url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.bounded_of_ex_finset | [427, 1] | [434, 25] | use s.sup id + 1 | case intro
Q : β β Prop
s : Finset β
hs : β (k : β), Q k β k β s
β’ β n, β (k : β), Q k β k < n | case h
Q : β β Prop
s : Finset β
hs : β (k : β), Q k β k β s
β’ β (k : β), Q k β k < s.sup id + 1 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.bounded_of_ex_finset | [427, 1] | [434, 25] | intro k Qk | case h
Q : β β Prop
s : Finset β
hs : β (k : β), Q k β k β s
β’ β (k : β), Q k β k < s.sup id + 1 | case h
Q : β β Prop
s : Finset β
hs : β (k : β), Q k β k β s
k : β
Qk : Q k
β’ k < s.sup id + 1 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.bounded_of_ex_finset | [427, 1] | [434, 25] | apply Nat.lt_succ_of_le | case h
Q : β β Prop
s : Finset β
hs : β (k : β), Q k β k β s
k : β
Qk : Q k
β’ k < s.sup id + 1 | case h.a
Q : β β Prop
s : Finset β
hs : β (k : β), Q k β k β s
k : β
Qk : Q k
β’ k β€ s.sup id |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.bounded_of_ex_finset | [427, 1] | [434, 25] | show id k β€ s.sup id | case h.a
Q : β β Prop
s : Finset β
hs : β (k : β), Q k β k β s
k : β
Qk : Q k
β’ k β€ s.sup id | case h.a
Q : β β Prop
s : Finset β
hs : β (k : β), Q k β k β s
k : β
Qk : Q k
β’ id k β€ s.sup id |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.bounded_of_ex_finset | [427, 1] | [434, 25] | apply le_sup (hs k Qk) | case h.a
Q : β β Prop
s : Finset β
hs : β (k : β), Q k β k β s
k : β
Qk : Q k
β’ id k β€ s.sup id | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.ex_finset_of_bounded | [436, 1] | [442, 13] | rintro β¨n, hnβ© | Q : β β Prop
instβ : DecidablePred Q
β’ (β n, β (k : β), Q k β k β€ n) β β s, β (k : β), Q k β k β s | case intro
Q : β β Prop
instβ : DecidablePred Q
n : β
hn : β (k : β), Q k β k β€ n
β’ β s, β (k : β), Q k β k β s |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.ex_finset_of_bounded | [436, 1] | [442, 13] | use (range (n + 1)).filter Q | case intro
Q : β β Prop
instβ : DecidablePred Q
n : β
hn : β (k : β), Q k β k β€ n
β’ β s, β (k : β), Q k β k β s | case h
Q : β β Prop
instβ : DecidablePred Q
n : β
hn : β (k : β), Q k β k β€ n
β’ β (k : β), Q k β k β filter Q (range (n + 1)) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.ex_finset_of_bounded | [436, 1] | [442, 13] | intro k | case h
Q : β β Prop
instβ : DecidablePred Q
n : β
hn : β (k : β), Q k β k β€ n
β’ β (k : β), Q k β k β filter Q (range (n + 1)) | case h
Q : β β Prop
instβ : DecidablePred Q
n : β
hn : β (k : β), Q k β k β€ n
k : β
β’ Q k β k β filter Q (range (n + 1)) |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.ex_finset_of_bounded | [436, 1] | [442, 13] | simp [Nat.lt_succ_iff] | case h
Q : β β Prop
instβ : DecidablePred Q
n : β
hn : β (k : β), Q k β k β€ n
k : β
β’ Q k β k β filter Q (range (n + 1)) | case h
Q : β β Prop
instβ : DecidablePred Q
n : β
hn : β (k : β), Q k β k β€ n
k : β
β’ Q k β k β€ n |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.ex_finset_of_bounded | [436, 1] | [442, 13] | exact hn k | case h
Q : β β Prop
instβ : DecidablePred Q
n : β
hn : β (k : β), Q k β k β€ n
k : β
β’ Q k β k β€ n | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.mod_4_eq_3_or_mod_4_eq_3 | [495, 1] | [501, 32] | revert h | m n : β
h : m * n % 4 = 3
β’ m % 4 = 3 β¨ n % 4 = 3 | m n : β
β’ m * n % 4 = 3 β m % 4 = 3 β¨ n % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.mod_4_eq_3_or_mod_4_eq_3 | [495, 1] | [501, 32] | rw [Nat.mul_mod] | m n : β
β’ m * n % 4 = 3 β m % 4 = 3 β¨ n % 4 = 3 | m n : β
β’ m % 4 * (n % 4) % 4 = 3 β m % 4 = 3 β¨ n % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.mod_4_eq_3_or_mod_4_eq_3 | [495, 1] | [501, 32] | have : m % 4 < 4 := Nat.mod_lt m (by norm_num) | m n : β
β’ m % 4 * (n % 4) % 4 = 3 β m % 4 = 3 β¨ n % 4 = 3 | m n : β
this : m % 4 < 4
