url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb1
[222, 1]
[223, 8]
sorry
α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊓ (x ⊔ y) = x
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb2
[225, 1]
[226, 8]
sorry
α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊔ x ⊓ y = x
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb1αα
[230, 1]
[235, 20]
apply le_antisymm
α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊓ (x ⊔ y) = x
case a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊓ (x ⊔ y) ≤ x case a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x ⊓ (x ⊔ y)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb1αα
[230, 1]
[235, 20]
apply le_inf
case a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x ⊓ (x ⊔ y)
case a.a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x case a.a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x ⊔ y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb1αα
[230, 1]
[235, 20]
apply le_sup_left
case a.a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x ⊔ y
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb1αα
[230, 1]
[235, 20]
apply inf_le_left
case a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊓ (x ⊔ y) ≤ x
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb1αα
[230, 1]
[235, 20]
apply le_refl
case a.a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb2αα
[237, 1]
[242, 20]
apply le_antisymm
α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊔ x ⊓ y = x
case a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊔ x ⊓ y ≤ x case a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x ⊔ x ⊓ y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb2αα
[237, 1]
[242, 20]
apply le_sup_left
case a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x ⊔ x ⊓ y
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb2αα
[237, 1]
[242, 20]
apply sup_le
case a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊔ x ⊓ y ≤ x
case a.a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x case a.a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊓ y ≤ x
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb2αα
[237, 1]
[242, 20]
apply inf_le_left
case a.a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ⊓ y ≤ x
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
absorb2αα
[237, 1]
[242, 20]
apply le_refl
case a.a α : Type u_1 inst✝ : Lattice α x y z : α ⊢ x ≤ x
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
aux1
[350, 1]
[352, 26]
rw [← sub_self a, sub_eq_add_neg, sub_eq_add_neg, add_comm, add_comm b]
R : Type u_1 inst✝ : StrictOrderedRing R a b c : R h : a ≤ b ⊢ 0 ≤ b - a
R : Type u_1 inst✝ : StrictOrderedRing R a b c : R h : a ≤ b ⊢ -a + a ≤ -a + b
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
aux1
[350, 1]
[352, 26]
apply add_le_add_left h
R : Type u_1 inst✝ : StrictOrderedRing R a b c : R h : a ≤ b ⊢ -a + a ≤ -a + b
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
aux2
[354, 1]
[356, 26]
rw [← add_zero a, ← sub_add_cancel b a, add_comm (b - a)]
R : Type u_1 inst✝ : StrictOrderedRing R a b c : R h : 0 ≤ b - a ⊢ a ≤ b
R : Type u_1 inst✝ : StrictOrderedRing R a b c : R h : 0 ≤ b - a ⊢ a + 0 ≤ a + (b - a)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean
aux2
[354, 1]
[356, 26]
apply add_le_add_left h
R : Type u_1 inst✝ : StrictOrderedRing R a b c : R h : 0 ≤ b - a ⊢ a + 0 ≤ a + (b - a)
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C09_Topology/S03_Topological_Spaces.lean
aux
[347, 1]
[355, 89]
simpa [and_assoc] using ((nhds_basis_opens' x).comap c).tendsto_left_iff.mp h V' V'_in
X✝ : Type u_1 Y✝ : Type u_2 X : Type u_3 Y : Type u_4 A : Type u_5 inst✝ : TopologicalSpace X c : A → X f : A → Y x : X F : Filter Y h : Tendsto f (comap c (𝓝 x)) F V' : Set Y V'_in : V' ∈ F ⊢ ∃ V ∈ 𝓝 x, IsOpen V ∧ c ⁻¹' V ⊆ f ⁻¹' V'
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C07_Hierarchies/S01_Basics.lean
left_inv_eq_right_inv₁
[269, 1]
[270, 90]
rw [← DiaOneClass₁.one_dia c, ← hba, Semigroup₁.dia_assoc, hac, DiaOneClass₁.dia_one b]
M : Type inst✝ : Monoid₁ M a b c : M hba : b ⋄ a = 𝟙 hac : a ⋄ c = 𝟙 ⊢ b = c
