url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.eq_neg_of_add_eq_zeroΞ±Ξ±
[313, 1]
[316, 19]
apply neg_eq_of_add_eq_zero
R : Type u_1 inst✝ : Ring R a b : R h : a + b = 0 ⊒ -b = a
case h R : Type u_1 inst✝ : Ring R a b : R h : a + b = 0 ⊒ b + a = 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.eq_neg_of_add_eq_zeroΞ±Ξ±
[313, 1]
[316, 19]
rw [add_comm, h]
case h R : Type u_1 inst✝ : Ring R a b : R h : a + b = 0 ⊒ b + a = 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.neg_zeroΞ±Ξ±
[318, 1]
[320, 16]
apply neg_eq_of_add_eq_zero
R : Type u_1 inst✝ : Ring R ⊒ -0 = 0
case h R : Type u_1 inst✝ : Ring R ⊒ 0 + 0 = 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.neg_zeroΞ±Ξ±
[318, 1]
[320, 16]
rw [add_zero]
case h R : Type u_1 inst✝ : Ring R ⊒ 0 + 0 = 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.neg_negΞ±Ξ±
[322, 1]
[324, 20]
apply neg_eq_of_add_eq_zero
R : Type u_1 inst✝ : Ring R a : R ⊒ - -a = a
case h R : Type u_1 inst✝ : Ring R a : R ⊒ -a + a = 0
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.neg_negΞ±Ξ±
[322, 1]
[324, 20]
rw [add_left_neg]
case h R : Type u_1 inst✝ : Ring R a : R ⊒ -a + a = 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.self_sub
[382, 1]
[383, 8]
sorry
R : Type u_1 inst✝ : Ring R a : R ⊒ a - a = 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.self_subΞ±Ξ±
[387, 1]
[388, 37]
rw [sub_eq_add_neg, add_right_neg]
R : Type u_1 inst✝ : Ring R a : R ⊒ a - a = 0
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.one_add_one_eq_two
[403, 1]
[404, 11]
norm_num
R : Type u_1 inst✝ : Ring R ⊒ 1 + 1 = 2
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.two_mul
[407, 1]
[408, 8]
sorry
R : Type u_1 inst✝ : Ring R a : R ⊒ 2 * a = a + a
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyRing.two_mulΞ±Ξ±
[412, 1]
[413, 46]
rw [← one_add_one_eq_two, add_mul, one_mul]
R : Type u_1 inst✝ : Ring R a : R ⊒ 2 * a = a + a
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyGroup.mul_right_inv
[468, 1]
[469, 8]
sorry
G : Type u_1 inst✝ : Group G a : G ⊒ a * a⁻¹ = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyGroup.mul_one
[471, 1]
[472, 8]
sorry
G : Type u_1 inst✝ : Group G a : G ⊒ a * 1 = a
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyGroup.mul_inv_rev
[474, 1]
[475, 8]
sorry
G : Type u_1 inst✝ : Group G a b : G ⊒ (a * b)⁻¹ = b⁻¹ * a⁻¹
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyGroup.mul_right_invΞ±Ξ±
[479, 1]
[482, 47]
have h : (a * a⁻¹)⁻¹ * (a * a⁻¹ * (a * a⁻¹)) = 1 := by rw [mul_assoc, ← mul_assoc a⁻¹ a, mul_left_inv, one_mul, mul_left_inv]
G : Type u_1 inst✝ : Group G a : G ⊒ a * a⁻¹ = 1
G : Type u_1 inst✝ : Group G a : G h : (a * a⁻¹)⁻¹ * (a * a⁻¹ * (a * a⁻¹)) = 1 ⊒ a * a⁻¹ = 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyGroup.mul_right_invΞ±Ξ±
[479, 1]
[482, 47]
rw [← h, ← mul_assoc, mul_left_inv, one_mul]
G : Type u_1 inst✝ : Group G a : G h : (a * a⁻¹)⁻¹ * (a * a⁻¹ * (a * a⁻¹)) = 1 ⊒ a * a⁻¹ = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyGroup.mul_right_invΞ±Ξ±
[479, 1]
[482, 47]
rw [mul_assoc, ← mul_assoc a⁻¹ a, mul_left_inv, one_mul, mul_left_inv]
G : Type u_1 inst✝ : Group G a : G ⊒ (a * a⁻¹)⁻¹ * (a * a⁻¹ * (a * a⁻¹)) = 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyGroup.mul_oneΞ±Ξ±
[484, 1]
[485, 61]
rw [← mul_left_inv a, ← mul_assoc, mul_right_inv, one_mul]
G : Type u_1 inst✝ : Group G a : G ⊒ a * 1 = a
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C02_Basics/S02_Proving_Identities_in_Algebraic_Structures.lean
MyGroup.mul_inv_revΞ±Ξ±
[487, 1]
[489, 52]
rw [← one_mul (b⁻¹ * a⁻¹), ← mul_left_inv (a * b), mul_assoc, mul_assoc, ← mul_assoc b b⁻¹, mul_right_inv, one_mul, mul_right_inv, mul_one]
G : Type u_1 inst✝ : Group G a b : G ⊒ (a * b)⁻¹ = b⁻¹ * a⁻¹
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.two_le
[38, 1]
[43, 18]
cases m
m : β„• h0 : m β‰  0 h1 : m β‰  1 ⊒ 2 ≀ m
case zero h0 : 0 β‰  0 h1 : 0 β‰  1 ⊒ 2 ≀ 0 case succ n✝ : β„• h0 : n✝ + 1 β‰  0 h1 : n✝ + 1 β‰  1 ⊒ 2 ≀ n✝ + 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.two_le
[38, 1]
[43, 18]
contradiction
case zero h0 : 0 β‰  0 h1 : 0 β‰  1 ⊒ 2 ≀ 0 case succ n✝ : β„• h0 : n✝ + 1 β‰  0 h1 : n✝ + 1 β‰  1 ⊒ 2 ≀ n✝ + 1
