url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | centralBinomialLower_bound | [152, 1] | [157, 23] | rwa [sqrt_mul, ← div_div, div_le_iff, div_eq_mul_one_div, ← le_div_iff', one_div (sqrt π)] | n : ℕ
this✝ : 0 < π
this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n
⊢ 4 ^ n / Real.sqrt (π * (↑n + 1 / 3)) ≤ ↑(centralBinom n) | n : ℕ
this✝ : 0 < π
this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n
⊢ 0 < 4 ^ n
n : ℕ
this✝ : 0 < π
this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n
⊢ 0 < Real.sqrt (↑n + 1 / 3)
case hx
n : ℕ
this✝ : 0 < π
this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n
⊢ 0 ≤ π |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | centralBinomialLower_bound | [152, 1] | [157, 23] | all_goals positivity | n : ℕ
this✝ : 0 < π
this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n
⊢ 0 < 4 ^ n
n : ℕ
this✝ : 0 < π
this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n
⊢ 0 < Real.sqrt (↑n + 1 / 3)
case hx
n : ℕ
this✝ : 0 < π
this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n
⊢ 0 ≤ π | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | centralBinomialLower_bound | [152, 1] | [157, 23] | positivity | case hx
n : ℕ
this✝ : 0 < π
this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n
⊢ 0 ≤ π | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | cexp_eq_tsum | [159, 1] | [160, 45] | rw [Complex.exp_eq_exp_ℂ, exp_eq_tsum_div] | x : ℂ
⊢ Complex.exp x = ∑' (i : ℕ), x ^ i / ↑i ! | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | rexp_eq_tsum | [162, 1] | [163, 37] | rw [exp_eq_exp_ℝ, exp_eq_tsum_div] | x : ℝ
⊢ rexp x = ∑' (i : ℕ), x ^ i / ↑i ! | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | exp_factorial_bound | [165, 1] | [167, 78] | rw [exp_eq_exp_ℝ] | x : ℝ
hx : 0 ≤ x
n : ℕ
⊢ x ^ n / ↑n ! ≤ rexp x | x : ℝ
hx : 0 ≤ x
n : ℕ
⊢ x ^ n / ↑n ! ≤ _root_.exp ℝ x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | exp_factorial_bound | [165, 1] | [167, 78] | exact le_hasSum (expSeries_div_hasSum_exp ℝ x) n (fun _ _ => by positivity) | x : ℝ
hx : 0 ≤ x
n : ℕ
⊢ x ^ n / ↑n ! ≤ _root_.exp ℝ x | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | exp_factorial_bound | [165, 1] | [167, 78] | positivity | x : ℝ
hx : 0 ≤ x
n x✝¹ : ℕ
x✝ : x✝¹ ≠ n
⊢ 0 ≤ x ^ x✝¹ / ↑x✝¹! | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | exp_factorial_bound_of_ne_zero | [169, 1] | [176, 7] | rw [exp_eq_exp_ℝ] | n : ℕ
x : ℝ
hx : 0 ≤ x
hn : n ≠ 0
⊢ x ^ n / ↑n ! < rexp x | n : ℕ
x : ℝ
hx : 0 ≤ x
hn : n ≠ 0
⊢ x ^ n / ↑n ! < _root_.exp ℝ x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | exp_factorial_bound_of_ne_zero | [169, 1] | [176, 7] | refine (sum_le_hasSum {n, 0} ?_ (expSeries_div_hasSum_exp ℝ x)).trans_lt' ?_ | n : ℕ
x : ℝ
hx : 0 ≤ x
hn : n ≠ 0
⊢ x ^ n / ↑n ! < _root_.exp ℝ x | case refine_1
n : ℕ
x : ℝ
hx : 0 ≤ x
hn : n ≠ 0
⊢ ∀ i ∉ {n, 0}, 0 ≤ x ^ i / ↑i !