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C07_Hierarchies/S01_Basics.lean
dia_inv
[306, 1]
[310, 51]
rw [← inv_dia a⁻¹, inv_eq_of_dia (inv_dia a)]
G : Type inst✝ : Group₁ G a : G ⊢ a ⋄ a⁻¹ = 𝟙
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C07_Hierarchies/S01_Basics.lean
left_inv_eq_right_inv'
[355, 1]
[357, 54]
rw [← one_mul c, ← hba, mul_assoc₃, hac, mul_one b]
M : Type inst✝ : Monoid₃ M a b c : M hba : b * a = 1 hac : a * c = 1 ⊢ b = c
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C07_Hierarchies/S01_Basics.lean
Group₃.mul_inv
[418, 1]
[423, 48]
rw [← inv_mul a⁻¹, inv_eq_of_mul (inv_mul a)]
G : Type inst✝ : Group₃ G a : G ⊢ a * a⁻¹ = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
have : x ∈ g '' univ := by contrapose! hx rw [sbSet, mem_iUnion] use 0 rw [sbAux, mem_diff] exact ⟨mem_univ _, hx⟩
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ sbSet f g ⊢ g (invFun g x) = x
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ sbSet f g this : x ∈ g '' univ ⊢ g (invFun g x) = x
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
have : ∃ y, g y = x := by simp at this assumption
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ sbSet f g this : x ∈ g '' univ ⊢ g (invFun g x) = x
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ sbSet f g this✝ : x ∈ g '' univ this : ∃ y, g y = x ⊢ g (invFun g x) = x
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
exact invFun_eq this
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ sbSet f g this✝ : x ∈ g '' univ this : ∃ y, g y = x ⊢ g (invFun g x) = x
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
contrapose! hx
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ sbSet f g ⊢ x ∈ g '' univ
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ g '' univ ⊢ x ∈ sbSet f g
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
rw [sbSet, mem_iUnion]
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ g '' univ ⊢ x ∈ sbSet f g
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ g '' univ ⊢ ∃ i, x ∈ sbAux f g i
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
use 0
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ g '' univ ⊢ ∃ i, x ∈ sbAux f g i
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ g '' univ ⊢ x ∈ sbAux f g 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
rw [sbAux, mem_diff]
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ g '' univ ⊢ x ∈ sbAux f g 0
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ g '' univ ⊢ x ∈ univ ∧ x ∉ g '' univ
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
exact ⟨mem_univ _, hx⟩
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ g '' univ ⊢ x ∈ univ ∧ x ∉ g '' univ
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
simp at this
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ sbSet f g this : x ∈ g '' univ ⊢ ∃ y, g y = x
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ sbSet f g this : ∃ y, g y = x ⊢ ∃ y, g y = x
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_right_inv
[188, 1]
[206, 23]
assumption
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α x : α hx : x ∉ sbSet f g this : ∃ y, g y = x ⊢ ∃ y, g y = x
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
set A := sbSet f g with A_def
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f ⊢ Injective (sbFun f g)
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g ⊢ Injective (sbFun f g)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
set h := sbFun f g with h_def
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g ⊢ Injective (sbFun f g)
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g ⊢ Injective h
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
intro x₁ x₂
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g ⊢ Injective h
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α ⊢ h x₁ = h x₂ → x₁ = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
intro (hxeq : h x₁ = h x₂)
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α ⊢ h x₁ = h x₂ → x₁ = x₂