case succ n✝ : β„• h0 : n✝ + 1 β‰  0 h1 : n✝ + 1 β‰  1 ⊒ 2 ≀ n✝ + 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.two_le
[38, 1]
[43, 18]
case succ m => cases m; contradiction repeat' apply Nat.succ_le_succ apply zero_le
m : β„• h0 : m + 1 β‰  0 h1 : m + 1 β‰  1 ⊒ 2 ≀ m + 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.two_le
[38, 1]
[43, 18]
cases m
m : β„• h0 : m + 1 β‰  0 h1 : m + 1 β‰  1 ⊒ 2 ≀ m + 1
case zero h0 : 0 + 1 β‰  0 h1 : 0 + 1 β‰  1 ⊒ 2 ≀ 0 + 1 case succ n✝ : β„• h0 : n✝ + 1 + 1 β‰  0 h1 : n✝ + 1 + 1 β‰  1 ⊒ 2 ≀ n✝ + 1 + 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.two_le
[38, 1]
[43, 18]
contradiction
case zero h0 : 0 + 1 β‰  0 h1 : 0 + 1 β‰  1 ⊒ 2 ≀ 0 + 1 case succ n✝ : β„• h0 : n✝ + 1 + 1 β‰  0 h1 : n✝ + 1 + 1 β‰  1 ⊒ 2 ≀ n✝ + 1 + 1
case succ n✝ : β„• h0 : n✝ + 1 + 1 β‰  0 h1 : n✝ + 1 + 1 β‰  1 ⊒ 2 ≀ n✝ + 1 + 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.two_le
[38, 1]
[43, 18]
repeat' apply Nat.succ_le_succ
case succ n✝ : β„• h0 : n✝ + 1 + 1 β‰  0 h1 : n✝ + 1 + 1 β‰  1 ⊒ 2 ≀ n✝ + 1 + 1
case succ.a.a n✝ : β„• h0 : n✝ + 1 + 1 β‰  0 h1 : n✝ + 1 + 1 β‰  1 ⊒ 0 ≀ n✝
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.two_le
[38, 1]
[43, 18]
apply zero_le
case succ.a.a n✝ : β„• h0 : n✝ + 1 + 1 β‰  0 h1 : n✝ + 1 + 1 β‰  1 ⊒ 0 ≀ n✝
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.two_le
[38, 1]
[43, 18]
apply Nat.succ_le_succ
case succ.a n✝ : β„• h0 : n✝ + 1 + 1 β‰  0 h1 : n✝ + 1 + 1 β‰  1 ⊒ 1 ≀ n✝ + 1
case succ.a.a n✝ : β„• h0 : n✝ + 1 + 1 β‰  0 h1 : n✝ + 1 + 1 β‰  1 ⊒ 0 ≀ n✝
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
by_cases np : n.Prime
n : β„• h : 2 ≀ n ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case pos n : β„• h : 2 ≀ n np : n.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n case neg n : β„• h : 2 ≀ n np : Β¬n.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
induction' n using Nat.strong_induction_on with n ih
case neg n : β„• h : 2 ≀ n np : Β¬n.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case neg.h n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : Β¬n.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
rw [Nat.prime_def_lt] at np
case neg.h n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : Β¬n.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case neg.h n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : Β¬(2 ≀ n ∧ βˆ€ m < n, m ∣ n β†’ m = 1) ⊒ βˆƒ p, p.Prime ∧ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
push_neg at np
case neg.h n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : Β¬(2 ≀ n ∧ βˆ€ m < n, m ∣ n β†’ m = 1) ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case neg.h n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 ⊒ βˆƒ p, p.Prime ∧ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
rcases np h with ⟨m, mltn, mdvdn, mne1⟩
case neg.h n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case neg.h.intro.intro.intro n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 ⊒ βˆƒ p, p.Prime ∧ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
have : m β‰  0 := by intro mz rw [mz, zero_dvd_iff] at mdvdn linarith
case neg.h.intro.intro.intro n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case neg.h.intro.intro.intro n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 ⊒ βˆƒ p, p.Prime ∧ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
have mgt2 : 2 ≀ m := two_le this mne1
case neg.h.intro.intro.intro n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case neg.h.intro.intro.intro n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m ⊒ βˆƒ p, p.Prime ∧ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
by_cases mp : m.Prime
case neg.h.intro.intro.intro n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case pos n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m mp : m.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n case neg n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m mp : Β¬m.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
. rcases ih m mltn mgt2 mp with ⟨p, pp, pdvd⟩ use p, pp apply pdvd.trans mdvdn
