url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb1 | [222, 1] | [223, 8] | sorry | α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊓ (x ⊔ y) = x | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb2 | [225, 1] | [226, 8] | sorry | α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊔ x ⊓ y = x | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb1αα | [230, 1] | [235, 20] | apply le_antisymm | α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊓ (x ⊔ y) = x | case a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊓ (x ⊔ y) ≤ x
case a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x ⊓ (x ⊔ y) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb1αα | [230, 1] | [235, 20] | apply le_inf | case a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x ⊓ (x ⊔ y) | case a.a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x
case a.a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x ⊔ y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb1αα | [230, 1] | [235, 20] | apply le_sup_left | case a.a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x ⊔ y | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb1αα | [230, 1] | [235, 20] | apply inf_le_left | case a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊓ (x ⊔ y) ≤ x | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb1αα | [230, 1] | [235, 20] | apply le_refl | case a.a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb2αα | [237, 1] | [242, 20] | apply le_antisymm | α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊔ x ⊓ y = x | case a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊔ x ⊓ y ≤ x
case a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x ⊔ x ⊓ y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb2αα | [237, 1] | [242, 20] | apply le_sup_left | case a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x ⊔ x ⊓ y | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb2αα | [237, 1] | [242, 20] | apply sup_le | case a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊔ x ⊓ y ≤ x | case a.a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x
case a.a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊓ y ≤ x |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb2αα | [237, 1] | [242, 20] | apply inf_le_left | case a.a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ⊓ y ≤ x | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | absorb2αα | [237, 1] | [242, 20] | apply le_refl | case a.a
α : Type u_1
inst✝ : Lattice α
x y z : α
⊢ x ≤ x | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | aux1 | [350, 1] | [352, 26] | rw [← sub_self a, sub_eq_add_neg, sub_eq_add_neg, add_comm, add_comm b] | R : Type u_1
inst✝ : StrictOrderedRing R
a b c : R
h : a ≤ b
⊢ 0 ≤ b - a | R : Type u_1
inst✝ : StrictOrderedRing R
a b c : R
h : a ≤ b
⊢ -a + a ≤ -a + b |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | aux1 | [350, 1] | [352, 26] | apply add_le_add_left h | R : Type u_1
inst✝ : StrictOrderedRing R
a b c : R
h : a ≤ b
⊢ -a + a ≤ -a + b | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | aux2 | [354, 1] | [356, 26] | rw [← add_zero a, ← sub_add_cancel b a, add_comm (b - a)] | R : Type u_1
inst✝ : StrictOrderedRing R
a b c : R
h : 0 ≤ b - a
⊢ a ≤ b | R : Type u_1
inst✝ : StrictOrderedRing R
a b c : R
h : 0 ≤ b - a
⊢ a + 0 ≤ a + (b - a) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C02_Basics/S05_Proving_Facts_about_Algebraic_Structures.lean | aux2 | [354, 1] | [356, 26] | apply add_le_add_left h | R : Type u_1
inst✝ : StrictOrderedRing R
a b c : R
h : 0 ≤ b - a
⊢ a + 0 ≤ a + (b - a) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C09_Topology/S03_Topological_Spaces.lean | aux | [347, 1] | [355, 89] | simpa [and_assoc] using ((nhds_basis_opens' x).comap c).tendsto_left_iff.mp h V' V'_in | X✝ : Type u_1
Y✝ : Type u_2
X : Type u_3
Y : Type u_4
A : Type u_5
inst✝ : TopologicalSpace X
c : A → X
f : A → Y
x : X
F : Filter Y
h : Tendsto f (comap c (𝓝 x)) F
V' : Set Y
V'_in : V' ∈ F
