url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/Diagonalize.lean
QuadraticForm.anisotropic_of_Equivalent
[71, 1]
[81, 16]
simp only [Isometry.map_app, AddEquivClass.map_eq_zero_iff] at h
case intro ι : Type ?u.84107 R✝ : Type ?u.84110 K : Type ?u.84113 M✝ : Type ?u.84116 M₁ : Type ?u.84119 M₂ : Type u_1 M₃ : Type ?u.84125 V : Type ?u.84128 R : Type u_2 M : Type u_3 inst✝⁶ : Field R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : FiniteDimensional R M inst✝² : Invertible 2 Q✝ : QuadraticForm R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ Q : QuadraticForm R M S : QuadraticForm R M₂ val : Isometry Q S x : M₂ hx : ↑S x = 0 h : ↑Q (↑(Isometry.symm val) x) = 0 → ↑(Isometry.symm val) x = 0 ⊢ x = 0
case intro ι : Type ?u.84107 R✝ : Type ?u.84110 K : Type ?u.84113 M✝ : Type ?u.84116 M₁ : Type ?u.84119 M₂ : Type u_1 M₃ : Type ?u.84125 V : Type ?u.84128 R : Type u_2 M : Type u_3 inst✝⁶ : Field R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : FiniteDimensional R M inst✝² : Invertible 2 Q✝ : QuadraticForm R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ Q : QuadraticForm R M S : QuadraticForm R M₂ val : Isometry Q S x : M₂ hx : ↑S x = 0 h : ↑S x = 0 → x = 0 ⊢ x = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/Diagonalize.lean
QuadraticForm.anisotropic_of_Equivalent
[71, 1]
[81, 16]
specialize h hx
case intro ι : Type ?u.84107 R✝ : Type ?u.84110 K : Type ?u.84113 M✝ : Type ?u.84116 M₁ : Type ?u.84119 M₂ : Type u_1 M₃ : Type ?u.84125 V : Type ?u.84128 R : Type u_2 M : Type u_3 inst✝⁶ : Field R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : FiniteDimensional R M inst✝² : Invertible 2 Q✝ : QuadraticForm R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ Q : QuadraticForm R M S : QuadraticForm R M₂ val : Isometry Q S x : M₂ hx : ↑S x = 0 h : ↑S x = 0 → x = 0 ⊢ x = 0
case intro ι : Type ?u.84107 R✝ : Type ?u.84110 K : Type ?u.84113 M✝ : Type ?u.84116 M₁ : Type ?u.84119 M₂ : Type u_1 M₃ : Type ?u.84125 V : Type ?u.84128 R : Type u_2 M : Type u_3 inst✝⁶ : Field R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : FiniteDimensional R M inst✝² : Invertible 2 Q✝ : QuadraticForm R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ Q : QuadraticForm R M S : QuadraticForm R M₂ val : Isometry Q S x : M₂ hx : ↑S x = 0 h : x = 0 ⊢ x = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/Diagonalize.lean
QuadraticForm.anisotropic_of_Equivalent
[71, 1]
[81, 16]
simpa using h
case intro ι : Type ?u.84107 R✝ : Type ?u.84110 K : Type ?u.84113 M✝ : Type ?u.84116 M₁ : Type ?u.84119 M₂ : Type u_1 M₃ : Type ?u.84125 V : Type ?u.84128 R : Type u_2 M : Type u_3 inst✝⁶ : Field R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : FiniteDimensional R M inst✝² : Invertible 2 Q✝ : QuadraticForm R M inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ Q : QuadraticForm R M S : QuadraticForm R M₂ val : Isometry Q S x : M₂ hx : ↑S x = 0 h : x = 0 ⊢ x = 0
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/Diagonalize.lean
QuadraticForm.equivalent_weightedSumSquares_units_of_nondegenerate''
[109, 1]
[116, 10]
sorry
ι : Type ?u.120511 R✝ : Type ?u.120514 K : Type ?u.120517 M✝ : Type ?u.120520 M₁ : Type ?u.120523 M₂ : Type ?u.120526 M₃ : Type ?u.120529 V : Type u_1 R : Type ?u.120535 M : Type ?u.120538 inst✝⁶ : Field R inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : FiniteDimensional R M inst✝² : Invertible 2 Q✝ : QuadraticForm R M inst✝¹ : AddCommGroup V inst✝ : Module ℚ V a : ℕ Q : QuadraticForm ℚ V h : 0 < FiniteDimensional.finrank ℚ V ha : a = FiniteDimensional.finrank ℚ V hQ : BilinForm.Nondegenerate (↑associated Q) ⊢ ∃ w hw1 hw0, Equivalent Q (weightedSumSquares ℚ w)
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Isotropic_of_zero_quadForm_dim_ge1
[169, 1]
[179, 8]
rw [QuadraticForm.Isotropic]
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 ⊢ Isotropic Q
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 ⊢ ¬Anisotropic Q
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Isotropic_of_zero_quadForm_dim_ge1
[169, 1]
[179, 8]
rw [QuadraticForm.Anisotropic]