case neg n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m mp : Β¬m.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
use n, np
case pos n : β„• h : 2 ≀ n np : n.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
intro mz
n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 ⊒ m β‰  0
n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 mz : m = 0 ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
rw [mz, zero_dvd_iff] at mdvdn
n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 mz : m = 0 ⊒ False
n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : n = 0 mne1 : m β‰  1 mz : m = 0 ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
linarith
n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : n = 0 mne1 : m β‰  1 mz : m = 0 ⊒ False
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
use m, mp
case pos n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m mp : m.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
rcases ih m mltn mgt2 mp with ⟨p, pp, pdvd⟩
case neg n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m mp : Β¬m.Prime ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case neg.intro.intro n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m mp : Β¬m.Prime p : β„• pp : p.Prime pdvd : p ∣ m ⊒ βˆƒ p, p.Prime ∧ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
use p, pp
case neg.intro.intro n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m mp : Β¬m.Prime p : β„• pp : p.Prime pdvd : p ∣ m ⊒ βˆƒ p, p.Prime ∧ p ∣ n
case right n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m mp : Β¬m.Prime p : β„• pp : p.Prime pdvd : p ∣ m ⊒ p ∣ n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.exists_prime_factor
[110, 1]
[126, 27]
apply pdvd.trans mdvdn
case right n : β„• ih : βˆ€ m < n, 2 ≀ m β†’ Β¬m.Prime β†’ βˆƒ p, p.Prime ∧ p ∣ m h : 2 ≀ n np : 2 ≀ n β†’ βˆƒ m < n, m ∣ n ∧ m β‰  1 m : β„• mltn : m < n mdvdn : m ∣ n mne1 : m β‰  1 this : m β‰  0 mgt2 : 2 ≀ m mp : Β¬m.Prime p : β„• pp : p.Prime pdvd : p ∣ m ⊒ p ∣ n
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
intro n
⊒ βˆ€ (n : β„•), βˆƒ p > n, p.Prime
n : β„• ⊒ βˆƒ p > n, p.Prime
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
have : 2 ≀ Nat.factorial (n + 1) + 1 := by apply Nat.succ_le_succ exact Nat.succ_le_of_lt (Nat.factorial_pos _)
n : β„• ⊒ βˆƒ p > n, p.Prime
n : β„• this : 2 ≀ (n + 1).factorial + 1 ⊒ βˆƒ p > n, p.Prime
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
rcases exists_prime_factor this with ⟨p, pp, pdvd⟩
n : β„• this : 2 ≀ (n + 1).factorial + 1 ⊒ βˆƒ p > n, p.Prime
case intro.intro n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ⊒ βˆƒ p > n, p.Prime
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
refine' ⟨p, _, pp⟩
case intro.intro n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ⊒ βˆƒ p > n, p.Prime
case intro.intro n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ⊒ p > n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
by_contra ple
case intro.intro n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ⊒ p > n
case intro.intro n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : Β¬p > n ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
push_neg at ple
case intro.intro n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : Β¬p > n ⊒ False
case intro.intro n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
have : p ∣ Nat.factorial (n + 1) := by apply Nat.dvd_factorial apply pp.pos linarith
case intro.intro n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n ⊒ False
case intro.intro n : β„• this✝ : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n this : p ∣ (n + 1).factorial ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
have : p ∣ 1 := by convert Nat.dvd_sub' pdvd this simp
case intro.intro n : β„• this✝ : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n this : p ∣ (n + 1).factorial ⊒ False
case intro.intro n : β„• this✝¹ : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n this✝ : p ∣ (n + 1).factorial this : p ∣ 1 ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
have := Nat.le_of_dvd zero_lt_one this
case intro.intro n : β„• this✝¹ : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n this✝ : p ∣ (n + 1).factorial this : p ∣ 1 ⊒ False