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : h x₁ = h x₂ ⊢ x₁ = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
simp only [h_def, sbFun, ← A_def] at hxeq
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : h x₁ = h x₂ ⊢ x₁ = x₂
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ ⊢ x₁ = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
by_cases xA : x₁ ∈ A ∨ x₂ ∈ A
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ ⊢ x₁ = x₂
case pos α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A ⊢ x₁ = x₂ case neg α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : ¬(x₁ ∈ A ∨ x₂ ∈ A) ⊢ x₁ = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
push_neg at xA
case neg α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : ¬(x₁ ∈ A ∨ x₂ ∈ A) ⊢ x₁ = x₂
case neg α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∉ A ∧ x₂ ∉ A ⊢ x₁ = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
rw [if_neg xA.1, if_neg xA.2] at hxeq
case neg α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∉ A ∧ x₂ ∉ A ⊢ x₁ = x₂
case neg α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : invFun g x₁ = invFun g x₂ xA : x₁ ∉ A ∧ x₂ ∉ A ⊢ x₁ = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
rw [← sb_right_inv f g xA.1, hxeq, sb_right_inv f g xA.2]
case neg α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : invFun g x₁ = invFun g x₂ xA : x₁ ∉ A ∧ x₂ ∉ A ⊢ x₁ = x₂
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
wlog x₁A : x₁ ∈ A generalizing x₁ x₂ hxeq xA
case pos α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A ⊢ x₁ = x₂
case pos.inr α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A this : ∀ ⦃x₁ x₂ : α⦄, ((if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂) → x₁ ∈ A ∨ x₂ ∈ A → x₁ ∈ A → x₁ = x₂ x₁A : x₁ ∉ A ⊢ x₁ = x₂ α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A ⊢ x₁ = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
have x₂A : x₂ ∈ A := by apply _root_.not_imp_self.mp intro (x₂nA : x₂ ∉ A) rw [if_pos x₁A, if_neg x₂nA] at hxeq rw [A_def, sbSet, mem_iUnion] at x₁A have x₂eq : x₂ = g (f x₁) := by rw [hxeq, sb_right_inv f g x₂nA] rcases x₁A with ⟨n, hn⟩ rw [A_def, sbSet, mem_iUnion] use n + 1 simp [sbAux] exact ⟨x₁, hn, x₂eq.symm⟩
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A ⊢ x₁ = x₂
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A x₂A : x₂ ∈ A ⊢ x₁ = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
rw [if_pos x₁A, if_pos x₂A] at hxeq
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A x₂A : x₂ ∈ A ⊢ x₁ = x₂
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = f x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A x₂A : x₂ ∈ A ⊢ x₁ = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
exact hf hxeq
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = f x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A x₂A : x₂ ∈ A ⊢ x₁ = x₂
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
symm
case pos.inr α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A this : ∀ ⦃x₁ x₂ : α⦄, ((if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂) → x₁ ∈ A ∨ x₂ ∈ A → x₁ ∈ A → x₁ = x₂ x₁A : x₁ ∉ A ⊢ x₁ = x₂
case pos.inr α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A this : ∀ ⦃x₁ x₂ : α⦄, ((if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂) → x₁ ∈ A ∨ x₂ ∈ A → x₁ ∈ A → x₁ = x₂ x₁A : x₁ ∉ A ⊢ x₂ = x₁
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
apply this hxeq.symm xA.symm (xA.resolve_left x₁A)
case pos.inr α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A this : ∀ ⦃x₁ x₂ : α⦄, ((if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂) → x₁ ∈ A ∨ x₂ ∈ A → x₁ ∈ A → x₁ = x₂ x₁A : x₁ ∉ A ⊢ x₂ = x₁
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
apply _root_.not_imp_self.mp
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A ⊢ x₂ ∈ A
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A ⊢ x₂ ∉ A → x₂ ∈ A
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
intro (x₂nA : x₂ ∉ A)
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A ⊢ x₂ ∉ A → x₂ ∈ A
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A x₂nA : x₂ ∉ A ⊢ x₂ ∈ A