⊢ ∃ V ∈ 𝓝 x, IsOpen V ∧ c ⁻¹' V ⊆ f ⁻¹' V' | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C07_Hierarchies/S01_Basics.lean | left_inv_eq_right_inv₁ | [269, 1] | [270, 90] | rw [← DiaOneClass₁.one_dia c, ← hba, Semigroup₁.dia_assoc, hac, DiaOneClass₁.dia_one b] | M : Type
inst✝ : Monoid₁ M
a b c : M
hba : b ⋄ a = 𝟙
hac : a ⋄ c = 𝟙
⊢ b = c | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C07_Hierarchies/S01_Basics.lean | dia_inv | [306, 1] | [310, 51] | rw [← inv_dia a⁻¹, inv_eq_of_dia (inv_dia a)] | G : Type
inst✝ : Group₁ G
a : G
⊢ a ⋄ a⁻¹ = 𝟙 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C07_Hierarchies/S01_Basics.lean | left_inv_eq_right_inv' | [355, 1] | [357, 54] | rw [← one_mul c, ← hba, mul_assoc₃, hac, mul_one b] | M : Type
inst✝ : Monoid₃ M
a b c : M
hba : b * a = 1
hac : a * c = 1
⊢ b = c | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C07_Hierarchies/S01_Basics.lean | Group₃.mul_inv | [418, 1] | [423, 48] | rw [← inv_mul a⁻¹, inv_eq_of_mul (inv_mul a)] | G : Type
inst✝ : Group₃ G
a : G
⊢ a * a⁻¹ = 1 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | have : x ∈ g '' univ := by
contrapose! hx
rw [sbSet, mem_iUnion]
use 0
rw [sbAux, mem_diff]
exact ⟨mem_univ _, hx⟩ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ sbSet f g
⊢ g (invFun g x) = x | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ sbSet f g
this : x ∈ g '' univ
⊢ g (invFun g x) = x |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | have : ∃ y, g y = x := by
simp at this
assumption | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ sbSet f g
this : x ∈ g '' univ
⊢ g (invFun g x) = x | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ sbSet f g
this✝ : x ∈ g '' univ
this : ∃ y, g y = x
⊢ g (invFun g x) = x |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | exact invFun_eq this | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ sbSet f g
this✝ : x ∈ g '' univ
this : ∃ y, g y = x
⊢ g (invFun g x) = x | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | contrapose! hx | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ sbSet f g
⊢ x ∈ g '' univ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ g '' univ
⊢ x ∈ sbSet f g |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | rw [sbSet, mem_iUnion] | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ g '' univ
⊢ x ∈ sbSet f g | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ g '' univ
⊢ ∃ i, x ∈ sbAux f g i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | use 0 | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ g '' univ
⊢ ∃ i, x ∈ sbAux f g i | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ g '' univ
⊢ x ∈ sbAux f g 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | rw [sbAux, mem_diff] | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ g '' univ
⊢ x ∈ sbAux f g 0 | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ g '' univ
⊢ x ∈ univ ∧ x ∉ g '' univ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | exact ⟨mem_univ _, hx⟩ | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ g '' univ
⊢ x ∈ univ ∧ x ∉ g '' univ | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | simp at this | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ sbSet f g
this : x ∈ g '' univ
⊢ ∃ y, g y = x | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ sbSet f g
this : ∃ y, g y = x
⊢ ∃ y, g y = x |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_right_inv | [188, 1] | [206, 23] | assumption | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
x : α
hx : x ∉ sbSet f g
this : ∃ y, g y = x
⊢ ∃ y, g y = x | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | set A := sbSet f g with A_def | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
⊢ Injective (sbFun f g) | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
⊢ Injective (sbFun f g) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | set h := sbFun f g with h_def | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
⊢ Injective (sbFun f g) | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
⊢ Injective h |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | intro x₁ x₂ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