β’ m % 4 * (n % 4) % 4 = 3 β m % 4 = 3 β¨ n % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.mod_4_eq_3_or_mod_4_eq_3 | [495, 1] | [501, 32] | interval_cases m % 4 <;> simp [-Nat.mul_mod_mod] | m n : β
this : m % 4 < 4
β’ m % 4 * (n % 4) % 4 = 3 β m % 4 = 3 β¨ n % 4 = 3 | case Β«2Β»
m n : β
this : 2 < 4
β’ 2 * (n % 4) % 4 = 3 β n % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.mod_4_eq_3_or_mod_4_eq_3 | [495, 1] | [501, 32] | have : n % 4 < 4 := Nat.mod_lt n (by norm_num) | case Β«2Β»
m n : β
this : 2 < 4
β’ 2 * (n % 4) % 4 = 3 β n % 4 = 3 | case Β«2Β»
m n : β
thisβ : 2 < 4
this : n % 4 < 4
β’ 2 * (n % 4) % 4 = 3 β n % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.mod_4_eq_3_or_mod_4_eq_3 | [495, 1] | [501, 32] | interval_cases n % 4 <;> simp | case Β«2Β»
m n : β
thisβ : 2 < 4
this : n % 4 < 4
β’ 2 * (n % 4) % 4 = 3 β n % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.mod_4_eq_3_or_mod_4_eq_3 | [495, 1] | [501, 32] | norm_num | m n : β
β’ 4 > 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.mod_4_eq_3_or_mod_4_eq_3 | [495, 1] | [501, 32] | norm_num | m n : β
this : 2 < 4
β’ 4 > 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.two_le_of_mod_4_eq_3 | [503, 1] | [507, 20] | intro neq | case h1
n : β
h : n % 4 = 3
β’ n β 1 | case h1
n : β
h : n % 4 = 3
neq : n = 1
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.two_le_of_mod_4_eq_3 | [503, 1] | [507, 20] | rw [neq] at h | case h1
n : β
h : n % 4 = 3
neq : n = 1
β’ False | case h1
n : β
h : 1 % 4 = 3
neq : n = 1
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.two_le_of_mod_4_eq_3 | [503, 1] | [507, 20] | norm_num at h | case h1
n : β
h : 1 % 4 = 3
neq : n = 1
β’ False | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.aux | [517, 1] | [523, 59] | constructor | m n : β
hβ : m β£ n
hβ : 2 β€ m
hβ : m < n
β’ n / m β£ n β§ n / m < n | case left
m n : β
hβ : m β£ n
hβ : 2 β€ m
hβ : m < n
β’ n / m β£ n
case right
m n : β
hβ : m β£ n
hβ : 2 β€ m
hβ : m < n
β’ n / m < n |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.aux | [517, 1] | [523, 59] | exact Nat.div_lt_self (lt_of_le_of_lt (zero_le _) hβ) hβ | case right
m n : β
hβ : m β£ n
hβ : 2 β€ m
hβ : m < n
β’ n / m < n | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.aux | [517, 1] | [523, 59] | exact Nat.div_dvd_of_dvd hβ | case left
m n : β
hβ : m β£ n
hβ : 2 β€ m
hβ : m < n
β’ n / m β£ n | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | by_cases np : n.Prime | n : β
h : n % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case pos
n : β
h : n % 4 = 3
np : n.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3
case neg
n : β
h : n % 4 = 3
np : Β¬n.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | induction' n using Nat.strong_induction_on with n ih | case neg
n : β
h : n % 4 = 3
np : Β¬n.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : Β¬n.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | rw [Nat.prime_def_lt] at np | case neg.h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : Β¬n.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : Β¬(2 β€ n β§ β m < n, m β£ n β m = 1)
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | push_neg at np | case neg.h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : Β¬(2 β€ n β§ β m < n, m β£ n β m = 1)
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | rcases np (two_le_of_mod_4_eq_3 h) with β¨m, mltn, mdvdn, mne1β© | case neg.h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.h.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | have mge2 : 2 β€ m := by
apply two_le _ mne1
intro mz
rw [mz, zero_dvd_iff] at mdvdn
linarith | case neg.h.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.h.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | have neq : m * (n / m) = n := Nat.mul_div_cancel' mdvdn | case neg.h.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.h.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | have : m % 4 = 3 β¨ n / m % 4 = 3 := by