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
rw [if_pos x₁A, if_neg x₂nA] at hxeq
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A x₂nA : x₂ ∉ A ⊢ x₂ ∈ A
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A x₂nA : x₂ ∉ A ⊢ x₂ ∈ A
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
rw [A_def, sbSet, mem_iUnion] at x₁A
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : x₁ ∈ A x₂nA : x₂ ∉ A ⊢ x₂ ∈ A
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : ∃ i, x₁ ∈ sbAux f g i x₂nA : x₂ ∉ A ⊢ x₂ ∈ A
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
have x₂eq : x₂ = g (f x₁) := by rw [hxeq, sb_right_inv f g x₂nA]
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : ∃ i, x₁ ∈ sbAux f g i x₂nA : x₂ ∉ A ⊢ x₂ ∈ A
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : ∃ i, x₁ ∈ sbAux f g i x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) ⊢ x₂ ∈ A
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
rcases x₁A with ⟨n, hn⟩
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : ∃ i, x₁ ∈ sbAux f g i x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) ⊢ x₂ ∈ A
case intro α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) n : ℕ hn : x₁ ∈ sbAux f g n ⊢ x₂ ∈ A
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
rw [A_def, sbSet, mem_iUnion]
case intro α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) n : ℕ hn : x₁ ∈ sbAux f g n ⊢ x₂ ∈ A
case intro α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) n : ℕ hn : x₁ ∈ sbAux f g n ⊢ ∃ i, x₂ ∈ sbAux f g i
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
use n + 1
case intro α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) n : ℕ hn : x₁ ∈ sbAux f g n ⊢ ∃ i, x₂ ∈ sbAux f g i
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) n : ℕ hn : x₁ ∈ sbAux f g n ⊢ x₂ ∈ sbAux f g (n + 1)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
simp [sbAux]
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) n : ℕ hn : x₁ ∈ sbAux f g n ⊢ x₂ ∈ sbAux f g (n + 1)
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) n : ℕ hn : x₁ ∈ sbAux f g n ⊢ ∃ a ∈ sbAux f g n, g (f a) = x₂
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
exact ⟨x₁, hn, x₂eq.symm⟩
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₂nA : x₂ ∉ A x₂eq : x₂ = g (f x₁) n : ℕ hn : x₁ ∈ sbAux f g n ⊢ ∃ a ∈ sbAux f g n, g (f a) = x₂
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_injective
[236, 1]
[274, 60]
rw [hxeq, sb_right_inv f g x₂nA]
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g x₁ x₂ : α hxeq : f x₁ = invFun g x₂ xA : x₁ ∈ A ∨ x₂ ∈ A x₁A : ∃ i, x₁ ∈ sbAux f g i x₂nA : x₂ ∉ A ⊢ x₂ = g (f x₁)
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
set A := sbSet f g with A_def
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g ⊢ Surjective (sbFun f g)
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g ⊢ Surjective (sbFun f g)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
set h := sbFun f g with h_def
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g ⊢ Surjective (sbFun f g)
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g ⊢ Surjective h
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
intro y
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g ⊢ Surjective h
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β ⊢ ∃ a, h a = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
by_cases gyA : g y ∈ A
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β ⊢ ∃ a, h a = y
case pos α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : g y ∈ A ⊢ ∃ a, h a = y case neg α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : g y ∉ A ⊢ ∃ a, h a = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
use g y
case neg α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : g y ∉ A ⊢ ∃ a, h a = y
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : g y ∉ A ⊢ h (g y) = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
simp only [h_def, sbFun, if_neg gyA]
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : g y ∉ A ⊢ h (g y) = y
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : g y ∉ A ⊢ invFun g (g y) = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