case refine_2
n : ℕ
x : ℝ
hx : 0 ≤ x
hn : n ≠ 0
⊢ x ^ n / ↑n ! < Finset.sum {n, 0} fun i => x ^ i / ↑i ! |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | exp_factorial_bound_of_ne_zero | [169, 1] | [176, 7] | rw [sum_pair hn] | case refine_2
n : ℕ
x : ℝ
hx : 0 ≤ x
hn : n ≠ 0
⊢ x ^ n / ↑n ! < Finset.sum {n, 0} fun i => x ^ i / ↑i ! | case refine_2
n : ℕ
x : ℝ
hx : 0 ≤ x
hn : n ≠ 0
⊢ x ^ n / ↑n ! < x ^ n / ↑n ! + x ^ 0 / ↑0! |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | exp_factorial_bound_of_ne_zero | [169, 1] | [176, 7] | simp | case refine_2
n : ℕ
x : ℝ
hx : 0 ≤ x
hn : n ≠ 0
⊢ x ^ n / ↑n ! < x ^ n / ↑n ! + x ^ 0 / ↑0! | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | exp_factorial_bound_of_ne_zero | [169, 1] | [176, 7] | intro x _ | case refine_1
n : ℕ
x : ℝ
hx : 0 ≤ x
hn : n ≠ 0
⊢ ∀ i ∉ {n, 0}, 0 ≤ x ^ i / ↑i ! | case refine_1
n : ℕ
x✝ : ℝ
hx : 0 ≤ x✝
hn : n ≠ 0
x : ℕ
a✝ : x ∉ {n, 0}
⊢ 0 ≤ x✝ ^ x / ↑x ! |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | exp_factorial_bound_of_ne_zero | [169, 1] | [176, 7] | positivity | case refine_1
n : ℕ
x✝ : ℝ
hx : 0 ≤ x✝
hn : n ≠ 0
x : ℕ
a✝ : x ∉ {n, 0}
⊢ 0 ≤ x✝ ^ x / ↑x ! | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | factorial_bound_exp | [178, 1] | [182, 15] | rw [div_pow, ← rpow_nat_cast (exp 1), exp_one_rpow, div_le_iff, ← div_le_iff'] | n : ℕ
⊢ (↑n / rexp 1) ^ n ≤ ↑n ! | n : ℕ
⊢ ↑n ^ n / ↑n ! ≤ rexp ↑n
n : ℕ
⊢ 0 < ↑n !
n : ℕ
⊢ 0 < rexp ↑n |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | factorial_bound_exp | [178, 1] | [182, 15] | exact exp_factorial_bound (Nat.cast_nonneg _) | n : ℕ
⊢ ↑n ^ n / ↑n ! ≤ rexp ↑n | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | factorial_bound_exp | [178, 1] | [182, 15] | positivity | n : ℕ
⊢ 0 < ↑n ! | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | factorial_bound_exp | [178, 1] | [182, 15] | positivity | n : ℕ
⊢ 0 < rexp ↑n | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | factorial_bound_exp_of_ne_zero | [184, 1] | [188, 15] | rw [div_pow, ← rpow_nat_cast (exp 1), exp_one_rpow, div_lt_iff, ← div_lt_iff'] | n : ℕ
hn : n ≠ 0
⊢ (↑n / rexp 1) ^ n < ↑n ! | n : ℕ
hn : n ≠ 0
⊢ ↑n ^ n / ↑n ! < rexp ↑n
n : ℕ
hn : n ≠ 0
⊢ 0 < ↑n !
n : ℕ
hn : n ≠ 0
⊢ 0 < rexp ↑n |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | factorial_bound_exp_of_ne_zero | [184, 1] | [188, 15] | exact exp_factorial_bound_of_ne_zero (Nat.cast_nonneg _) hn | n : ℕ
hn : n ≠ 0
⊢ ↑n ^ n / ↑n ! < rexp ↑n | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | factorial_bound_exp_of_ne_zero | [184, 1] | [188, 15] | positivity | n : ℕ
hn : n ≠ 0
⊢ 0 < ↑n ! | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | factorial_bound_exp_of_ne_zero | [184, 1] | [188, 15] | positivity | n : ℕ
hn : n ≠ 0
⊢ 0 < rexp ↑n | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | Nat.choose_le_pow' | [191, 1] | [193, 45] | simpa using Nat.choose_le_pow (α := α) r n | α : Type u_1
inst✝ : LinearOrderedSemifield α
r n : ℕ
⊢ ↑(choose n r) ≤ ↑n ^ r / ↑r ! | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound | [195, 1] | [202, 47] | cases' Nat.eq_zero_or_pos t with h h | n t : ℕ
⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t | case inl
n t : ℕ
h : t = 0
⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t
case inr
n t : ℕ
h : t > 0
⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound | [195, 1] | [202, 47] | refine' (Nat.choose_le_pow' t n).trans _ | case inr
n t : ℕ
h : t > 0
⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t | case inr
n t : ℕ
h : t > 0
⊢ ↑n ^ t / ↑t ! ≤ (rexp 1 * ↑n / ↑t) ^ t |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound | [195, 1] | [202, 47] | refine' (div_le_div_of_le_left _ _ factorial_bound_exp).trans _ | case inr
n t : ℕ
h : t > 0
⊢ ↑n ^ t / ↑t ! ≤ (rexp 1 * ↑n / ↑t) ^ t | case inr.refine'_1
n t : ℕ
h : t > 0
⊢ 0 ≤ ↑n ^ t
case inr.refine'_2
n t : ℕ
h : t > 0
⊢ 0 < (↑t / rexp 1) ^ t
case inr.refine'_3
n t : ℕ
h : t > 0
⊢ ↑n ^ t / (↑t / rexp 1) ^ t ≤ (rexp 1 * ↑n / ↑t) ^ t |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound | [195, 1] | [202, 47] | rw [← div_pow, div_div_eq_mul_div, mul_comm] | case inr.refine'_3