apply mod_4_eq_3_or_mod_4_eq_3
rw [neq, h] | case neg.h.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.h.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
this : m % 4 = 3 β¨ n / m % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | rcases this with h1 | h1 | case neg.h.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
this : m % 4 = 3 β¨ n / m % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.h.intro.intro.intro.inl
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3
case neg.h.intro.intro.intro.inr
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | obtain β¨nmdvdn, nmltnβ© := aux mdvdn mge2 mltn | case neg.h.intro.intro.intro.inr
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.h.intro.intro.intro.inr.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | by_cases nmp : (n / m).Prime | case neg.h.intro.intro.intro.inr.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case pos
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
nmp : (n / m).Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3
case neg
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
nmp : Β¬(n / m).Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | rcases ih (n / m) nmltn h1 nmp with β¨p, pp, pdvd, p4eqβ© | case neg
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
nmp : Β¬(n / m).Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
nmp : Β¬(n / m).Prime
p : β
pp : p.Prime
pdvd : p β£ n / m
p4eq : p % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | use p | case neg.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
nmp : Β¬(n / m).Prime
p : β
pp : p.Prime
pdvd : p β£ n / m
p4eq : p % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
nmp : Β¬(n / m).Prime
p : β
pp : p.Prime
pdvd : p β£ n / m
p4eq : p % 4 = 3
β’ p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | exact β¨pp, pdvd.trans nmdvdn, p4eqβ© | case h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
nmp : Β¬(n / m).Prime
p : β
pp : p.Prime
pdvd : p β£ n / m
p4eq : p % 4 = 3
β’ p.Prime β§ p β£ n β§ p % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | use n | case pos
n : β
h : n % 4 = 3
np : n.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | apply two_le _ mne1 | n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
β’ 2 β€ m | n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
β’ m β 0 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | intro mz | n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
β’ m β 0 | n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mz : m = 0
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | rw [mz, zero_dvd_iff] at mdvdn | n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mz : m = 0
β’ False | n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : n = 0
mne1 : m β 1
mz : m = 0
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | linarith | n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : n = 0
mne1 : m β 1
mz : m = 0
β’ False | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | apply mod_4_eq_3_or_mod_4_eq_3 | n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
β’ m % 4 = 3 β¨ n / m % 4 = 3 | case h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
β’ m * (n / m) % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | rw [neq, h] | case h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
β’ m * (n / m) % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | by_cases mp : m.Prime | case neg.h.intro.intro.intro.inl
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case pos
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
mp : m.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3