⊢ Injective h | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
⊢ h x₁ = h x₂ → x₁ = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | intro (hxeq : h x₁ = h x₂) | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
⊢ h x₁ = h x₂ → x₁ = x₂ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : h x₁ = h x₂
⊢ x₁ = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | simp only [h_def, sbFun, ← A_def] at hxeq | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : h x₁ = h x₂
⊢ x₁ = x₂ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
⊢ x₁ = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | by_cases xA : x₁ ∈ A ∨ x₂ ∈ A | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
⊢ x₁ = x₂ | case pos
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
⊢ x₁ = x₂
case neg
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : ¬(x₁ ∈ A ∨ x₂ ∈ A)
⊢ x₁ = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | push_neg at xA | case neg
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : ¬(x₁ ∈ A ∨ x₂ ∈ A)
⊢ x₁ = x₂ | case neg
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∉ A ∧ x₂ ∉ A
⊢ x₁ = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | rw [if_neg xA.1, if_neg xA.2] at hxeq | case neg
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∉ A ∧ x₂ ∉ A
⊢ x₁ = x₂ | case neg
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : invFun g x₁ = invFun g x₂
xA : x₁ ∉ A ∧ x₂ ∉ A
⊢ x₁ = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | rw [← sb_right_inv f g xA.1, hxeq, sb_right_inv f g xA.2] | case neg
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : invFun g x₁ = invFun g x₂
xA : x₁ ∉ A ∧ x₂ ∉ A
⊢ x₁ = x₂ | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | wlog x₁A : x₁ ∈ A generalizing x₁ x₂ hxeq xA | case pos
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
⊢ x₁ = x₂ | case pos.inr
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
this :
∀ ⦃x₁ x₂ : α⦄,
((if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂) → x₁ ∈ A ∨ x₂ ∈ A → x₁ ∈ A → x₁ = x₂
x₁A : x₁ ∉ A
⊢ x₁ = x₂
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
⊢ x₁ = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | have x₂A : x₂ ∈ A := by
apply _root_.not_imp_self.mp
intro (x₂nA : x₂ ∉ A)
rw [if_pos x₁A, if_neg x₂nA] at hxeq
rw [A_def, sbSet, mem_iUnion] at x₁A
have x₂eq : x₂ = g (f x₁) := by
rw [hxeq, sb_right_inv f g x₂nA]
rcases x₁A with ⟨n, hn⟩
rw [A_def, sbSet, mem_iUnion]
use n + 1
simp [sbAux]
exact ⟨x₁, hn, x₂eq.symm⟩ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
⊢ x₁ = x₂ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
x₂A : x₂ ∈ A
⊢ x₁ = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | rw [if_pos x₁A, if_pos x₂A] at hxeq | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
x₂A : x₂ ∈ A
⊢ x₁ = x₂ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = f x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
x₂A : x₂ ∈ A
⊢ x₁ = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | exact hf hxeq | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = f x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
x₂A : x₂ ∈ A
⊢ x₁ = x₂ | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | symm | case pos.inr
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
this :
∀ ⦃x₁ x₂ : α⦄,
((if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂) → x₁ ∈ A ∨ x₂ ∈ A → x₁ ∈ A → x₁ = x₂
x₁A : x₁ ∉ A
⊢ x₁ = x₂ | case pos.inr
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
this :
∀ ⦃x₁ x₂ : α⦄,
((if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂) → x₁ ∈ A ∨ x₂ ∈ A → x₁ ∈ A → x₁ = x₂
x₁A : x₁ ∉ A
⊢ x₂ = x₁ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | apply this hxeq.symm xA.symm (xA.resolve_left x₁A) | case pos.inr
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
this :
∀ ⦃x₁ x₂ : α⦄,
((if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂) → x₁ ∈ A ∨ x₂ ∈ A → x₁ ∈ A → x₁ = x₂
x₁A : x₁ ∉ A
⊢ x₂ = x₁ | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | apply _root_.not_imp_self.mp | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
⊢ x₂ ∈ A | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