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 ⊢ ¬Anisotropic Q
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 ⊢ ¬∀ (x : W), ↑Q x = 0 → x = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Isotropic_of_zero_quadForm_dim_ge1
[169, 1]
[179, 8]
have h: ∃ (w : W), w ≠ 0 := by simpa only [ne_eq, rank_zero_iff_forall_zero, not_forall] using h₂
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 ⊢ ¬∀ (x : W), ↑Q x = 0 → x = 0
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 h : ∃ w, w ≠ 0 ⊢ ¬∀ (x : W), ↑Q x = 0 → x = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Isotropic_of_zero_quadForm_dim_ge1
[169, 1]
[179, 8]
obtain ⟨w, hw⟩ := h
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 h : ∃ w, w ≠ 0 ⊢ ¬∀ (x : W), ↑Q x = 0 → x = 0
case intro V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 w : W hw : w ≠ 0 ⊢ ¬∀ (x : W), ↑Q x = 0 → x = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Isotropic_of_zero_quadForm_dim_ge1
[169, 1]
[179, 8]
have : Q w = 0 := by rw [h₁] simp only [zero_apply]
case intro V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 w : W hw : w ≠ 0 ⊢ ¬∀ (x : W), ↑Q x = 0 → x = 0
case intro V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 w : W hw : w ≠ 0 this : ↑Q w = 0 ⊢ ¬∀ (x : W), ↑Q x = 0 → x = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Isotropic_of_zero_quadForm_dim_ge1
[169, 1]
[179, 8]
tauto
case intro V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 w : W hw : w ≠ 0 this : ↑Q w = 0 ⊢ ¬∀ (x : W), ↑Q x = 0 → x = 0
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Isotropic_of_zero_quadForm_dim_ge1
[169, 1]
[179, 8]
simpa only [ne_eq, rank_zero_iff_forall_zero, not_forall] using h₂
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 ⊢ ∃ w, w ≠ 0
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Isotropic_of_zero_quadForm_dim_ge1
[169, 1]
[179, 8]
rw [h₁]
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 w : W hw : w ≠ 0 ⊢ ↑Q w = 0
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 w : W hw : w ≠ 0 ⊢ ↑0 w = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Isotropic_of_zero_quadForm_dim_ge1
[169, 1]
[179, 8]
simp only [zero_apply]
V : Type ?u.14055 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h₁ : Q = 0 h₂ : Module.rank k W ≠ 0 w : W hw : w ≠ 0 ⊢ ↑0 w = 0
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.anisotropic_of_quadForm_dim_zero
[184, 1]
[189, 13]
intro (w : W)
V : Type ?u.23522 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h : Module.rank k W = 0 ⊢ Anisotropic Q
V : Type ?u.23522 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h : Module.rank k W = 0 w : W ⊢ ↑Q w = 0 → w = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.anisotropic_of_quadForm_dim_zero
[184, 1]
[189, 13]
intro
V : Type ?u.23522 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h : Module.rank k W = 0 w : W ⊢ ↑Q w = 0 → w = 0
V : Type ?u.23522 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h : Module.rank k W = 0 w : W a✝ : ↑Q w = 0 ⊢ w = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.anisotropic_of_quadForm_dim_zero
[184, 1]
[189, 13]
rw [rank_zero_iff_forall_zero] at h
V : Type ?u.23522 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h : Module.rank k W = 0 w : W a✝ : ↑Q w = 0 ⊢ w = 0
V : Type ?u.23522 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h : ∀ (x : W), x = 0 w : W a✝ : ↑Q w = 0 ⊢ w = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.anisotropic_of_quadForm_dim_zero
[184, 1]
[189, 13]
exact h w
V : Type ?u.23522 inst✝⁵ : AddCommGroup V inst✝⁴ : Module ℚ V inst✝³ : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝² : Field k inst✝¹ : AddCommGroup W inst✝ : Module k W Q : QuadraticForm k W h : ∀ (x : W), x = 0 w : W a✝ : ↑Q w = 0 ⊢ w = 0
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
intro F
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 ⊢ ∀ (F : QuadraticForm ℚ V), Hasse_Minkowski F
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ Hasse_Minkowski F
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
rw [Hasse_Minkowski]
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ Hasse_Minkowski F