case neg
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
mp : Β¬m.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | rcases ih m mltn h1 mp with β¨p, pp, pdvd, p4eqβ© | case neg
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
mp : Β¬m.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case neg.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
mp : Β¬m.Prime
p : β
pp : p.Prime
pdvd : p β£ m
p4eq : p % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | use p | case neg.intro.intro.intro
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
mp : Β¬m.Prime
p : β
pp : p.Prime
pdvd : p β£ m
p4eq : p % 4 = 3
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | case h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
mp : Β¬m.Prime
p : β
pp : p.Prime
pdvd : p β£ m
p4eq : p % 4 = 3
β’ p.Prime β§ p β£ n β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | exact β¨pp, pdvd.trans mdvdn, p4eqβ© | case h
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
mp : Β¬m.Prime
p : β
pp : p.Prime
pdvd : p β£ m
p4eq : p % 4 = 3
β’ p.Prime β§ p β£ n β§ p % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | use m | case pos
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : m % 4 = 3
mp : m.Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.exists_prime_factor_mod_4_eq_3 | [533, 1] | [565, 38] | use n / m | case pos
n : β
ih : β m < n, m % 4 = 3 β Β¬m.Prime β β p, p.Prime β§ p β£ m β§ p % 4 = 3
h : n % 4 = 3
np : 2 β€ n β β m < n, m β£ n β§ m β 1
m : β
mltn : m < n
mdvdn : m β£ n
mne1 : m β 1
mge2 : 2 β€ m
neq : m * (n / m) = n
h1 : n / m % 4 = 3
nmdvdn : n / m β£ n
nmltn : n / m < n
nmp : (n / m).Prime
β’ β p, p.Prime β§ p β£ n β§ p % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | by_contra h | β’ β (n : β), β p > n, p.Prime β§ p % 4 = 3 | h : Β¬β (n : β), β p > n, p.Prime β§ p % 4 = 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | push_neg at h | h : Β¬β (n : β), β p > n, p.Prime β§ p % 4 = 3
β’ False | h : β n, β p > n, p.Prime β p % 4 β 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | rcases h with β¨n, hnβ© | h : β n, β p > n, p.Prime β p % 4 β 3
β’ False | case intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | have : β s : Finset Nat, β p : β, p.Prime β§ p % 4 = 3 β p β s := by
apply ex_finset_of_bounded
use n
contrapose! hn
rcases hn with β¨p, β¨pp, p4β©, pltnβ©
exact β¨p, pltn, pp, p4β© | case intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
β’ False | case intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
this : β s, β (p : β), p.Prime β§ p % 4 = 3 β p β s
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | rcases this with β¨s, hsβ© | case intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
this : β s, β (p : β), p.Prime β§ p % 4 = 3 β p β s
β’ False | case intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | have hβ : ((4 * β i in erase s 3, i) + 3) % 4 = 3 := by
rw [add_comm, Nat.add_mul_mod_self_left] | case intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
β’ False | case intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | rcases exists_prime_factor_mod_4_eq_3 hβ with β¨p, pp, pdvd, p4eqβ© | case intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
β’ False | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | have ps : p β s := by
rw [β hs p]
exact β¨pp, p4eqβ© | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
β’ False | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | have pne3 : p β 3 := by
intro peq
rw [peq, β Nat.dvd_add_iff_left (dvd_refl 3)] at pdvd
rw [Nat.prime_three.dvd_mul] at pdvd
norm_num at pdvd
have : 3 β s.erase 3 := by
apply mem_of_dvd_prod_primes Nat.prime_three _ pdvd
intro n
simp [β hs n]
tauto
simp at this | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