apply leftInverse_invFun hg
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : g y ∉ A ⊢ invFun g (g y) = y
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
rw [A_def, sbSet, mem_iUnion] at gyA
case pos α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : g y ∈ A ⊢ ∃ a, h a = y
case pos α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : ∃ i, g y ∈ sbAux f g i ⊢ ∃ a, h a = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
rcases gyA with ⟨n, hn⟩
case pos α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β gyA : ∃ i, g y ∈ sbAux f g i ⊢ ∃ a, h a = y
case pos.intro α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ hn : g y ∈ sbAux f g n ⊢ ∃ a, h a = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
rcases n with _ | n
case pos.intro α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ hn : g y ∈ sbAux f g n ⊢ ∃ a, h a = y
case pos.intro.zero α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β hn : g y ∈ sbAux f g 0 ⊢ ∃ a, h a = y case pos.intro.succ α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ hn : g y ∈ sbAux f g (n + 1) ⊢ ∃ a, h a = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
simp [sbAux] at hn
case pos.intro.succ α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ hn : g y ∈ sbAux f g (n + 1) ⊢ ∃ a, h a = y
case pos.intro.succ α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ hn : ∃ a ∈ sbAux f g n, g (f a) = g y ⊢ ∃ a, h a = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
rcases hn with ⟨x, xmem, hx⟩
case pos.intro.succ α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ hn : ∃ a ∈ sbAux f g n, g (f a) = g y ⊢ ∃ a, h a = y
case pos.intro.succ.intro.intro α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y ⊢ ∃ a, h a = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
use x
case pos.intro.succ.intro.intro α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y ⊢ ∃ a, h a = y
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y ⊢ h x = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
have : x ∈ A := by rw [A_def, sbSet, mem_iUnion] exact ⟨n, xmem⟩
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y ⊢ h x = y
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y this : x ∈ A ⊢ h x = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
simp only [h_def, sbFun, if_pos this]
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y this : x ∈ A ⊢ h x = y
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y this : x ∈ A ⊢ f x = y
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
exact hg hx
case h α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y this : x ∈ A ⊢ f x = y
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
simp [sbAux] at hn
case pos.intro.zero α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β hn : g y ∈ sbAux f g 0 ⊢ ∃ a, h a = y
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
rw [A_def, sbSet, mem_iUnion]
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y ⊢ x ∈ A
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y ⊢ ∃ i, x ∈ sbAux f g i
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean
sb_surjective
[315, 1]
[337, 30]
exact ⟨n, xmem⟩
α : Type u_1 β : Type u_2 inst✝ : Nonempty β f : α → β g : β → α hf : Injective f hg : Injective g A : Set α := sbSet f g A_def : A = sbSet f g h : α → β := sbFun f g h_def : h = sbFun f g y : β n : ℕ x : α xmem : x ∈ sbAux f g n hx : g (f x) = g y ⊢ ∃ i, x ∈ sbAux f g i
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean
even_of_even_sqr
[118, 1]
[120, 25]
rw [pow_two, Nat.prime_two.dvd_mul] at h
m : ℕ h : 2 ∣ m ^ 2 ⊢ 2 ∣ m
m : ℕ h : 2 ∣ m ∨ 2 ∣ m ⊢ 2 ∣ m
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean
even_of_even_sqr
[118, 1]
[120, 25]
cases h <;> assumption
m : ℕ h : 2 ∣ m ∨ 2 ∣ m ⊢ 2 ∣ m
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean
factorization_mul'
[284, 1]
[287, 6]
rw [Nat.factorization_mul mnez nnez]
m n : ℕ mnez : m ≠ 0 nnez : n ≠ 0 p : ℕ ⊢ (m * n).factorization p = m.factorization p + n.factorization p