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ Isotropic F ↔ EverywhereLocallyIsotropic F
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
constructor
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ Isotropic F ↔ EverywhereLocallyIsotropic F
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ Isotropic F → EverywhereLocallyIsotropic F case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ EverywhereLocallyIsotropic F → Isotropic F
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
contrapose
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ Isotropic F → EverywhereLocallyIsotropic F
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ ¬EverywhereLocallyIsotropic F → ¬Isotropic F
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
intro
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ ¬EverywhereLocallyIsotropic F → ¬Isotropic F
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬EverywhereLocallyIsotropic F ⊢ ¬Isotropic F
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
rw [QuadraticForm.Isotropic]
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬EverywhereLocallyIsotropic F ⊢ ¬Isotropic F
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬EverywhereLocallyIsotropic F ⊢ ¬¬Anisotropic F
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
simp only [not_not]
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬EverywhereLocallyIsotropic F ⊢ ¬¬Anisotropic F
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬EverywhereLocallyIsotropic F ⊢ Anisotropic F
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
apply anisotropic_of_quadForm_dim_zero _ _ F hV
case mp V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬EverywhereLocallyIsotropic F ⊢ Anisotropic F
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
contrapose
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ EverywhereLocallyIsotropic F → Isotropic F
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ ¬Isotropic F → ¬EverywhereLocallyIsotropic F
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
intro
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V ⊢ ¬Isotropic F → ¬EverywhereLocallyIsotropic F
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F ⊢ ¬EverywhereLocallyIsotropic F
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
rw [QuadraticForm.EverywhereLocallyIsotropic]
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F ⊢ ¬EverywhereLocallyIsotropic F
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F ⊢ ¬((∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F)) ∧ Isotropic (baseChange ℝ F))
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
push_neg
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F ⊢ ¬((∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F)) ∧ Isotropic (baseChange ℝ F))
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F ⊢ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F)) → ¬Isotropic (baseChange ℝ F)
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
intro
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F ⊢ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F)) → ¬Isotropic (baseChange ℝ F)
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F _✝ : ∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F) ⊢ ¬Isotropic (baseChange ℝ F)
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
simp only [not_not]
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F _✝ : ∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F) ⊢ ¬Isotropic (baseChange ℝ F)
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F _✝ : ∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F) ⊢ Anisotropic (baseChange ℝ F)
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
apply anisotropic_of_quadForm_dim_zero
case mpr V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F _✝ : ∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F) ⊢ Anisotropic (baseChange ℝ F)
case mpr.h V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F _✝ : ∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F) ⊢ Module.rank ℝ (TensorProduct ℚ ℝ V) = 0