β’ False | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | have : p β£ 4 * β i in erase s 3, i := by
apply dvd_trans _ (dvd_mul_left _ _)
apply dvd_prod_of_mem
simp
constructor <;> assumption | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
β’ False | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
this : p β£ 4 * β i β s.erase 3, i
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | have : p β£ 3 := by
convert Nat.dvd_sub' pdvd this
simp | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
this : p β£ 4 * β i β s.erase 3, i
β’ False | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
thisβ : p β£ 4 * β i β s.erase 3, i
this : p β£ 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | have : p = 3 := by
apply pp.eq_of_dvd_of_prime Nat.prime_three this | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
thisβ : p β£ 4 * β i β s.erase 3, i
this : p β£ 3
β’ False | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
thisβΒΉ : p β£ 4 * β i β s.erase 3, i
thisβ : p β£ 3
this : p = 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | contradiction | case intro.intro.intro.intro.intro
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
thisβΒΉ : p β£ 4 * β i β s.erase 3, i
thisβ : p β£ 3
this : p = 3
β’ False | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | apply ex_finset_of_bounded | n : β
hn : β p > n, p.Prime β p % 4 β 3
β’ β s, β (p : β), p.Prime β§ p % 4 = 3 β p β s | case a
n : β
hn : β p > n, p.Prime β p % 4 β 3
β’ β n, β (k : β), k.Prime β§ k % 4 = 3 β k β€ n |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | use n | case a
n : β
hn : β p > n, p.Prime β p % 4 β 3
β’ β n, β (k : β), k.Prime β§ k % 4 = 3 β k β€ n | case h
n : β
hn : β p > n, p.Prime β p % 4 β 3
β’ β (k : β), k.Prime β§ k % 4 = 3 β k β€ n |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | contrapose! hn | case h
n : β
hn : β p > n, p.Prime β p % 4 β 3
β’ β (k : β), k.Prime β§ k % 4 = 3 β k β€ n | case h
n : β
hn : β k, (k.Prime β§ k % 4 = 3) β§ n < k
β’ β p > n, p.Prime β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | rcases hn with β¨p, β¨pp, p4β©, pltnβ© | case h
n : β
hn : β k, (k.Prime β§ k % 4 = 3) β§ n < k
β’ β p > n, p.Prime β§ p % 4 = 3 | case h.intro.intro.intro
n p : β
pltn : n < p
pp : p.Prime
p4 : p % 4 = 3
β’ β p > n, p.Prime β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | exact β¨p, pltn, pp, p4β© | case h.intro.intro.intro
n p : β
pltn : n < p
pp : p.Prime
p4 : p % 4 = 3
β’ β p > n, p.Prime β§ p % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | rw [add_comm, Nat.add_mul_mod_self_left] | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
β’ (4 * β i β s.erase 3, i + 3) % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | rw [β hs p] | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
β’ p β s | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
β’ p.Prime β§ p % 4 = 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | exact β¨pp, p4eqβ© | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
β’ p.Prime β§ p % 4 = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | intro peq | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
β’ p β 3 | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | rw [peq, β Nat.dvd_add_iff_left (dvd_refl 3)] at pdvd | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
β’ False | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : 3 β£ 4 * β i β s.erase 3, i
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | rw [Nat.prime_three.dvd_mul] at pdvd | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : 3 β£ 4 * β i β s.erase 3, i
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
β’ False | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : 3 β£ 4 β¨ 3 β£ β i β s.erase 3, i
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | norm_num at pdvd | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : 3 β£ 4 β¨ 3 β£ β i β s.erase 3, i