n t : ℕ
h : t > 0
⊢ ↑n ^ t / (↑t / rexp 1) ^ t ≤ (rexp 1 * ↑n / ↑t) ^ t | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound | [195, 1] | [202, 47] | simp [h] | case inl
n t : ℕ
h : t = 0
⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound | [195, 1] | [202, 47] | positivity | case inr.refine'_1
n t : ℕ
h : t > 0
⊢ 0 ≤ ↑n ^ t | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound | [195, 1] | [202, 47] | positivity | case inr.refine'_2
n t : ℕ
h : t > 0
⊢ 0 < (↑t / rexp 1) ^ t | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound_of_pos | [204, 1] | [210, 47] | refine' (Nat.choose_le_pow' t n).trans_lt _ | n t : ℕ
hn : n ≠ 0
ht : t ≠ 0
⊢ ↑(Nat.choose n t) < (rexp 1 * ↑n / ↑t) ^ t | n t : ℕ
hn : n ≠ 0
ht : t ≠ 0
⊢ ↑n ^ t / ↑t ! < (rexp 1 * ↑n / ↑t) ^ t |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound_of_pos | [204, 1] | [210, 47] | refine' (div_lt_div_of_lt_left _ _ (factorial_bound_exp_of_ne_zero ht)).trans_eq _ | n t : ℕ
hn : n ≠ 0
ht : t ≠ 0
⊢ ↑n ^ t / ↑t ! < (rexp 1 * ↑n / ↑t) ^ t | case refine'_1
n t : ℕ
hn : n ≠ 0
ht : t ≠ 0
⊢ 0 < ↑n ^ t
case refine'_2
n t : ℕ
hn : n ≠ 0
ht : t ≠ 0
⊢ 0 < (↑t / rexp 1) ^ t
case refine'_3
n t : ℕ
hn : n ≠ 0
ht : t ≠ 0
⊢ ↑n ^ t / (↑t / rexp 1) ^ t = (rexp 1 * ↑n / ↑t) ^ t |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound_of_pos | [204, 1] | [210, 47] | rw [← div_pow, div_div_eq_mul_div, mul_comm] | case refine'_3
n t : ℕ
hn : n ≠ 0
ht : t ≠ 0
⊢ ↑n ^ t / (↑t / rexp 1) ^ t = (rexp 1 * ↑n / ↑t) ^ t | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound_of_pos | [204, 1] | [210, 47] | positivity | case refine'_1
n t : ℕ
hn : n ≠ 0
ht : t ≠ 0
⊢ 0 < ↑n ^ t | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound_of_pos | [204, 1] | [210, 47] | positivity | case refine'_2
n t : ℕ
hn : n ≠ 0
ht : t ≠ 0
⊢ 0 < (↑t / rexp 1) ^ t | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean | choose_upper_bound' | [213, 1] | [214, 97] | rw [mul_div_assoc, mul_pow, ← exp_one_rpow t, rpow_nat_cast] | n t : ℕ
⊢ (rexp 1 * ↑n / ↑t) ^ t = rexp ↑t * (↑n / ↑t) ^ t | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.card_top_edgeSet | [38, 1] | [40, 70] | rw [Fintype.card_congr topEdgeSetEquiv, Sym2.card_subtype_not_diag] | V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝¹ : DecidableEq V
inst✝ : Fintype V
⊢ Fintype.card ↑(edgeSet ⊤) = Nat.choose (Fintype.card V) 2 | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.edgeSet_eq_empty_iff | [42, 1] | [43, 34] | rw [← edgeSet_bot, edgeSet_inj] | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G : SimpleGraph V
⊢ edgeSet G = ∅ ↔ G = ⊥ | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.disjoint_edgeSet | [45, 1] | [47, 90] | rw [Set.disjoint_iff_inter_eq_empty, disjoint_iff, ← edgeSet_inf, edgeSet_eq_empty_iff] | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
⊢ Disjoint (edgeSet G) (edgeSet H) ↔ Disjoint G H | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.disjoint_left | [49, 1] | [50, 78] | simp only [← disjoint_edgeSet, Set.disjoint_left, Sym2.forall, mem_edgeSet] | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
⊢ Disjoint G H ↔ ∀ (x y : V), Adj G x y → ¬Adj H x y | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.adj_sup_iff | [53, 1] | [58, 39] | induction' s using Finset.cons_induction_on with a s has ih | V✝ : Type u_1
V' : Type u_2
G : SimpleGraph V✝
K : Type u_3
K' : Type u_4
ι : Type u_5
V : Type u_6
s : Finset ι
f : ι → SimpleGraph V
x y : V
⊢ Adj (sup s f) x y ↔ ∃ i ∈ s, Adj (f i) x y | case h₁
V✝ : Type u_1
V' : Type u_2
G : SimpleGraph V✝
K : Type u_3
K' : Type u_4
ι : Type u_5
V : Type u_6
f : ι → SimpleGraph V
x y : V
⊢ Adj (sup ∅ f) x y ↔ ∃ i ∈ ∅, Adj (f i) x y
case h₂
V✝ : Type u_1
V' : Type u_2
G : SimpleGraph V✝
K : Type u_3
K' : Type u_4
ι : Type u_5
V : Type u_6
f : ι → SimpleGraph V
x y : V
a : ι
s : Finset ι
has : a ∉ s
ih : Adj (sup s f) x y ↔ ∃ i ∈ s, Adj (f i) x y
⊢ Adj (sup (cons a s has) f) x y ↔ ∃ i ∈ cons a s has, Adj (f i) x y |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.adj_sup_iff | [53, 1] | [58, 39] | simp | case h₁
V✝ : Type u_1
V' : Type u_2