⊢ x₂ ∉ A → x₂ ∈ A |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | intro (x₂nA : x₂ ∉ A) | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
⊢ x₂ ∉ A → x₂ ∈ A | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
x₂nA : x₂ ∉ A
⊢ x₂ ∈ A |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | rw [if_pos x₁A, if_neg x₂nA] at hxeq | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : (if x₁ ∈ A then f x₁ else invFun g x₁) = if x₂ ∈ A then f x₂ else invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
x₂nA : x₂ ∉ A
⊢ x₂ ∈ A | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
x₂nA : x₂ ∉ A
⊢ x₂ ∈ A |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | rw [A_def, sbSet, mem_iUnion] at x₁A | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : x₁ ∈ A
x₂nA : x₂ ∉ A
⊢ x₂ ∈ A | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : ∃ i, x₁ ∈ sbAux f g i
x₂nA : x₂ ∉ A
⊢ x₂ ∈ A |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | have x₂eq : x₂ = g (f x₁) := by
rw [hxeq, sb_right_inv f g x₂nA] | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : ∃ i, x₁ ∈ sbAux f g i
x₂nA : x₂ ∉ A
⊢ x₂ ∈ A | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : ∃ i, x₁ ∈ sbAux f g i
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
⊢ x₂ ∈ A |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | rcases x₁A with ⟨n, hn⟩ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : ∃ i, x₁ ∈ sbAux f g i
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
⊢ x₂ ∈ A | case intro
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
n : ℕ
hn : x₁ ∈ sbAux f g n
⊢ x₂ ∈ A |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | rw [A_def, sbSet, mem_iUnion] | case intro
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
n : ℕ
hn : x₁ ∈ sbAux f g n
⊢ x₂ ∈ A | case intro
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
n : ℕ
hn : x₁ ∈ sbAux f g n
⊢ ∃ i, x₂ ∈ sbAux f g i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | use n + 1 | case intro
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
n : ℕ
hn : x₁ ∈ sbAux f g n
⊢ ∃ i, x₂ ∈ sbAux f g i | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
n : ℕ
hn : x₁ ∈ sbAux f g n
⊢ x₂ ∈ sbAux f g (n + 1) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | simp [sbAux] | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
n : ℕ
hn : x₁ ∈ sbAux f g n
⊢ x₂ ∈ sbAux f g (n + 1) | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
n : ℕ
hn : x₁ ∈ sbAux f g n
⊢ ∃ a ∈ sbAux f g n, g (f a) = x₂ |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | exact ⟨x₁, hn, x₂eq.symm⟩ | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₂nA : x₂ ∉ A
x₂eq : x₂ = g (f x₁)
n : ℕ
hn : x₁ ∈ sbAux f g n
⊢ ∃ a ∈ sbAux f g n, g (f a) = x₂ | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_injective | [236, 1] | [274, 60] | rw [hxeq, sb_right_inv f g x₂nA] | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
x₁ x₂ : α
hxeq : f x₁ = invFun g x₂
xA : x₁ ∈ A ∨ x₂ ∈ A
x₁A : ∃ i, x₁ ∈ sbAux f g i
x₂nA : x₂ ∉ A
⊢ x₂ = g (f x₁) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | set A := sbSet f g with A_def | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
⊢ Surjective (sbFun f g) | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
⊢ Surjective (sbFun f g) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | set h := sbFun f g with h_def | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
⊢ Surjective (sbFun f g) | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
⊢ Surjective h |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | intro y | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
⊢ Surjective h | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
⊢ ∃ a, h a = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | by_cases gyA : g y ∈ A | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
⊢ ∃ a, h a = y | case pos
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : g y ∈ A
⊢ ∃ a, h a = y
case neg
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : g y ∉ A
⊢ ∃ a, h a = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | use g y | case neg
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : g y ∉ A