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
β’ False | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | have : 3 β s.erase 3 := by
apply mem_of_dvd_prod_primes Nat.prime_three _ pdvd
intro n
simp [β hs n]
tauto | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
β’ False | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
this : 3 β s.erase 3
β’ False |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | simp at this | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
this : 3 β s.erase 3
β’ False | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | apply mem_of_dvd_prod_primes Nat.prime_three _ pdvd | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
β’ 3 β s.erase 3 | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
β’ β n β s.erase 3, n.Prime |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | intro n | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
β’ β n β s.erase 3, n.Prime | nβ : β
hn : β p > nβ, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
n : β
β’ n β s.erase 3 β n.Prime |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | simp [β hs n] | nβ : β
hn : β p > nβ, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
n : β
β’ n β s.erase 3 β n.Prime | nβ : β
hn : β p > nβ, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
n : β
β’ Β¬n = 3 β n.Prime β n % 4 = 3 β n.Prime |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | tauto | nβ : β
hn : β p > nβ, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
p4eq : p % 4 = 3
ps : p β s
peq : p = 3
pdvd : 3 β£ β i β s.erase 3, i
n : β
β’ Β¬n = 3 β n.Prime β n % 4 = 3 β n.Prime | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | apply dvd_trans _ (dvd_mul_left _ _) | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
β’ p β£ 4 * β i β s.erase 3, i | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
β’ p β£ β i β s.erase 3, i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | apply dvd_prod_of_mem | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
β’ p β£ β i β s.erase 3, i | case ha
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
β’ p β s.erase 3 |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | simp | case ha
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
β’ p β s.erase 3 | case ha
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
β’ Β¬p = 3 β§ p β s |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | constructor <;> assumption | case ha
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
β’ Β¬p = 3 β§ p β s | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | convert Nat.dvd_sub' pdvd this | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
this : p β£ 4 * β i β s.erase 3, i
β’ p β£ 3 | case h.e'_4
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
this : p β£ 4 * β i β s.erase 3, i
β’ 3 = 4 * β i β s.erase 3, i + 3 - 4 * β i β s.erase 3, i |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | simp | case h.e'_4
n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
this : p β£ 4 * β i β s.erase 3, i
β’ 3 = 4 * β i β s.erase 3, i + 3 - 4 * β i β s.erase 3, i | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C05_Elementary_Number_Theory/S03_Infinitely_Many_Primes.lean | C05S03.primes_mod_4_eq_3_infinite | [591, 1] | [653, 16] | apply pp.eq_of_dvd_of_prime Nat.prime_three this | n : β
hn : β p > n, p.Prime β p % 4 β 3
s : Finset β
hs : β (p : β), p.Prime β§ p % 4 = 3 β p β s
hβ : (4 * β i β s.erase 3, i + 3) % 4 = 3
p : β
pp : p.Prime
pdvd : p β£ 4 * β i β s.erase 3, i + 3
p4eq : p % 4 = 3
ps : p β s
pne3 : p β 3
thisβ : p β£ 4 * β i β s.erase 3, i
this : p β£ 3
β’ p = 3 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S04_Conjunction_and_Iff.lean | C03S04.aux | [246, 1] | [248, 17] | sorry | x y : β