G : SimpleGraph V✝
K : Type u_3
K' : Type u_4
ι : Type u_5
V : Type u_6
f : ι → SimpleGraph V
x y : V
⊢ Adj (sup ∅ f) x y ↔ ∃ i ∈ ∅, Adj (f i) x y | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.adj_sup_iff | [53, 1] | [58, 39] | simp [or_and_right, exists_or, ih] | case h₂
V✝ : Type u_1
V' : Type u_2
G : SimpleGraph V✝
K : Type u_3
K' : Type u_4
ι : Type u_5
V : Type u_6
f : ι → SimpleGraph V
x y : V
a : ι
s : Finset ι
has : a ∉ s
ih : Adj (sup s f) x y ↔ ∃ i ∈ s, Adj (f i) x y
⊢ Adj (sup (cons a s has) f) x y ↔ ∃ i ∈ cons a s has, Adj (f i) x y | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_bot | [71, 1] | [71, 90] | ext y | V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
x : V
⊢ neighborSet ⊥ x = ∅ | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
x y : V
⊢ y ∈ neighborSet ⊥ x ↔ y ∈ ∅ |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_bot | [71, 1] | [71, 90] | simp | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
x y : V
⊢ y ∈ neighborSet ⊥ x ↔ y ∈ ∅ | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_top | [73, 1] | [75, 70] | ext y | V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
x : V
⊢ neighborSet ⊤ x = {x}ᶜ | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
x y : V
⊢ y ∈ neighborSet ⊤ x ↔ y ∈ {x}ᶜ |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_top | [73, 1] | [75, 70] | rw [mem_neighborSet, top_adj, Set.mem_compl_singleton_iff, ne_comm] | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
x y : V
⊢ y ∈ neighborSet ⊤ x ↔ y ∈ {x}ᶜ | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_sup | [77, 1] | [78, 80] | ext y | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x : V
⊢ neighborSet (G ⊔ H) x = neighborSet G x ∪ neighborSet H x | case h
V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x y : V
⊢ y ∈ neighborSet (G ⊔ H) x ↔ y ∈ neighborSet G x ∪ neighborSet H x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_sup | [77, 1] | [78, 80] | simp | case h
V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x y : V
⊢ y ∈ neighborSet (G ⊔ H) x ↔ y ∈ neighborSet G x ∪ neighborSet H x | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_inf | [80, 1] | [83, 58] | ext y | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x : V
⊢ neighborSet (G ⊓ H) x = neighborSet G x ∩ neighborSet H x | case h
V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x y : V
⊢ y ∈ neighborSet (G ⊓ H) x ↔ y ∈ neighborSet G x ∩ neighborSet H x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_inf | [80, 1] | [83, 58] | simp only [mem_neighborSet, inf_adj, Set.mem_inter_iff] | case h
V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x y : V
⊢ y ∈ neighborSet (G ⊓ H) x ↔ y ∈ neighborSet G x ∩ neighborSet H x | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_iSup | [85, 1] | [86, 74] | ext y | V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
s : ι → SimpleGraph V
x : V
⊢ neighborSet (⨆ i, s i) x = ⋃ i, neighborSet (s i) x | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
s : ι → SimpleGraph V
x y : V
⊢ y ∈ neighborSet (⨆ i, s i) x ↔ y ∈ ⋃ i, neighborSet (s i) x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_iSup | [85, 1] | [86, 74] | simp | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
s : ι → SimpleGraph V
x y : V
⊢ y ∈ neighborSet (⨆ i, s i) x ↔ y ∈ ⋃ i, neighborSet (s i) x | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_iInf | [88, 1] | [96, 23] | ext y | V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
inst✝ : Nonempty ι
s : ι → SimpleGraph V
x : V
⊢ neighborSet (⨅ i, s i) x = ⋂ i, neighborSet (s i) x | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
inst✝ : Nonempty ι
s : ι → SimpleGraph V
x y : V
⊢ y ∈ neighborSet (⨅ i, s i) x ↔ y ∈ ⋂ i, neighborSet (s i) x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_iInf | [88, 1] | [96, 23] | simp only [mem_neighborSet, iInf_adj, Ne.def, Set.iInf_eq_iInter, Set.mem_iInter,
and_iff_left_iff_imp] | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
inst✝ : Nonempty ι
s : ι → SimpleGraph V
x y : V
⊢ y ∈ neighborSet (⨅ i, s i) x ↔ y ∈ ⋂ i, neighborSet (s i) x | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