case intro.intro n : β„• this✝² : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n this✝¹ : p ∣ (n + 1).factorial this✝ : p ∣ 1 this : p ≀ 1 ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
linarith [pp.two_le]
case intro.intro n : β„• this✝² : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n this✝¹ : p ∣ (n + 1).factorial this✝ : p ∣ 1 this : p ≀ 1 ⊒ False
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
apply Nat.succ_le_succ
n : β„• ⊒ 2 ≀ (n + 1).factorial + 1
case a n : β„• ⊒ 1 ≀ (n + 1).factorial
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
exact Nat.succ_le_of_lt (Nat.factorial_pos _)
case a n : β„• ⊒ 1 ≀ (n + 1).factorial
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
apply Nat.dvd_factorial
n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n ⊒ p ∣ (n + 1).factorial
case a n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n ⊒ 0 < p case a n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n ⊒ p ≀ n + 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
apply pp.pos
case a n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n ⊒ 0 < p case a n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n ⊒ p ≀ n + 1
case a n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n ⊒ p ≀ n + 1
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
linarith
case a n : β„• this : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n ⊒ p ≀ n + 1
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
convert Nat.dvd_sub' pdvd this
n : β„• this✝ : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n this : p ∣ (n + 1).factorial ⊒ p ∣ 1
case h.e'_4 n : β„• this✝ : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n this : p ∣ (n + 1).factorial ⊒ 1 = (n + 1).factorial + 1 - (n + 1).factorial
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite
[136, 1]
[170, 23]
simp
case h.e'_4 n : β„• this✝ : 2 ≀ (n + 1).factorial + 1 p : β„• pp : p.Prime pdvd : p ∣ (n + 1).factorial + 1 ple : p ≀ n this : p ∣ (n + 1).factorial ⊒ 1 = (n + 1).factorial + 1 - (n + 1).factorial
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
Nat.Prime.eq_of_dvd_of_prime
[293, 1]
[301, 13]
cases prime_q.eq_one_or_self_of_dvd _ h
p q : β„• prime_p : p.Prime prime_q : q.Prime h : p ∣ q ⊒ p = q
case inl p q : β„• prime_p : p.Prime prime_q : q.Prime h : p ∣ q h✝ : p = 1 ⊒ p = q case inr p q : β„• prime_p : p.Prime prime_q : q.Prime h : p ∣ q h✝ : p = q ⊒ p = q
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
Nat.Prime.eq_of_dvd_of_prime
[293, 1]
[301, 13]
assumption
case inr p q : β„• prime_p : p.Prime prime_q : q.Prime h : p ∣ q h✝ : p = q ⊒ p = q
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
Nat.Prime.eq_of_dvd_of_prime
[293, 1]
[301, 13]
linarith [prime_p.two_le]
case inl p q : β„• prime_p : p.Prime prime_q : q.Prime h : p ∣ q h✝ : p = 1 ⊒ p = q
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
intro hβ‚€ h₁
s : Finset β„• p : β„• prime_p : p.Prime ⊒ (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s
s : Finset β„• p : β„• prime_p : p.Prime hβ‚€ : βˆ€ n ∈ s, n.Prime h₁ : p ∣ ∏ n ∈ s, n ⊒ p ∈ s
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
induction' s using Finset.induction_on with a s ans ih
s : Finset β„• p : β„• prime_p : p.Prime hβ‚€ : βˆ€ n ∈ s, n.Prime h₁ : p ∣ ∏ n ∈ s, n ⊒ p ∈ s
case empty p : β„• prime_p : p.Prime hβ‚€ : βˆ€ n ∈ βˆ…, n.Prime h₁ : p ∣ ∏ n ∈ βˆ…, n ⊒ p ∈ βˆ… case insert p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : βˆ€ n ∈ insert a s, n.Prime h₁ : p ∣ ∏ n ∈ insert a s, n ⊒ p ∈ insert a s
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
simp [Finset.prod_insert ans, prime_p.dvd_mul] at hβ‚€ h₁
case insert p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : βˆ€ n ∈ insert a s, n.Prime h₁ : p ∣ ∏ n ∈ insert a s, n ⊒ p ∈ insert a s
case insert p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ a ∨ p ∣ ∏ n ∈ s, n ⊒ p ∈ insert a s
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
rw [mem_insert]
case insert p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ a ∨ p ∣ ∏ n ∈ s, n ⊒ p ∈ insert a s