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski0
[191, 1]
[207, 50]
rw [← base_change_module_rank_preserved, hV]
case mpr.h V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F✝ : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W hV : Module.rank ℚ V = 0 F : QuadraticForm ℚ V a✝ : ¬Isotropic F _✝ : ∀ (p : ℕ) [inst : Fact (Nat.Prime p)], Isotropic (baseChange ℚ_[p] F) ⊢ Module.rank ℝ (TensorProduct ℚ ℝ V) = 0
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski_of_Equivalent
[220, 1]
[226, 74]
simp only [Hasse_Minkowski, Isotropic, EverywhereLocallyIsotropic] at *
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q S : QuadraticForm ℚ V h : Equivalent Q S ⊢ Hasse_Minkowski Q ↔ Hasse_Minkowski S
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q S : QuadraticForm ℚ V h : Equivalent Q S ⊢ (¬Anisotropic Q ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] Q)) ∧ ¬Anisotropic (baseChange ℝ Q)) ↔ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] S)) ∧ ¬Anisotropic (baseChange ℝ S))
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski_of_Equivalent
[220, 1]
[226, 74]
simp only [anisotropic_iff _ _ h]
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q S : QuadraticForm ℚ V h : Equivalent Q S ⊢ (¬Anisotropic Q ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] Q)) ∧ ¬Anisotropic (baseChange ℝ Q)) ↔ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] S)) ∧ ¬Anisotropic (baseChange ℝ S))
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q S : QuadraticForm ℚ V h : Equivalent Q S ⊢ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] Q)) ∧ ¬Anisotropic (baseChange ℝ Q)) ↔ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] S)) ∧ ¬Anisotropic (baseChange ℝ S))
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski_of_Equivalent
[220, 1]
[226, 74]
rw [anisotropic_iff _ _ (baseChange.Equivalent ℝ _ _ h)]
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q S : QuadraticForm ℚ V h : Equivalent Q S ⊢ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] Q)) ∧ ¬Anisotropic (baseChange ℝ Q)) ↔ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] S)) ∧ ¬Anisotropic (baseChange ℝ S))
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q S : QuadraticForm ℚ V h : Equivalent Q S ⊢ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] Q)) ∧ ¬Anisotropic (baseChange ℝ S)) ↔ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] S)) ∧ ¬Anisotropic (baseChange ℝ S))
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.Hasse_Minkowski_of_Equivalent
[220, 1]
[226, 74]
conv in (Anisotropic (baseChange _ Q)) => rw [anisotropic_iff _ _ (baseChange.Equivalent (R := ℚ) ℚ_[p] _ _ h)]
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q S : QuadraticForm ℚ V h : Equivalent Q S ⊢ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] Q)) ∧ ¬Anisotropic (baseChange ℝ S)) ↔ (¬Anisotropic S ↔ (∀ (p : ℕ) [inst : Fact (Nat.Prime p)], ¬Anisotropic (baseChange ℚ_[p] S)) ∧ ¬Anisotropic (baseChange ℝ S))
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.HasseMinkowski_of_degenerate
[228, 1]
[230, 8]
sorry
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q : QuadraticForm ℚ V hQ : ¬BilinForm.Nondegenerate (↑associated Q) ⊢ Hasse_Minkowski Q
no goals
https://github.com/alexjbest/ant-lorentz.git
1f97add294b2d50f99537c15583666d78b0d7e24
AntLorentz/HasseMinkowski2.lean
QuadraticForm.ex
[235, 1]
[246, 13]
obtain ⟨w, hw1, hw0, hEQ⟩ := equivalent_weightedSumSquares_units_of_nondegenerate'' Q _ h.symm hQ
V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q : QuadraticForm ℚ V h : FiniteDimensional.finrank ℚ V = 2 hQ : BilinForm.Nondegenerate (↑associated Q) ⊢ Hasse_Minkowski Q
case intro.intro.intro V : Type inst✝⁴ : AddCommGroup V inst✝³ : Module ℚ V inst✝² : FiniteDimensional ℚ V F : QuadraticForm ℚ V k W : Type inst✝¹ : Field k inst✝ : AddCommGroup W Q : QuadraticForm ℚ V h : FiniteDimensional.finrank ℚ V = 2 hQ : BilinForm.Nondegenerate (↑associated Q) w : Fin 2 → ℤ hw1 : w { val := 0, isLt := (_ : 0 < 2) } = 1 hw0 : ∀ (i : Fin 2), Squarefree (w i) hEQ : Equivalent Q (weightedSumSquares ℚ w) ⊢ Hasse_Minkowski Q