inst✝ : Nonempty ι
s : ι → SimpleGraph V
x y : V
⊢ (∀ (i : ι), Adj (s i) x y) → ¬x = y |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_iInf | [88, 1] | [96, 23] | intro h | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
inst✝ : Nonempty ι
s : ι → SimpleGraph V
x y : V
⊢ (∀ (i : ι), Adj (s i) x y) → ¬x = y | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
inst✝ : Nonempty ι
s : ι → SimpleGraph V
x y : V
h : ∀ (i : ι), Adj (s i) x y
⊢ ¬x = y |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_iInf | [88, 1] | [96, 23] | inhabit ι | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
inst✝ : Nonempty ι
s : ι → SimpleGraph V
x y : V
h : ∀ (i : ι), Adj (s i) x y
⊢ ¬x = y | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
inst✝ : Nonempty ι
s : ι → SimpleGraph V
x y : V
h : ∀ (i : ι), Adj (s i) x y
inhabited_h : Inhabited ι
⊢ ¬x = y |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_iInf | [88, 1] | [96, 23] | exact (h default).ne | case h
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
ι : Type u_5
inst✝ : Nonempty ι
s : ι → SimpleGraph V
x y : V
h : ∀ (i : ι), Adj (s i) x y
inhabited_h : Inhabited ι
⊢ ¬x = y | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborSet_disjoint | [98, 1] | [100, 85] | rw [Set.disjoint_iff_inter_eq_empty, ← neighborSet_inf, h.eq_bot, neighborSet_bot] | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x : V
h : Disjoint G H
⊢ Disjoint (neighborSet G x) (neighborSet H x) | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_bot | [107, 1] | [107, 96] | ext y | V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
x : V
⊢ neighborFinset ⊥ x = ∅ | case a
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
x y : V
⊢ y ∈ neighborFinset ⊥ x ↔ y ∈ ∅ |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_bot | [107, 1] | [107, 96] | simp | case a
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
x y : V
⊢ y ∈ neighborFinset ⊥ x ↔ y ∈ ∅ | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_top | [109, 1] | [112, 77] | ext y | V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝¹ : Fintype V
inst✝ : DecidableEq V
x : V
⊢ neighborFinset ⊤ x = {x}ᶜ | case a
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝¹ : Fintype V
inst✝ : DecidableEq V
x y : V
⊢ y ∈ neighborFinset ⊤ x ↔ y ∈ {x}ᶜ |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_top | [109, 1] | [112, 77] | rw [mem_neighborFinset, top_adj, Finset.mem_compl, mem_singleton, ne_comm] | case a
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝¹ : Fintype V
inst✝ : DecidableEq V
x y : V
⊢ y ∈ neighborFinset ⊤ x ↔ y ∈ {x}ᶜ | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_sup | [114, 1] | [116, 89] | ext y | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝³ : DecidableEq V
G H : SimpleGraph V
x : V
inst✝² : Fintype ↑(neighborSet (G ⊔ H) x)
inst✝¹ : Fintype ↑(neighborSet G x)
inst✝ : Fintype ↑(neighborSet H x)
⊢ neighborFinset (G ⊔ H) x = neighborFinset G x ∪ neighborFinset H x | case a
V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝³ : DecidableEq V
G H : SimpleGraph V
x : V
inst✝² : Fintype ↑(neighborSet (G ⊔ H) x)
inst✝¹ : Fintype ↑(neighborSet G x)
inst✝ : Fintype ↑(neighborSet H x)
y : V
⊢ y ∈ neighborFinset (G ⊔ H) x ↔ y ∈ neighborFinset G x ∪ neighborFinset H x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_sup | [114, 1] | [116, 89] | simp | case a
V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝³ : DecidableEq V
G H : SimpleGraph V
x : V
inst✝² : Fintype ↑(neighborSet (G ⊔ H) x)
inst✝¹ : Fintype ↑(neighborSet G x)
inst✝ : Fintype ↑(neighborSet H x)
y : V
⊢ y ∈ neighborFinset (G ⊔ H) x ↔ y ∈ neighborFinset G x ∪ neighborFinset H x | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_inf | [118, 1] | [120, 89] | ext y | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝³ : DecidableEq V
G H : SimpleGraph V
x : V
inst✝² : Fintype ↑(neighborSet (G ⊓ H) x)
inst✝¹ : Fintype ↑(neighborSet G x)
inst✝ : Fintype ↑(neighborSet H x)
⊢ neighborFinset (G ⊓ H) x = neighborFinset G x ∩ neighborFinset H x | case a
V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝³ : DecidableEq V