case insert p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ a ∨ p ∣ ∏ n ∈ s, n ⊒ p = a ∨ p ∈ s
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
rcases h₁ with h₁ | h₁
case insert p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ a ∨ p ∣ ∏ n ∈ s, n ⊒ p = a ∨ p ∈ s
case insert.inl p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ a ⊒ p = a ∨ p ∈ s case insert.inr p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ ∏ n ∈ s, n ⊒ p = a ∨ p ∈ s
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
right
case insert.inr p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ ∏ n ∈ s, n ⊒ p = a ∨ p ∈ s
case insert.inr.h p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ ∏ n ∈ s, n ⊒ p ∈ s
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
exact ih hβ‚€.2 h₁
case insert.inr.h p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ ∏ n ∈ s, n ⊒ p ∈ s
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
simp at h₁
case empty p : β„• prime_p : p.Prime hβ‚€ : βˆ€ n ∈ βˆ…, n.Prime h₁ : p ∣ ∏ n ∈ βˆ…, n ⊒ p ∈ βˆ…
case empty p : β„• prime_p : p.Prime hβ‚€ : βˆ€ n ∈ βˆ…, n.Prime h₁ : p = 1 ⊒ p ∈ βˆ…
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
linarith [prime_p.two_le]
case empty p : β„• prime_p : p.Prime hβ‚€ : βˆ€ n ∈ βˆ…, n.Prime h₁ : p = 1 ⊒ p ∈ βˆ…
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
left
case insert.inl p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ a ⊒ p = a ∨ p ∈ s
case insert.inl.h p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ a ⊒ p = a
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.mem_of_dvd_prod_primes
[324, 1]
[339, 19]
exact prime_p.eq_of_dvd_of_prime hβ‚€.1 h₁
case insert.inl.h p : β„• prime_p : p.Prime a : β„• s : Finset β„• ans : a βˆ‰ s ih : (βˆ€ n ∈ s, n.Prime) β†’ p ∣ ∏ n ∈ s, n β†’ p ∈ s hβ‚€ : a.Prime ∧ βˆ€ a ∈ s, a.Prime h₁ : p ∣ a ⊒ p = a
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
intro s
⊒ βˆ€ (s : Finset β„•), βˆƒ p, p.Prime ∧ p βˆ‰ s
s : Finset β„• ⊒ βˆƒ p, p.Prime ∧ p βˆ‰ s
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
by_contra h
s : Finset β„• ⊒ βˆƒ p, p.Prime ∧ p βˆ‰ s
s : Finset β„• h : Β¬βˆƒ p, p.Prime ∧ p βˆ‰ s ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
push_neg at h
s : Finset β„• h : Β¬βˆƒ p, p.Prime ∧ p βˆ‰ s ⊒ False
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
set s' := s.filter Nat.Prime with s'_def
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s ⊒ False
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
have mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime := by intro n simp [s'_def] apply h
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s ⊒ False
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
have : 2 ≀ (∏ i in s', i) + 1 := by apply Nat.succ_le_succ apply Nat.succ_le_of_lt apply Finset.prod_pos intro n ns' apply (mem_s'.mp ns').pos
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime ⊒ False
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this : 2 ≀ ∏ i ∈ s', i + 1 ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
rcases exists_prime_factor this with ⟨p, pp, pdvd⟩
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this : 2 ≀ ∏ i ∈ s', i + 1 ⊒ False
case intro.intro s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
have : p ∣ ∏ i in s', i := by apply dvd_prod_of_mem rw [mem_s'] apply pp
case intro.intro s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 ⊒ False
case intro.intro s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this✝ : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 this : p ∣ ∏ i ∈ s', i ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
have : p ∣ 1 := by convert Nat.dvd_sub' pdvd this simp
case intro.intro s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this✝ : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 this : p ∣ ∏ i ∈ s', i ⊒ False
case intro.intro s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this✝¹ : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 this✝ : p ∣ ∏ i ∈ s', i this : p ∣ 1 ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
have := Nat.le_of_dvd zero_lt_one this