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S02_The_Existential_Quantifier.lean
C03S02.sumOfSquares_mul
[301, 1]
[307, 7]
rcases sosx with ⟨a, b, xeq⟩
α : Type u_1 inst✝ : CommRing α x y : α sosx : SumOfSquares x sosy : SumOfSquares y ⊢ SumOfSquares (x * y)
case intro.intro α : Type u_1 inst✝ : CommRing α x y : α sosy : SumOfSquares y a b : α xeq : x = a ^ 2 + b ^ 2 ⊢ SumOfSquares (x * y)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S02_The_Existential_Quantifier.lean
C03S02.sumOfSquares_mul
[301, 1]
[307, 7]
rcases sosy with ⟨c, d, yeq⟩
case intro.intro α : Type u_1 inst✝ : CommRing α x y : α sosy : SumOfSquares y a b : α xeq : x = a ^ 2 + b ^ 2 ⊢ SumOfSquares (x * y)
case intro.intro.intro.intro α : Type u_1 inst✝ : CommRing α x y a b : α xeq : x = a ^ 2 + b ^ 2 c d : α yeq : y = c ^ 2 + d ^ 2 ⊢ SumOfSquares (x * y)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S02_The_Existential_Quantifier.lean
C03S02.sumOfSquares_mul
[301, 1]
[307, 7]
rw [xeq, yeq]
case intro.intro.intro.intro α : Type u_1 inst✝ : CommRing α x y a b : α xeq : x = a ^ 2 + b ^ 2 c d : α yeq : y = c ^ 2 + d ^ 2 ⊢ SumOfSquares (x * y)
case intro.intro.intro.intro α : Type u_1 inst✝ : CommRing α x y a b : α xeq : x = a ^ 2 + b ^ 2 c d : α yeq : y = c ^ 2 + d ^ 2 ⊢ SumOfSquares ((a ^ 2 + b ^ 2) * (c ^ 2 + d ^ 2))
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S02_The_Existential_Quantifier.lean
C03S02.sumOfSquares_mul
[301, 1]
[307, 7]
use a * c - b * d, a * d + b * c
case intro.intro.intro.intro α : Type u_1 inst✝ : CommRing α x y a b : α xeq : x = a ^ 2 + b ^ 2 c d : α yeq : y = c ^ 2 + d ^ 2 ⊢ SumOfSquares ((a ^ 2 + b ^ 2) * (c ^ 2 + d ^ 2))
case h α : Type u_1 inst✝ : CommRing α x y a b : α xeq : x = a ^ 2 + b ^ 2 c d : α yeq : y = c ^ 2 + d ^ 2 ⊢ (a ^ 2 + b ^ 2) * (c ^ 2 + d ^ 2) = (a * c - b * d) ^ 2 + (a * d + b * c) ^ 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S02_The_Existential_Quantifier.lean
C03S02.sumOfSquares_mul
[301, 1]
[307, 7]
ring
case h α : Type u_1 inst✝ : CommRing α x y a b : α xeq : x = a ^ 2 + b ^ 2 c d : α yeq : y = c ^ 2 + d ^ 2 ⊢ (a ^ 2 + b ^ 2) * (c ^ 2 + d ^ 2) = (a * c - b * d) ^ 2 + (a * d + b * c) ^ 2
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S02_The_Existential_Quantifier.lean
C03S02.sumOfSquares_mul'
[341, 1]
[346, 7]
rcases sosx with ⟨a, b, rfl⟩
α : Type u_1 inst✝ : CommRing α x y : α sosx : SumOfSquares x sosy : SumOfSquares y ⊢ SumOfSquares (x * y)
case intro.intro α : Type u_1 inst✝ : CommRing α y : α sosy : SumOfSquares y a b : α ⊢ SumOfSquares ((a ^ 2 + b ^ 2) * y)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S02_The_Existential_Quantifier.lean
C03S02.sumOfSquares_mul'
[341, 1]
[346, 7]
rcases sosy with ⟨c, d, rfl⟩
case intro.intro α : Type u_1 inst✝ : CommRing α y : α sosy : SumOfSquares y a b : α ⊢ SumOfSquares ((a ^ 2 + b ^ 2) * y)
case intro.intro.intro.intro α : Type u_1 inst✝ : CommRing α a b c d : α ⊢ SumOfSquares ((a ^ 2 + b ^ 2) * (c ^ 2 + d ^ 2))
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S02_The_Existential_Quantifier.lean
C03S02.sumOfSquares_mul'
[341, 1]
[346, 7]
use a * c - b * d, a * d + b * c
case intro.intro.intro.intro α : Type u_1 inst✝ : CommRing α a b c d : α ⊢ SumOfSquares ((a ^ 2 + b ^ 2) * (c ^ 2 + d ^ 2))
case h α : Type u_1 inst✝ : CommRing α a b c d : α ⊢ (a ^ 2 + b ^ 2) * (c ^ 2 + d ^ 2) = (a * c - b * d) ^ 2 + (a * d + b * c) ^ 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S02_The_Existential_Quantifier.lean
C03S02.sumOfSquares_mul'
[341, 1]
[346, 7]
ring
case h α : Type u_1 inst✝ : CommRing α a b c d : α ⊢ (a ^ 2 + b ^ 2) * (c ^ 2 + d ^ 2) = (a * c - b * d) ^ 2 + (a * d + b * c) ^ 2
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma3
[99, 1]
[102, 8]
intro x y ε epos ele1 xlt ylt
⊢ ∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x * y| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma3
[99, 1]
[102, 8]
sorry
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x * y| < ε
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
intro x y ε epos ele1 xlt ylt
⊢ ∀ {x y ε : ℝ}, 0 < ε → ε ≤ 1 → |x| < ε → |y| < ε → |x * y| < ε