G H : SimpleGraph V
x : V
inst✝² : Fintype ↑(neighborSet (G ⊓ H) x)
inst✝¹ : Fintype ↑(neighborSet G x)
inst✝ : Fintype ↑(neighborSet H x)
y : V
⊢ y ∈ neighborFinset (G ⊓ H) x ↔ y ∈ neighborFinset G x ∩ neighborFinset H x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_inf | [118, 1] | [120, 89] | simp | case a
V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝³ : DecidableEq V
G H : SimpleGraph V
x : V
inst✝² : Fintype ↑(neighborSet (G ⊓ H) x)
inst✝¹ : Fintype ↑(neighborSet G x)
inst✝ : Fintype ↑(neighborSet H x)
y : V
⊢ y ∈ neighborFinset (G ⊓ H) x ↔ y ∈ neighborFinset G x ∩ neighborFinset H x | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_supr | [126, 1] | [128, 93] | ext y | V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝² : DecidableEq V
ι : Type u_5
s : Finset ι
f : ι → SimpleGraph V
x : V
inst✝¹ : (i : ι) → Fintype ↑(neighborSet (f i) x)
inst✝ : Fintype ↑(neighborSet (sup s f) x)
⊢ neighborFinset (sup s f) x = Finset.biUnion s fun i => neighborFinset (f i) x | case a
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝² : DecidableEq V
ι : Type u_5
s : Finset ι
f : ι → SimpleGraph V
x : V
inst✝¹ : (i : ι) → Fintype ↑(neighborSet (f i) x)
inst✝ : Fintype ↑(neighborSet (sup s f) x)
y : V
⊢ y ∈ neighborFinset (sup s f) x ↔ y ∈ Finset.biUnion s fun i => neighborFinset (f i) x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_supr | [126, 1] | [128, 93] | simp | case a
V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
inst✝² : DecidableEq V
ι : Type u_5
s : Finset ι
f : ι → SimpleGraph V
x : V
inst✝¹ : (i : ι) → Fintype ↑(neighborSet (f i) x)
inst✝ : Fintype ↑(neighborSet (sup s f) x)
y : V
⊢ y ∈ neighborFinset (sup s f) x ↔ y ∈ Finset.biUnion s fun i => neighborFinset (f i) x | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.coe_neighborFinset | [131, 1] | [132, 99] | rw [neighborFinset_def, Set.coe_toFinset] | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G : SimpleGraph V
x : V
inst✝ : Fintype ↑(neighborSet G x)
⊢ ↑(neighborFinset G x) = neighborSet G x | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_disjoint | [134, 1] | [137, 92] | rw [← disjoint_coe, coe_neighborFinset, coe_neighborFinset] | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x : V
inst✝¹ : Fintype ↑(neighborSet G x)
inst✝ : Fintype ↑(neighborSet H x)
h : Disjoint G H
⊢ Disjoint (neighborFinset G x) (neighborFinset H x) | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x : V
inst✝¹ : Fintype ↑(neighborSet G x)
inst✝ : Fintype ↑(neighborSet H x)
h : Disjoint G H
⊢ Disjoint (neighborSet G x) (neighborSet H x) |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.neighborFinset_disjoint | [134, 1] | [137, 92] | exact neighborSet_disjoint h | V : Type u_1
V' : Type u_2
G✝ : SimpleGraph V
K : Type u_3
K' : Type u_4
G H : SimpleGraph V
x : V
inst✝¹ : Fintype ↑(neighborSet G x)
inst✝ : Fintype ↑(neighborSet H x)
h : Disjoint G H
⊢ Disjoint (neighborSet G x) (neighborSet H x) | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean | SimpleGraph.degree_eq_zero_iff | [141, 1] | [142, 73] | rw [← not_exists, ← degree_pos_iff_exists_adj, not_lt, le_zero_iff] | V : Type u_1
V' : Type u_2
G : SimpleGraph V
K : Type u_3
K' : Type u_4
v : V
inst✝ : Fintype ↑(neighborSet G v)
⊢ degree G v = 0 ↔ ∀ (w : V), ¬Adj G v w | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean | SimpleGraph.exists_even_degree | [27, 1] | [36, 19] | rw [Ne.def, filter_eq_self] at this | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
this : filter (fun x => Odd (degree G x)) univ ≠ univ
⊢ ∃ v, Even (degree G v) | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
this : ¬∀ x ∈ univ, Odd (degree G x)
⊢ ∃ v, Even (degree G v) |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean | SimpleGraph.exists_even_degree | [27, 1] | [36, 19] | simpa using this | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
this : ¬∀ x ∈ univ, Odd (degree G x)
⊢ ∃ v, Even (degree G v) | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean | SimpleGraph.exists_even_degree | [27, 1] | [36, 19] | rw [←card_lt_iff_ne_univ, (card_le_univ _).lt_iff_ne] | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