case intro.intro s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this✝¹ : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 this✝ : p ∣ ∏ i ∈ s', i this : p ∣ 1 ⊒ False
case intro.intro s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this✝² : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 this✝¹ : p ∣ ∏ i ∈ s', i this✝ : p ∣ 1 this : p ≀ 1 ⊒ False
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
linarith [pp.two_le]
case intro.intro s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this✝² : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 this✝¹ : p ∣ ∏ i ∈ s', i this✝ : p ∣ 1 this : p ≀ 1 ⊒ False
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
intro n
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s ⊒ βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s n : β„• ⊒ n ∈ s' ↔ n.Prime
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
simp [s'_def]
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s n : β„• ⊒ n ∈ s' ↔ n.Prime
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s n : β„• ⊒ n.Prime β†’ n ∈ s
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
apply h
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s n : β„• ⊒ n.Prime β†’ n ∈ s
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
apply Nat.succ_le_succ
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime ⊒ 2 ≀ ∏ i ∈ s', i + 1
case a s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime ⊒ 1 ≀ ∏ i ∈ s', i
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
apply Nat.succ_le_of_lt
case a s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime ⊒ 1 ≀ ∏ i ∈ s', i
case a.h s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime ⊒ 0 < ∏ i ∈ s', i
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
apply Finset.prod_pos
case a.h s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime ⊒ 0 < ∏ i ∈ s', i
case a.h.h0 s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime ⊒ βˆ€ i ∈ s', 0 < i
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
intro n ns'
case a.h.h0 s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime ⊒ βˆ€ i ∈ s', 0 < i
case a.h.h0 s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime n : β„• ns' : n ∈ s' ⊒ 0 < n
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
apply (mem_s'.mp ns').pos
case a.h.h0 s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime n : β„• ns' : n ∈ s' ⊒ 0 < n
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
apply dvd_prod_of_mem
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 ⊒ p ∣ ∏ i ∈ s', i
case ha s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 ⊒ p ∈ s'
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
rw [mem_s']
case ha s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 ⊒ p ∈ s'
case ha s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 ⊒ p.Prime
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
apply pp
case ha s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 ⊒ p.Prime
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
convert Nat.dvd_sub' pdvd this
s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this✝ : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 this : p ∣ ∏ i ∈ s', i ⊒ p ∣ 1
case h.e'_4 s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this✝ : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 this : p ∣ ∏ i ∈ s', i ⊒ 1 = ∏ i ∈ s', i + 1 - ∏ i ∈ s', i
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.primes_infinite'
[370, 1]
[406, 23]
simp
case h.e'_4 s : Finset β„• h : βˆ€ (p : β„•), p.Prime β†’ p ∈ s s' : Finset β„• := filter Nat.Prime s s'_def : s' = filter Nat.Prime s mem_s' : βˆ€ {n : β„•}, n ∈ s' ↔ n.Prime this✝ : 2 ≀ ∏ i ∈ s', i + 1 p : β„• pp : p.Prime pdvd : p ∣ ∏ i ∈ s', i + 1 this : p ∣ ∏ i ∈ s', i ⊒ 1 = ∏ i ∈ s', i + 1 - ∏ i ∈ s', i
no goals
https://github.com/avigad/mathematics_in_lean_source.git
3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3
MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean
C05S03.bounded_of_ex_finset
[427, 1]
[434, 25]
rintro ⟨s, hs⟩
Q : β„• β†’ Prop ⊒ (βˆƒ s, βˆ€ (k : β„•), Q k β†’ k ∈ s) β†’ βˆƒ n, βˆ€ (k : β„•), Q k β†’ k < n
case intro Q : β„• β†’ Prop s : Finset β„• hs : βˆ€ (k : β„•), Q k β†’ k ∈ s ⊒ βˆƒ n, βˆ€ (k : β„•), Q k β†’ k < n