m n : ℕ mnez : m ≠ 0 nnez : n ≠ 0 p : ℕ ⊢ (m.factorization + n.factorization) p = m.factorization p + n.factorization p
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean
factorization_mul'
[284, 1]
[287, 6]
rfl
m n : ℕ mnez : m ≠ 0 nnez : n ≠ 0 p : ℕ ⊢ (m.factorization + n.factorization) p = m.factorization p + n.factorization p
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean
factorization_pow'
[289, 1]
[292, 6]
rw [Nat.factorization_pow]
n k p : ℕ ⊢ (n ^ k).factorization p = k * n.factorization p
n k p : ℕ ⊢ (k • n.factorization) p = k * n.factorization p
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean
factorization_pow'
[289, 1]
[292, 6]
rfl
n k p : ℕ ⊢ (k • n.factorization) p = k * n.factorization p
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean
Nat.Prime.factorization'
[294, 1]
[297, 7]
rw [prime_p.factorization]
p : ℕ prime_p : p.Prime ⊢ p.factorization p = 1
p : ℕ prime_p : p.Prime ⊢ (Finsupp.single p 1) p = 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean
Nat.Prime.factorization'
[294, 1]
[297, 7]
simp
p : ℕ prime_p : p.Prime ⊢ (Finsupp.single p 1) p = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C09_Topology/S02_Metric_Spaces.lean
cauchySeq_of_le_geometric_two'
[423, 1]
[437, 19]
rw [Metric.cauchySeq_iff']
X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ⊢ CauchySeq u
X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ⊢ ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C09_Topology/S02_Metric_Spaces.lean
cauchySeq_of_le_geometric_two'
[423, 1]
[437, 19]
intro ε ε_pos
X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ⊢ ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε
X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 ⊢ ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C09_Topology/S02_Metric_Spaces.lean
cauchySeq_of_le_geometric_two'
[423, 1]
[437, 19]
obtain ⟨N, hN⟩ : ∃ N : ℕ, 1 / 2 ^ N * 2 < ε := by sorry
X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 ⊢ ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε
case intro X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 N : ℕ hN : 1 / 2 ^ N * 2 < ε ⊢ ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C09_Topology/S02_Metric_Spaces.lean
cauchySeq_of_le_geometric_two'
[423, 1]
[437, 19]
use N
case intro X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 N : ℕ hN : 1 / 2 ^ N * 2 < ε ⊢ ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε
case h X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 N : ℕ hN : 1 / 2 ^ N * 2 < ε ⊢ ∀ n ≥ N, dist (u n) (u N) < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C09_Topology/S02_Metric_Spaces.lean
cauchySeq_of_le_geometric_two'
[423, 1]
[437, 19]
intro n hn
case h X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 N : ℕ hN : 1 / 2 ^ N * 2 < ε ⊢ ∀ n ≥ N, dist (u n) (u N) < ε
case h X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 N : ℕ hN : 1 / 2 ^ N * 2 < ε n : ℕ hn : n ≥ N ⊢ dist (u n) (u N) < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C09_Topology/S02_Metric_Spaces.lean
cauchySeq_of_le_geometric_two'
[423, 1]
[437, 19]
obtain ⟨k, rfl : n = N + k⟩ := le_iff_exists_add.mp hn
case h X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 N : ℕ hN : 1 / 2 ^ N * 2 < ε n : ℕ hn : n ≥ N ⊢ dist (u n) (u N) < ε
case h.intro X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 N : ℕ hN : 1 / 2 ^ N * 2 < ε k : ℕ hn : N + k ≥ N ⊢ dist (u (N + k)) (u N) < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C09_Topology/S02_Metric_Spaces.lean
cauchySeq_of_le_geometric_two'
[423, 1]
[437, 19]
calc dist (u (N + k)) (u N) = dist (u (N + 0)) (u (N + k)) := sorry _ ≤ ∑ i in range k, dist (u (N + i)) (u (N + (i + 1))) := sorry _ ≤ ∑ i in range k, (1 / 2 : ℝ) ^ (N + i) := sorry _ = 1 / 2 ^ N * ∑ i in range k, (1 / 2 : ℝ) ^ i := sorry _ ≤ 1 / 2 ^ N * 2 := sorry _ < ε := sorry
case h.intro X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 N : ℕ hN : 1 / 2 ^ N * 2 < ε k : ℕ hn : N + k ≥ N ⊢ dist (u (N + k)) (u N) < ε
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C09_Topology/S02_Metric_Spaces.lean
cauchySeq_of_le_geometric_two'