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x * y| < ε
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
calc |x * y| = |x| * |y| := by apply abs_mul _ ≤ |x| * ε := by apply mul_le_mul; linarith; linarith; apply abs_nonneg; apply abs_nonneg; _ < 1 * ε := by rw [mul_lt_mul_right epos]; linarith _ = ε := by apply one_mul
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x * y| < ε
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
apply abs_mul
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x * y| = |x| * |y|
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
apply mul_le_mul
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x| * |y| ≤ |x| * ε
case h₁ x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x| ≤ |x| case h₂ x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |y| ≤ ε case c0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |y| case b0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |x|
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
linarith
case h₁ x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x| ≤ |x| case h₂ x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |y| ≤ ε case c0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |y| case b0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |x|
case h₂ x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |y| ≤ ε case c0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |y| case b0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |x|
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
linarith
case h₂ x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |y| ≤ ε case c0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |y| case b0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |x|
case c0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |y| case b0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |x|
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
apply abs_nonneg
case c0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |y| case b0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |x|
case b0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |x|
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
apply abs_nonneg
case b0 x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 0 ≤ |x|
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
rw [mul_lt_mul_right epos]
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x| * ε < 1 * ε
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x| < 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
linarith
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ |x| < 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.my_lemma4
[125, 1]
[140, 30]
apply one_mul
x y ε : ℝ epos : 0 < ε ele1 : ε ≤ 1 xlt : |x| < ε ylt : |y| < ε ⊢ 1 * ε = ε
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C03_Logic/S01_Implication_and_the_Universal_Quantifier.lean
C03S01.Subset.trans
[506, 1]
[507, 8]
sorry
α : Type u_1 r s t : Set α ⊢ r ⊆ s → s ⊆ t → r ⊆ t
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S04_More_on_Order_and_Divisibility.lean
C02S04.aux
[196, 1]
[204, 21]
apply le_min
a b c d : ℝ ⊢ min a b + c ≤ min (a + c) (b + c)
case h₁ a b c d : ℝ ⊢ min a b + c ≤ a + c case h₂ a b c d : ℝ ⊢ min a b + c ≤ b + c
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S04_More_on_Order_and_Divisibility.lean
C02S04.aux
[196, 1]
[204, 21]
apply add_le_add_right
case h₂ a b c d : ℝ ⊢ min a b + c ≤ b + c
case h₂.bc a b c d : ℝ ⊢ min a b ≤ b
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S04_More_on_Order_and_Divisibility.lean
C02S04.aux
[196, 1]
[204, 21]
apply min_le_right
case h₂.bc a b c d : ℝ ⊢ min a b ≤ b
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S04_More_on_Order_and_Divisibility.lean
C02S04.aux
[196, 1]
[204, 21]
apply add_le_add_right
case h₁ a b c d : ℝ ⊢ min a b + c ≤ a + c
case h₁.bc a b c d : ℝ ⊢ min a b ≤ a
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S04_More_on_Order_and_Divisibility.lean
C02S04.aux
[196, 1]
[204, 21]
apply min_le_left
case h₁.bc a b c d : ℝ ⊢ min a b ≤ a
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.div'_add_mod'