⊢ ∃ a, h a = y | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : g y ∉ A
⊢ h (g y) = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | simp only [h_def, sbFun, if_neg gyA] | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : g y ∉ A
⊢ h (g y) = y | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : g y ∉ A
⊢ invFun g (g y) = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | apply leftInverse_invFun hg | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : g y ∉ A
⊢ invFun g (g y) = y | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | rw [A_def, sbSet, mem_iUnion] at gyA | case pos
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : g y ∈ A
⊢ ∃ a, h a = y | case pos
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : ∃ i, g y ∈ sbAux f g i
⊢ ∃ a, h a = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | rcases gyA with ⟨n, hn⟩ | case pos
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
gyA : ∃ i, g y ∈ sbAux f g i
⊢ ∃ a, h a = y | case pos.intro
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
hn : g y ∈ sbAux f g n
⊢ ∃ a, h a = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | rcases n with _ | n | case pos.intro
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
hn : g y ∈ sbAux f g n
⊢ ∃ a, h a = y | case pos.intro.zero
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
hn : g y ∈ sbAux f g 0
⊢ ∃ a, h a = y
case pos.intro.succ
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
hn : g y ∈ sbAux f g (n + 1)
⊢ ∃ a, h a = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | simp [sbAux] at hn | case pos.intro.succ
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
hn : g y ∈ sbAux f g (n + 1)
⊢ ∃ a, h a = y | case pos.intro.succ
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
hn : ∃ a ∈ sbAux f g n, g (f a) = g y
⊢ ∃ a, h a = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | rcases hn with ⟨x, xmem, hx⟩ | case pos.intro.succ
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
hn : ∃ a ∈ sbAux f g n, g (f a) = g y
⊢ ∃ a, h a = y | case pos.intro.succ.intro.intro
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
⊢ ∃ a, h a = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | use x | case pos.intro.succ.intro.intro
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
⊢ ∃ a, h a = y | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
⊢ h x = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | have : x ∈ A := by
rw [A_def, sbSet, mem_iUnion]
exact ⟨n, xmem⟩ | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
⊢ h x = y | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
this : x ∈ A
⊢ h x = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | simp only [h_def, sbFun, if_pos this] | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
this : x ∈ A
⊢ h x = y | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
this : x ∈ A
⊢ f x = y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | exact hg hx | case h
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
this : x ∈ A
⊢ f x = y | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | simp [sbAux] at hn | case pos.intro.zero
α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
hn : g y ∈ sbAux f g 0
⊢ ∃ a, h a = y | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | rw [A_def, sbSet, mem_iUnion] | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
⊢ x ∈ A | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
⊢ ∃ i, x ∈ sbAux f g i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C04_Sets_and_Functions/S03_The_Schroeder_Bernstein_Theorem.lean | sb_surjective | [315, 1] | [337, 30] | exact ⟨n, xmem⟩ | α : Type u_1
β : Type u_2
inst✝ : Nonempty β
f : α → β
g : β → α
hf : Injective f
hg : Injective g
A : Set α := sbSet f g
A_def : A = sbSet f g
h : α → β := sbFun f g
h_def : h = sbFun f g
y : β
n : ℕ
x : α
xmem : x ∈ sbAux f g n
hx : g (f x) = g y
⊢ ∃ i, x ∈ sbAux f g i | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean | even_of_even_sqr | [118, 1] | [120, 25] | rw [pow_two, Nat.prime_two.dvd_mul] at h | m : ℕ
h : 2 ∣ m ^ 2
⊢ 2 ∣ m | m : ℕ
