⊢ 0 * s x✝ = 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | by_cases h : c = 0 | s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
⊢ ConvergesTo (fun n => c * s n) (c * a) | case pos
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ ConvergesTo (fun n => c * s n) (c * a)
case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
⊢ ConvergesTo (fun n => c * s n) (c * a) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | have acpos : 0 < |c| := abs_pos.mpr h | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
⊢ ConvergesTo (fun n => c * s n) (c * a) | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
⊢ ConvergesTo (fun n => c * s n) (c * a) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | intro ε εpos | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
⊢ ConvergesTo (fun n => c * s n) (c * a) | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun n => c * s n) n - c * a| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | dsimp | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun n => c * s n) n - c * a| < ε | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |c * s n - c * a| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | have εcpos : 0 < ε / |c| := by apply div_pos εpos acpos | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |c * s n - c * a| < ε | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
εcpos : 0 < ε / |c|
⊢ ∃ N, ∀ n ≥ N, |c * s n - c * a| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | rcases cs (ε / |c|) εcpos with ⟨Ns, hs⟩ | case neg
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
εcpos : 0 < ε / |c|
⊢ ∃ N, ∀ n ≥ N, |c * s n - c * a| < ε | case neg.intro
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
εcpos : 0 < ε / |c|
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / |c|
⊢ ∃ N, ∀ n ≥ N, |c * s n - c * a| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | use Ns | case neg.intro
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
εcpos : 0 < ε / |c|
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / |c|
⊢ ∃ N, ∀ n ≥ N, |c * s n - c * a| < ε | case h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
εcpos : 0 < ε / |c|
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / |c|
⊢ ∀ n ≥ Ns, |c * s n - c * a| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | intro n ngt | case h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
εcpos : 0 < ε / |c|
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / |c|
⊢ ∀ n ≥ Ns, |c * s n - c * a| < ε | case h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
εcpos : 0 < ε / |c|
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / |c|
n : ℕ
ngt : n ≥ Ns
⊢ |c * s n - c * a| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | calc
|c * s n - c * a| = |c| * |s n - a| := by rw [← abs_mul, mul_sub]
_ < |c| * (ε / |c|) := (mul_lt_mul_of_pos_left (hs n ngt) acpos)
_ = ε := mul_div_cancel₀ _ (ne_of_lt acpos).symm | case h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
εcpos : 0 < ε / |c|
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / |c|
n : ℕ
ngt : n ≥ Ns
⊢ |c * s n - c * a| < ε | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | convert convergesTo_const 0 | case pos
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ ConvergesTo (fun n => c * s n) (c * a) | case h.e'_1.h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
x✝ : ℕ
⊢ c * s x✝ = 0
case h.e'_2
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ c * a = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | rw [h] | case h.e'_2
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ c * a = 0 | case h.e'_2
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ 0 * a = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | ring | case h.e'_2
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
⊢ 0 * a = 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | rw [h] | case h.e'_1.h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
x✝ : ℕ
⊢ c * s x✝ = 0 | case h.e'_1.h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
x✝ : ℕ
⊢ 0 * s x✝ = 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | ring | case h.e'_1.h
s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : c = 0
x✝ : ℕ
⊢ 0 * s x✝ = 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | apply div_pos εpos acpos | s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
⊢ 0 < ε / |c| | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.convergesTo_mul_constαα | [212, 1] | [230, 53] | rw [← abs_mul, mul_sub] | s : ℕ → ℝ
a c : ℝ
cs : ConvergesTo s a
h : ¬c = 0
acpos : 0 < |c|
ε : ℝ
εpos : ε > 0
εcpos : 0 < ε / |c|
Ns : ℕ
hs : ∀ n ≥ Ns, |s n - a| < ε / |c|
n : ℕ
ngt : n ≥ Ns
⊢ |c * s n - c * a| = |c| * |s n - a| | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesTo | [239, 1] | [243, 8] | rcases cs 1 zero_lt_one with ⟨N, h⟩ | s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
⊢ ∃ N b, ∀ (n : ℕ), N ≤ n → |s n| < b | case intro
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
⊢ ∃ N b, ∀ (n : ℕ), N ≤ n → |s n| < b |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesTo | [239, 1] | [243, 8] | use N, |a| + 1 | case intro
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
⊢ ∃ N b, ∀ (n : ℕ), N ≤ n → |s n| < b | case h
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
⊢ ∀ (n : ℕ), N ≤ n → |s n| < |a| + 1 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesTo | [239, 1] | [243, 8] | sorry | case h
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
⊢ ∀ (n : ℕ), N ≤ n → |s n| < |a| + 1 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesToαα | [247, 1] | [257, 41] | rcases cs 1 zero_lt_one with ⟨N, h⟩ | s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
⊢ ∃ N b, ∀ (n : ℕ), N ≤ n → |s n| < b | case intro
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
⊢ ∃ N b, ∀ (n : ℕ), N ≤ n → |s n| < b |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesToαα | [247, 1] | [257, 41] | use N, |a| + 1 | case intro
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
⊢ ∃ N b, ∀ (n : ℕ), N ≤ n → |s n| < b | case h
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
⊢ ∀ (n : ℕ), N ≤ n → |s n| < |a| + 1 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesToαα | [247, 1] | [257, 41] | intro n ngt | case h
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
⊢ ∀ (n : ℕ), N ≤ n → |s n| < |a| + 1 | case h
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
n : ℕ
ngt : N ≤ n
⊢ |s n| < |a| + 1 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesToαα | [247, 1] | [257, 41] | calc
|s n| = |s n - a + a| := by
congr
abel
_ ≤ |s n - a| + |a| := (abs_add _ _)
_ < |a| + 1 := by linarith [h n ngt] | case h
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
n : ℕ
ngt : N ≤ n
⊢ |s n| < |a| + 1 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesToαα | [247, 1] | [257, 41] | congr | s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
n : ℕ
ngt : N ≤ n
⊢ |s n| = |s n - a + a| | case e_a
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
n : ℕ
ngt : N ≤ n
⊢ s n = s n - a + a |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesToαα | [247, 1] | [257, 41] | abel | case e_a
s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
n : ℕ
ngt : N ≤ n
⊢ s n = s n - a + a | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.exists_abs_le_of_convergesToαα | [247, 1] | [257, 41] | linarith [h n ngt] | s : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
N : ℕ
h : ∀ n ≥ N, |s n - a| < 1
n : ℕ
ngt : N ≤ n
⊢ |s n - a| + |a| < |a| + 1 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.aux | [275, 1] | [283, 8] | intro ε εpos | s t : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t 0
⊢ ConvergesTo (fun n => s n * t n) 0 | s t : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t 0
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun n => s n * t n) n - 0| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.aux | [275, 1] | [283, 8] | dsimp | s t : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t 0
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |(fun n => s n * t n) n - 0| < ε | s t : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t 0
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S06_Sequences_and_Convergence.lean | C03S06.aux | [275, 1] | [283, 8] | rcases exists_abs_le_of_convergesTo cs with ⟨N₀, B, h₀⟩ | s t : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t 0
ε : ℝ
εpos : ε > 0
⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε | case intro.intro
s t : ℕ → ℝ
a : ℝ
cs : ConvergesTo s a
ct : ConvergesTo t 0
ε : ℝ
εpos : ε > 0
N₀ : ℕ
B : ℝ
h₀ : ∀ (n : ℕ), N₀ ≤ n → |s n| < B
⊢ ∃ N, ∀ n ≥ N, |s n * t n - 0| < ε |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.