h : x ^ 2 + y ^ 2 = 0
β’ x ^ 2 = 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S04_Conjunction_and_Iff.lean | C03S04.auxΞ±Ξ± | [255, 1] | [257, 17] | linarith [pow_two_nonneg x, pow_two_nonneg y] | x y : β
h : x ^ 2 + y ^ 2 = 0
β’ x ^ 2 = 0 | no goals |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S04_Conjunction_and_Iff.lean | C03S04.not_monotone_iff | [307, 1] | [310, 6] | rw [Monotone] | f : β β β
β’ Β¬Monotone f β β x y, x β€ y β§ f x > f y | f : β β β
β’ (Β¬β β¦a b : ββ¦, a β€ b β f a β€ f b) β β x y, x β€ y β§ f x > f y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S04_Conjunction_and_Iff.lean | C03S04.not_monotone_iff | [307, 1] | [310, 6] | push_neg | f : β β β
β’ (Β¬β β¦a b : ββ¦, a β€ b β f a β€ f b) β β x y, x β€ y β§ f x > f y | f : β β β
β’ (β a b, a β€ b β§ f b < f a) β β x y, x β€ y β§ f x > f y |
https://github.com/avigad/mathematics_in_lean_source.git | 3fa84e6b3135a3ae41edc6ca195abf0fb1ae3ac3 | MIL/C03_Logic/S04_Conjunction_and_Iff.lean | C03S04.not_monotone_iff | [307, 1] | [310, 6] | rfl | f : β β β
β’ (β a b, a β€ b β§ f b < f a) β β x y, x β€ y β§ f x > f y | no goals |
https://github.com/opencompl/egg-tactic-code.git | 8b4aa748047a43213fc2c0dfca6b7af4a475f785 | Evaluation/GroupsKnuthBendixSimp.lean | inv_mul_cancel_left | [15, 1] | [27, 53] | simp [assocMul, invLeft, mulOne, oneMul, invRight] | G : Type
inv : G β G
mul : G β G β G
one : G
assocMul : β (a b c : G), mul a (mul b c) = mul (mul a b) c
invLeft : β (a : G), mul (inv a) a = one
mulOne : β (a : G), mul a one = a
oneMul : β (a : G), mul one a = a
invRight : β (a : G), mul a (inv a) = one
x y : G
β’ mul (inv x) (mul x y) = y | no goals |
https://github.com/opencompl/egg-tactic-code.git | 8b4aa748047a43213fc2c0dfca6b7af4a475f785 | Evaluation/GroupsKnuthBendixSimp.lean | mul_inv_cancel_left | [30, 1] | [42, 53] | simp [assocMul, invLeft, mulOne, oneMul, invRight] | G : Type
inv : G β G
mul : G β G β G
one : G
assocMul : β (a b c : G), mul a (mul b c) = mul (mul a b) c
invLeft : β (a : G), mul (inv a) a = one
mulOne : β (a : G), mul a one = a
oneMul : β (a : G), mul one a = a
invRight : β (a : G), mul a (inv a) = one
x y : G
β’ mul x (mul (inv x) y) = y | no goals |
https://github.com/opencompl/egg-tactic-code.git | 8b4aa748047a43213fc2c0dfca6b7af4a475f785 | Evaluation/FunctionalProgramming.lean | Test.append_assoc | [30, 1] | [33, 62] | induction as with
| nil => eggxplosion [append_nil, append_cons]
| cons a as ih => eggxplosion [ih, append_nil, append_cons] | Ξ± : Type u_1
as bs cs : List Ξ±
β’ as ++ bs ++ cs = as ++ (bs ++ cs) | no goals |
https://github.com/opencompl/egg-tactic-code.git | 8b4aa748047a43213fc2c0dfca6b7af4a475f785 | Evaluation/FunctionalProgramming.lean | Test.reverseAux_eq_append | [56, 1] | [60, 64] | induction as generalizing bs with
| nil => eggxplosion [reverseAux_nil, reverseAux_cons]
| cons a as ih =>
eggxplosion [reverseAux_nil, reverseAux_cons, append_assoc] | Ξ± : Type u_1
as bs : List Ξ±
β’ reverseAux as bs = reverseAux as [] ++ bs | no goals |
https://github.com/opencompl/egg-tactic-code.git | 8b4aa748047a43213fc2c0dfca6b7af4a475f785 | Evaluation/FunctionalProgramming.lean | Test.reverse_append | [66, 1] | [69, 51] | induction as generalizing bs with
| nil => eggxplosion []
| cons a as ih => eggxplosion [ih, append_assoc] | Ξ± : Type u_1
as bs : List Ξ±
β’ List.reverse (as ++ bs) = List.reverse bs ++ List.reverse as | no goals |
https://github.com/opencompl/egg-tactic-code.git | 8b4aa748047a43213fc2c0dfca6b7af4a475f785 | Evaluation/FunctionalProgramming.lean | Test.all_deforestation | [87, 1] | [93, 48] | intros p xs | Ξ± : Sort u_1
β’ β (p : Ξ± β Bool) (xs : List Ξ±), all p xs = all' p xs | Ξ± : Sort u_1
p : Ξ± β Bool
xs : List Ξ±
β’ all p xs = all' p xs |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.