[382, 1]
[384, 45]
rw [div', mod']
a b : ℤ ⊢ b * a.div' b + a.mod' b = a
a b : ℤ ⊢ b * ((a + b / 2) / b) + ((a + b / 2) % b - b / 2) = a
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.div'_add_mod'
[382, 1]
[384, 45]
linarith [Int.ediv_add_emod (a + b / 2) b]
a b : ℤ ⊢ b * ((a + b / 2) / b) + ((a + b / 2) % b - b / 2) = a
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.abs_mod'_le
[386, 1]
[394, 11]
rw [mod', abs_le]
a b : ℤ h : 0 < b ⊢ |a.mod' b| ≤ b / 2
a b : ℤ h : 0 < b ⊢ -(b / 2) ≤ (a + b / 2) % b - b / 2 ∧ (a + b / 2) % b - b / 2 ≤ b / 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.abs_mod'_le
[386, 1]
[394, 11]
constructor
a b : ℤ h : 0 < b ⊢ -(b / 2) ≤ (a + b / 2) % b - b / 2 ∧ (a + b / 2) % b - b / 2 ≤ b / 2
case left a b : ℤ h : 0 < b ⊢ -(b / 2) ≤ (a + b / 2) % b - b / 2 case right a b : ℤ h : 0 < b ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.abs_mod'_le
[386, 1]
[394, 11]
have := Int.emod_lt_of_pos (a + b / 2) h
case right a b : ℤ h : 0 < b ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
case right a b : ℤ h : 0 < b this : (a + b / 2) % b < b ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.abs_mod'_le
[386, 1]
[394, 11]
have := Int.ediv_add_emod b 2
case right a b : ℤ h : 0 < b this : (a + b / 2) % b < b ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
case right a b : ℤ h : 0 < b this✝ : (a + b / 2) % b < b this : 2 * (b / 2) + b % 2 = b ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.abs_mod'_le
[386, 1]
[394, 11]
have := Int.emod_lt_of_pos b zero_lt_two
case right a b : ℤ h : 0 < b this✝ : (a + b / 2) % b < b this : 2 * (b / 2) + b % 2 = b ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
case right a b : ℤ h : 0 < b this✝¹ : (a + b / 2) % b < b this✝ : 2 * (b / 2) + b % 2 = b this : b % 2 < 2 ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.abs_mod'_le
[386, 1]
[394, 11]
revert this
case right a b : ℤ h : 0 < b this✝¹ : (a + b / 2) % b < b this✝ : 2 * (b / 2) + b % 2 = b this : b % 2 < 2 ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
case right a b : ℤ h : 0 < b this✝ : (a + b / 2) % b < b this : 2 * (b / 2) + b % 2 = b ⊢ b % 2 < 2 → (a + b / 2) % b - b / 2 ≤ b / 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.abs_mod'_le
[386, 1]
[394, 11]
intro this
case right a b : ℤ h : 0 < b this✝ : (a + b / 2) % b < b this : 2 * (b / 2) + b % 2 = b ⊢ b % 2 < 2 → (a + b / 2) % b - b / 2 ≤ b / 2
case right a b : ℤ h : 0 < b this✝¹ : (a + b / 2) % b < b this✝ : 2 * (b / 2) + b % 2 = b this : b % 2 < 2 ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.abs_mod'_le
[386, 1]
[394, 11]
linarith
case right a b : ℤ h : 0 < b this✝¹ : (a + b / 2) % b < b this✝ : 2 * (b / 2) + b % 2 = b this : b % 2 < 2 ⊢ (a + b / 2) % b - b / 2 ≤ b / 2
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.abs_mod'_le
[386, 1]
[394, 11]
linarith [Int.emod_nonneg (a + b / 2) h.ne']
case left a b : ℤ h : 0 < b ⊢ -(b / 2) ≤ (a + b / 2) % b - b / 2
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
Int.mod'_eq
[402, 1]
[402, 91]
linarith [div'_add_mod' a b]
a b : ℤ ⊢ a.mod' b = a - b * a.div' b
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
aux
[412, 9]
[417, 17]
apply le_antisymm _ (sq_nonneg x)
α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ x ^ 2 = 0
α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ x ^ 2 ≤ 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
aux
[412, 9]
[417, 17]
rw [← h]
α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ x ^ 2 ≤ 0
α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ x ^ 2 ≤ x ^ 2 + y ^ 2
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
aux
[412, 9]
[417, 17]
apply le_add_of_nonneg_right (sq_nonneg y)
α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ x ^ 2 ≤ x ^ 2 + y ^ 2
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
sq_add_sq_eq_zero
[421, 1]
[433, 11]
constructor
α : Type u_1 inst✝ : LinearOrderedRing α x y : α ⊢ x ^ 2 + y ^ 2 = 0 ↔ x = 0 ∧ y = 0
case mp α : Type u_1 inst✝ : LinearOrderedRing α x y : α ⊢ x ^ 2 + y ^ 2 = 0 → x = 0 ∧ y = 0 case mpr α : Type u_1 inst✝ : LinearOrderedRing α x y : α ⊢ x = 0 ∧ y = 0 → x ^ 2 + y ^ 2 = 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