h : 2 ∣ m ∨ 2 ∣ m
⊢ 2 ∣ m |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean | even_of_even_sqr | [118, 1] | [120, 25] | cases h <;> assumption | m : ℕ
h : 2 ∣ m ∨ 2 ∣ m
⊢ 2 ∣ m | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean | factorization_mul' | [284, 1] | [287, 6] | rw [Nat.factorization_mul mnez nnez] | m n : ℕ
mnez : m ≠ 0
nnez : n ≠ 0
p : ℕ
⊢ (m * n).factorization p = m.factorization p + n.factorization p | m n : ℕ
mnez : m ≠ 0
nnez : n ≠ 0
p : ℕ
⊢ (m.factorization + n.factorization) p = m.factorization p + n.factorization p |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean | factorization_mul' | [284, 1] | [287, 6] | rfl | m n : ℕ
mnez : m ≠ 0
nnez : n ≠ 0
p : ℕ
⊢ (m.factorization + n.factorization) p = m.factorization p + n.factorization p | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean | factorization_pow' | [289, 1] | [292, 6] | rw [Nat.factorization_pow] | n k p : ℕ
⊢ (n ^ k).factorization p = k * n.factorization p | n k p : ℕ
⊢ (k • n.factorization) p = k * n.factorization p |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean | factorization_pow' | [289, 1] | [292, 6] | rfl | n k p : ℕ
⊢ (k • n.factorization) p = k * n.factorization p | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean | Nat.Prime.factorization' | [294, 1] | [297, 7] | rw [prime_p.factorization] | p : ℕ
prime_p : p.Prime
⊢ p.factorization p = 1 | p : ℕ
prime_p : p.Prime
⊢ (Finsupp.single p 1) p = 1 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S01_Irrational_Roots.lean | Nat.Prime.factorization' | [294, 1] | [297, 7] | simp | p : ℕ
prime_p : p.Prime
⊢ (Finsupp.single p 1) p = 1 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C09_Topology/S02_Metric_Spaces.lean | cauchySeq_of_le_geometric_two' | [423, 1] | [437, 19] | rw [Metric.cauchySeq_iff'] | X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
⊢ CauchySeq u | X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
⊢ ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C09_Topology/S02_Metric_Spaces.lean | cauchySeq_of_le_geometric_two' | [423, 1] | [437, 19] | intro ε ε_pos | X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
⊢ ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε | X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
⊢ ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C09_Topology/S02_Metric_Spaces.lean | cauchySeq_of_le_geometric_two' | [423, 1] | [437, 19] | obtain ⟨N, hN⟩ : ∃ N : ℕ, 1 / 2 ^ N * 2 < ε := by sorry | X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
⊢ ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε | case intro
X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
N : ℕ
hN : 1 / 2 ^ N * 2 < ε
⊢ ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C09_Topology/S02_Metric_Spaces.lean | cauchySeq_of_le_geometric_two' | [423, 1] | [437, 19] | use N | case intro
X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
N : ℕ
hN : 1 / 2 ^ N * 2 < ε
⊢ ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε | case h
X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
N : ℕ
hN : 1 / 2 ^ N * 2 < ε
⊢ ∀ n ≥ N, dist (u n) (u N) < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C09_Topology/S02_Metric_Spaces.lean | cauchySeq_of_le_geometric_two' | [423, 1] | [437, 19] | intro n hn | case h
X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
N : ℕ
hN : 1 / 2 ^ N * 2 < ε
⊢ ∀ n ≥ N, dist (u n) (u N) < ε | case h
X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
N : ℕ
hN : 1 / 2 ^ N * 2 < ε
n : ℕ
hn : n ≥ N
⊢ dist (u n) (u N) < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C09_Topology/S02_Metric_Spaces.lean | cauchySeq_of_le_geometric_two' | [423, 1] | [437, 19] | obtain ⟨k, rfl : n = N + k⟩ := le_iff_exists_add.mp hn | case h
X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
N : ℕ
hN : 1 / 2 ^ N * 2 < ε
n : ℕ
hn : n ≥ N
⊢ dist (u n) (u N) < ε | case h.intro
X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
N : ℕ
hN : 1 / 2 ^ N * 2 < ε
k : ℕ
hn : N + k ≥ N
⊢ dist (u (N + k)) (u N) < ε |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C09_Topology/S02_Metric_Spaces.lean | cauchySeq_of_le_geometric_two' | [423, 1] | [437, 19] | calc