⊢ filter (fun x => Odd (degree G x)) univ ≠ univ | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
⊢ Finset.card (filter (fun x => Odd (degree G x)) univ) ≠ Fintype.card V |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean | SimpleGraph.exists_even_degree | [27, 1] | [36, 19] | intro h | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
⊢ Finset.card (filter (fun x => Odd (degree G x)) univ) ≠ Fintype.card V | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V
⊢ False |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean | SimpleGraph.exists_even_degree | [27, 1] | [36, 19] | have h' := even_card_odd_degree_vertices G | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V
⊢ False | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V
h' : Even (Finset.card (filter (fun v => Odd (degree G v)) univ))
⊢ False |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean | SimpleGraph.exists_even_degree | [27, 1] | [36, 19] | rw [h, Nat.even_iff_not_odd] at h' | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V
h' : Even (Finset.card (filter (fun v => Odd (degree G v)) univ))
⊢ False | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V
h' : ¬Odd (Fintype.card V)
⊢ False |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean | SimpleGraph.exists_even_degree | [27, 1] | [36, 19] | exact h' hV | V : Type u_1
G : SimpleGraph V
inst✝¹ : Fintype V
inst✝ : DecidableRel G.Adj
hV : Odd (Fintype.card V)
h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V
h' : ¬Odd (Fintype.card V)
⊢ False | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean | Nat.choose_le_two_pow | [19, 1] | [25, 17] | cases' le_or_lt k n with h h | n k : ℕ
⊢ choose n k ≤ 2 ^ n | case inl
n k : ℕ
h : k ≤ n
⊢ choose n k ≤ 2 ^ n
case inr
n k : ℕ
h : n < k
⊢ choose n k ≤ 2 ^ n |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean | Nat.choose_le_two_pow | [19, 1] | [25, 17] | rw [choose_eq_zero_of_lt h] | case inr
n k : ℕ
h : n < k
⊢ choose n k ≤ 2 ^ n | case inr
n k : ℕ
h : n < k
⊢ 0 ≤ 2 ^ n |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean | Nat.choose_le_two_pow | [19, 1] | [25, 17] | exact zero_le' | case inr
n k : ℕ
h : n < k
⊢ 0 ≤ 2 ^ n | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean | Nat.choose_le_two_pow | [19, 1] | [25, 17] | rw [← sum_range_choose n] | case inl
n k : ℕ
h : k ≤ n
⊢ choose n k ≤ 2 ^ n | case inl
n k : ℕ
h : k ≤ n
⊢ choose n k ≤ Finset.sum (range (n + 1)) fun m => choose n m |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean | Nat.choose_le_two_pow | [19, 1] | [25, 17] | refine' single_le_sum (fun _ _ => zero_le') _ | case inl
n k : ℕ
h : k ≤ n
⊢ choose n k ≤ Finset.sum (range (n + 1)) fun m => choose n m | case inl
n k : ℕ
h : k ≤ n
⊢ k ∈ range (n + 1) |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean | Nat.choose_le_two_pow | [19, 1] | [25, 17] | rwa [mem_range_succ_iff] | case inl
n k : ℕ
h : k ≤ n
⊢ k ∈ range (n + 1) | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | symmetric_isSquare | [22, 1] | [23, 76] | simpa using h.mul (FiniteField.isSquare_neg_one_iff.2 hF) | F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : Fintype.card F % 4 ≠ 3
x✝¹ x✝ : F
h : (fun x y => IsSquare (x - y)) x✝¹ x✝
⊢ (fun x y => IsSquare (x - y)) x✝ x✝¹ | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | have : (univ.filter fun x : F => ¬IsSquare x) = univ.filter fun x : F => x ≠ 0 ∧ ¬IsSquare x :=
by
refine' filter_congr _
simp (config := { contextual := true }) [not_imp_not] | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => ¬IsSquare x) univ) = Fintype.card F / 2 | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => ¬IsSquare x) univ) = Fintype.card F / 2 |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | rw [this] | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => ¬IsSquare x) univ) = Fintype.card F / 2 | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2 |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | have cf := quadraticChar_sum_zero hF | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2 | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf : (Finset.sum univ fun a => ↑(quadraticChar F) a) = 0