sq_add_sq_eq_zero
[421, 1]
[433, 11]
rintro ⟨rfl, rfl⟩
case mpr α : Type u_1 inst✝ : LinearOrderedRing α x y : α ⊢ x = 0 ∧ y = 0 → x ^ 2 + y ^ 2 = 0
case mpr.intro α : Type u_1 inst✝ : LinearOrderedRing α ⊢ 0 ^ 2 + 0 ^ 2 = 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
sq_add_sq_eq_zero
[421, 1]
[433, 11]
norm_num
case mpr.intro α : Type u_1 inst✝ : LinearOrderedRing α ⊢ 0 ^ 2 + 0 ^ 2 = 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
sq_add_sq_eq_zero
[421, 1]
[433, 11]
intro h
case mp α : Type u_1 inst✝ : LinearOrderedRing α x y : α ⊢ x ^ 2 + y ^ 2 = 0 → x = 0 ∧ y = 0
case mp α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ x = 0 ∧ y = 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
sq_add_sq_eq_zero
[421, 1]
[433, 11]
constructor
case mp α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ x = 0 ∧ y = 0
case mp.left α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ x = 0 case mp.right α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ y = 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
sq_add_sq_eq_zero
[421, 1]
[433, 11]
rw [add_comm] at h
case mp.right α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ y = 0
case mp.right α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : y ^ 2 + x ^ 2 = 0 ⊢ y = 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
sq_add_sq_eq_zero
[421, 1]
[433, 11]
exact aux h
case mp.right α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : y ^ 2 + x ^ 2 = 0 ⊢ y = 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
sq_add_sq_eq_zero
[421, 1]
[433, 11]
exact aux h
case mp.left α : Type u_1 inst✝ : LinearOrderedRing α x y : α h : x ^ 2 + y ^ 2 = 0 ⊢ x = 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_nonneg
[451, 1]
[456, 18]
apply add_nonneg <;> apply sq_nonneg
x : GaussInt ⊢ 0 ≤ x.norm
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_eq_zero
[459, 1]
[464, 6]
rw [norm, sq_add_sq_eq_zero, GaussInt.ext_iff]
x : GaussInt ⊢ x.norm = 0 ↔ x = 0
x : GaussInt ⊢ x.re = 0 ∧ x.im = 0 ↔ x.re = re 0 ∧ x.im = im 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_eq_zero
[459, 1]
[464, 6]
rfl
x : GaussInt ⊢ x.re = 0 ∧ x.im = 0 ↔ x.re = re 0 ∧ x.im = im 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_pos
[467, 1]
[472, 21]
rw [lt_iff_le_and_ne, ne_comm, Ne, norm_eq_zero]
x : GaussInt ⊢ 0 < x.norm ↔ x ≠ 0
x : GaussInt ⊢ 0 ≤ x.norm ∧ ¬x = 0 ↔ x ≠ 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_pos
[467, 1]
[472, 21]
simp [norm_nonneg]
x : GaussInt ⊢ 0 ≤ x.norm ∧ ¬x = 0 ↔ x ≠ 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_mul
[475, 1]
[480, 7]
simp [norm]
x y : GaussInt ⊢ (x * y).norm = x.norm * y.norm
x y : GaussInt ⊢ (x.re * y.re - x.im * y.im) ^ 2 + (x.re * y.im + x.im * y.re) ^ 2 = (x.re ^ 2 + x.im ^ 2) * (y.re ^ 2 + y.im ^ 2)
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_mul
[475, 1]
[480, 7]
ring
x y : GaussInt ⊢ (x.re * y.re - x.im * y.im) ^ 2 + (x.re * y.im + x.im * y.re) ^ 2 = (x.re ^ 2 + x.im ^ 2) * (y.re ^ 2 + y.im ^ 2)
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_conj
[499, 1]
[499, 76]
simp [norm]
x : GaussInt ⊢ x.conj.norm = x.norm
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_mod_lt
[570, 1]
[587, 19]
have norm_y_pos : 0 < norm y := by rwa [norm_pos]
x y : GaussInt hy : y ≠ 0 ⊢ (x % y).norm < y.norm
x y : GaussInt hy : y ≠ 0 norm_y_pos : 0 < y.norm ⊢ (x % y).norm < y.norm
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C06_Structures/S03_Building_the_Gaussian_Integers.lean
GaussInt.norm_mod_lt
[570, 1]
[587, 19]
have H1 : x % y * conj y = ⟨Int.mod' (x * conj y).re (norm y), Int.mod' (x * conj y).im (norm y)⟩
x y : GaussInt hy : y ≠ 0 norm_y_pos : 0 < y.norm ⊢ (x % y).norm < y.norm
case H1 x y : GaussInt hy : y ≠ 0 norm_y_pos : 0 < y.norm ⊢ x % y * y.conj = { re := (x * y.conj).re.mod' y.norm, im := (x * y.conj).im.mod' y.norm } x y : GaussInt hy : y ≠ 0 norm_y_pos : 0 < y.norm H1 : x % y * y.conj = { re := (x * y.conj).re.mod' y.norm, im := (x * y.conj).im.mod' y.norm } ⊢ (x % y).norm < y.norm