dist (u (N + k)) (u N) = dist (u (N + 0)) (u (N + k)) := sorry
_ ≤ ∑ i in range k, dist (u (N + i)) (u (N + (i + 1))) := sorry
_ ≤ ∑ i in range k, (1 / 2 : ℝ) ^ (N + i) := sorry
_ = 1 / 2 ^ N * ∑ i in range k, (1 / 2 : ℝ) ^ i := sorry
_ ≤ 1 / 2 ^ N * 2 := sorry
_ < ε := sorry | case h.intro
X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
N : ℕ
hN : 1 / 2 ^ N * 2 < ε
k : ℕ
hn : N + k ≥ N
⊢ dist (u (N + k)) (u N) < ε | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C09_Topology/S02_Metric_Spaces.lean | cauchySeq_of_le_geometric_two' | [423, 1] | [437, 19] | sorry | X : Type u_1
inst✝ : MetricSpace X
a b c : X
r : ℝ
u : ℕ → X
hu : ∀ (n : ℕ), dist (u n) (u (n + 1)) ≤ (1 / 2) ^ n
ε : ℝ
ε_pos : ε > 0
⊢ ∃ N, 1 / 2 ^ N * 2 < ε | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | chineseMap_inj | [260, 1] | [264, 58] | rw [chineseMap, injective_lift_iff, ker_Pi_Quotient_mk] | ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : ι → Ideal R
⊢ Injective ⇑(chineseMap I) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | classical
simp_rw [isCoprime_iff_add] at *
induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K * (I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1 + K) * I + K * J i := by ring
_ ≤ I + K ⊓ J i := by gcongr ; apply mul_le_left ; apply mul_le_inf | ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
s : Finset ι
hf : ∀ j ∈ s, IsCoprime I (J j)
⊢ IsCoprime I (⨅ j ∈ s, J j) | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | simp_rw [isCoprime_iff_add] at * | ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
s : Finset ι
hf : ∀ j ∈ s, IsCoprime I (J j)
⊢ IsCoprime I (⨅ j ∈ s, J j) | ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
s : Finset ι
hf : ∀ j ∈ s, I + J j = 1
⊢ I + ⨅ j ∈ s, J j = 1 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | induction s using Finset.induction with
| empty =>
simp
| @insert i s _ hs =>
rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top]
set K := ⨅ j ∈ s, J j
calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K * (I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1 + K) * I + K * J i := by ring
_ ≤ I + K ⊓ J i := by gcongr ; apply mul_le_left ; apply mul_le_inf | ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
s : Finset ι
hf : ∀ j ∈ s, I + J j = 1
⊢ I + ⨅ j ∈ s, J j = 1 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | simp | case empty
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
hf : ∀ j ∈ ∅, I + J j = 1
⊢ I + ⨅ j ∈ ∅, J j = 1 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | rw [Finset.iInf_insert, inf_comm, one_eq_top, eq_top_iff, ← one_eq_top] | case insert
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hs : (∀ j ∈ s, I + J j = 1) → I + ⨅ j ∈ s, J j = 1
hf : ∀ j ∈ insert i s, I + J j = 1
⊢ I + ⨅ j ∈ insert i s, J j = 1 | case insert
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hs : (∀ j ∈ s, I + J j = 1) → I + ⨅ j ∈ s, J j = 1
hf : ∀ j ∈ insert i s, I + J j = 1
⊢ 1 ≤ I + (⨅ x ∈ s, J x) ⊓ J i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | set K := ⨅ j ∈ s, J j | case insert
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hs : (∀ j ∈ s, I + J j = 1) → I + ⨅ j ∈ s, J j = 1
hf : ∀ j ∈ insert i s, I + J j = 1
⊢ 1 ≤ I + (⨅ x ∈ s, J x) ⊓ J i | case insert
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ 1 ≤ I + K ⊓ J i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C08_Groups_and_Rings/S02_Rings.lean | isCoprime_Inf | [291, 1] | [311, 87] | calc
1 = I + K := (hs fun j hj ↦ hf j (Finset.mem_insert_of_mem hj)).symm
_ = I + K * (I + J i) := by rw [hf i (Finset.mem_insert_self i s), mul_one]
_ = (1 + K) * I + K * J i := by ring
_ ≤ I + K ⊓ J i := by gcongr ; apply mul_le_left ; apply mul_le_inf | case insert
ι : Type u_1
R : Type u_2
inst✝ : CommRing R
I : Ideal R
J : ι → Ideal R
i : ι
s : Finset ι
a✝ : i ∉ s
hf : ∀ j ∈ insert i s, I + J j = 1
K : Ideal R := ⨅ j ∈ s, J j
hs : (∀ j ∈ s, I + J j = 1) → I + K = 1
⊢ 1 ≤ I + K ⊓ J i | no goals |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.