[423, 1]
[437, 19]
sorry
X : Type u_1 inst✝ : MetricSpace X a b c : X r : ℝ u : ℕ → X hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n ε : ℝ ε_pos : ε > 0 ⊢ ∃ N, 1 / 2 ^ N * 2 < ε
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S02_Rings.lean
chineseMap_inj
[260, 1]
[264, 58]
rw [chineseMap, injective_lift_iff, ker_Pi_Quotient_mk]
ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : ι → Ideal R ⊢ Injective ⇑(chineseMap I)
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S02_Rings.lean
isCoprime_Inf
[291, 1]
[311, 87]
classical simp_rw [isCoprime_iff_add] at * induction s using Finset.induction with | empty => simp | @insert i s _ hs => rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top] set K := ⨅ j ∈ s, J j calc 1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm _ = I + K * (I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one] _ = (1 + K) * I + K * J i := by ring _ ≤ I + K ⊓ J i := by gcongr ; apply mul_le_left ; apply mul_le_inf
ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R s : Finset ι hf : ∀ j ∈ s, IsCoprime I (J j) ⊢ IsCoprime I (⨅ j ∈ s, J j)
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S02_Rings.lean
isCoprime_Inf
[291, 1]
[311, 87]
simp_rw [isCoprime_iff_add] at *
ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R s : Finset ι hf : ∀ j ∈ s, IsCoprime I (J j) ⊢ IsCoprime I (⨅ j ∈ s, J j)
ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R s : Finset ι hf : ∀ j ∈ s, I + J j = 1 ⊢ I + ⨅ j ∈ s, J j = 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S02_Rings.lean
isCoprime_Inf
[291, 1]
[311, 87]
induction s using Finset.induction with | empty => simp | @insert i s _ hs => rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top] set K := ⨅ j ∈ s, J j calc 1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm _ = I + K * (I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one] _ = (1 + K) * I + K * J i := by ring _ ≤ I + K ⊓ J i := by gcongr ; apply mul_le_left ; apply mul_le_inf
ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R s : Finset ι hf : ∀ j ∈ s, I + J j = 1 ⊢ I + ⨅ j ∈ s, J j = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S02_Rings.lean
isCoprime_Inf
[291, 1]
[311, 87]
simp
case empty ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R hf : ∀ j ∈ ∅, I + J j = 1 ⊢ I + ⨅ j ∈ ∅, J j = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S02_Rings.lean
isCoprime_Inf
[291, 1]
[311, 87]
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
case insert ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R i : ι s : Finset ι a✝ : i ∉ s hs : (∀ j ∈ s, I + J j = 1) → I + ⨅ j ∈ s, J j = 1 hf : ∀ j ∈ insert i s, I + J j = 1 ⊢ I + ⨅ j ∈ insert i s, J j = 1
case insert ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R i : ι s : Finset ι a✝ : i ∉ s hs : (∀ j ∈ s, I + J j = 1) → I + ⨅ j ∈ s, J j = 1 hf : ∀ j ∈ insert i s, I + J j = 1 ⊢ 1 ≤ I + (⨅ x ∈ s, J x) ⊓ J i
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S02_Rings.lean
isCoprime_Inf
[291, 1]
[311, 87]
set K := ⨅ j ∈ s, J j
case insert ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R i : ι s : Finset ι a✝ : i ∉ s hs : (∀ j ∈ s, I + J j = 1) → I + ⨅ j ∈ s, J j = 1 hf : ∀ j ∈ insert i s, I + J j = 1 ⊢ 1 ≤ I + (⨅ x ∈ s, J x) ⊓ J i
case insert ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R i : ι s : Finset ι a✝ : i ∉ s hf : ∀ j ∈ insert i s, I + J j = 1 K : Ideal R := ⨅ j ∈ s, J j hs : (∀ j ∈ s, I + J j = 1) → I + K = 1 ⊢ 1 ≤ I + K ⊓ J i
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C08_Groups_and_Rings/S02_Rings.lean
isCoprime_Inf
[291, 1]
[311, 87]
calc 1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm _ = I + K * (I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one] _ = (1 + K) * I + K * J i := by ring _ ≤ I + K ⊓ J i := by gcongr ; apply mul_le_left ; apply mul_le_inf
case insert ι : Type u_1 R : Type u_2 inst✝ : CommRing R I : Ideal R J : ι → Ideal R i : ι s : Finset ι a✝ : i ∉ s hf : ∀ j ∈ insert i s, I + J j = 1 K : Ideal R := ⨅ j ∈ s, J j hs : (∀ j ∈ s, I + J j = 1) → I + K = 1 ⊢ 1 ≤ I + K ⊓ J i
no goals