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2 |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | simp only [quadraticChar_apply, quadraticCharFun] at cf | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf : (Finset.sum univ fun a => ↑(quadraticChar F) a) = 0
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2 | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf : (Finset.sum univ fun x => if x = 0 then 0 else if IsSquare x then 1 else -1) = 0
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2 |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | rw [sum_ite, sum_const_zero, zero_add, sum_ite, sum_const, sum_const, nsmul_eq_mul, nsmul_eq_mul,
mul_neg, mul_one, mul_one, add_neg_eq_zero, Nat.cast_inj, filter_filter, filter_filter] at cf | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf : (Finset.sum univ fun x => if x = 0 then 0 else if IsSquare x then 1 else -1) = 0
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2 | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2 |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | rw [← cf, and_self_iff] | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧
Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2 | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | have :
((univ.filter fun x : F => x ≠ 0 ∧ IsSquare x) ∪ univ.filter fun x : F => x ≠ 0 ∧ ¬IsSquare x) ∪
{0} =
univ :=
by
simp only [← filter_or, ← and_or_left, em, and_true_iff, filter_ne']
rw [union_comm, ← insert_eq, insert_erase]
exact mem_univ _ | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | have h' := congr_arg Finset.card this | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ
h' :
Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0}) =
Finset.card univ
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | rw [card_disjoint_union, card_disjoint_union, card_singleton, card_univ, ← cf, ← two_mul, ←
bit0_eq_two_mul, ← bit1] at h' | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ
h' :
Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0}) =
Finset.card univ
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ
h' : bit1 (Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ)) = Fintype.card F
⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2
F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ
h' :
Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) +
Finset.card {0} =
Finset.card univ
⊢ Disjoint (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ)
F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ
h' :
Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0}) =
Finset.card univ
⊢ Disjoint (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) {0} |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | refine' filter_congr _ | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
⊢ filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
⊢ ∀ x ∈ univ, ¬IsSquare x ↔ x ≠ 0 ∧ ¬IsSquare x |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | simp (config := { contextual := true }) [not_imp_not] | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
⊢ ∀ x ∈ univ, ¬IsSquare x ↔ x ≠ 0 ∧ ¬IsSquare x | no goals |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | simp only [← filter_or, ← and_or_left, em, and_true_iff, filter_ne'] | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
⊢ filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
⊢ erase univ 0 ∪ {0} = univ |
https://github.com/b-mehta/ExponentialRamsey.git | 7e17b629a915a082869f494c8afa56a3e1c7a88d | ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean | card_non_zero_square_non_square | [25, 1] | [53, 9] | rw [union_comm, ← insert_eq, insert_erase] | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
⊢ erase univ 0 ∪ {0} = univ | F : Type u_1
inst✝² : Fintype F
inst✝¹ : Field F
inst✝ : DecidableEq F
hF : ringChar F ≠ 2
this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
cf :
Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ)
⊢ 0 ∈ univ |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.