url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_bound
[152, 1]
[157, 23]
rwa [sqrt_mul, ← div_div, div_le_iff, div_eq_mul_one_div, ← le_div_iff', one_div (sqrt π)]
n : ℕ this✝ : 0 < π this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n ⊢ 4 ^ n / Real.sqrt (π * (↑n + 1 / 3)) ≤ ↑(centralBinom n)
n : ℕ this✝ : 0 < π this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n ⊢ 0 < 4 ^ n n : ℕ this✝ : 0 < π this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n ⊢ 0 < Real.sqrt (↑n + 1 / 3) case hx n : ℕ this✝ : 0 < π this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n ⊢ 0 ≤ π
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_bound
[152, 1]
[157, 23]
all_goals positivity
n : ℕ this✝ : 0 < π this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n ⊢ 0 < 4 ^ n n : ℕ this✝ : 0 < π this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n ⊢ 0 < Real.sqrt (↑n + 1 / 3) case hx n : ℕ this✝ : 0 < π this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n ⊢ 0 ≤ π
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_bound
[152, 1]
[157, 23]
positivity
case hx n : ℕ this✝ : 0 < π this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n ⊢ 0 ≤ π
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
cexp_eq_tsum
[159, 1]
[160, 45]
rw [Complex.exp_eq_exp_ℂ, exp_eq_tsum_div]
x : ℂ ⊢ Complex.exp x = ∑' (i : ℕ), x ^ i / ↑i !
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
rexp_eq_tsum
[162, 1]
[163, 37]
rw [exp_eq_exp_ℝ, exp_eq_tsum_div]
x : ℝ ⊢ rexp x = ∑' (i : ℕ), x ^ i / ↑i !
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
exp_factorial_bound
[165, 1]
[167, 78]
rw [exp_eq_exp_ℝ]
x : ℝ hx : 0 ≤ x n : ℕ ⊢ x ^ n / ↑n ! ≤ rexp x
x : ℝ hx : 0 ≤ x n : ℕ ⊢ x ^ n / ↑n ! ≤ _root_.exp ℝ x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
exp_factorial_bound
[165, 1]
[167, 78]
exact le_hasSum (expSeries_div_hasSum_exp ℝ x) n (fun _ _ => by positivity)
x : ℝ hx : 0 ≤ x n : ℕ ⊢ x ^ n / ↑n ! ≤ _root_.exp ℝ x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
exp_factorial_bound
[165, 1]
[167, 78]
positivity
x : ℝ hx : 0 ≤ x n x✝¹ : ℕ x✝ : x✝¹ ≠ n ⊢ 0 ≤ x ^ x✝¹ / ↑x✝¹!
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
exp_factorial_bound_of_ne_zero
[169, 1]
[176, 7]
rw [exp_eq_exp_ℝ]
n : ℕ x : ℝ hx : 0 ≤ x hn : n ≠ 0 ⊢ x ^ n / ↑n ! < rexp x
n : ℕ x : ℝ hx : 0 ≤ x hn : n ≠ 0 ⊢ x ^ n / ↑n ! < _root_.exp ℝ x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
exp_factorial_bound_of_ne_zero
[169, 1]
[176, 7]
refine (sum_le_hasSum {n, 0} ?_ (expSeries_div_hasSum_exp ℝ x)).trans_lt' ?_
n : ℕ x : ℝ hx : 0 ≤ x hn : n ≠ 0 ⊢ x ^ n / ↑n ! < _root_.exp ℝ x
case refine_1 n : ℕ x : ℝ hx : 0 ≤ x hn : n ≠ 0 ⊢ ∀ i ∉ {n, 0}, 0 ≤ x ^ i / ↑i ! case refine_2 n : ℕ x : ℝ hx : 0 ≤ x hn : n ≠ 0 ⊢ x ^ n / ↑n ! < Finset.sum {n, 0} fun i => x ^ i / ↑i !
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
exp_factorial_bound_of_ne_zero
[169, 1]
[176, 7]
rw [sum_pair hn]
case refine_2 n : ℕ x : ℝ hx : 0 ≤ x hn : n ≠ 0 ⊢ x ^ n / ↑n ! < Finset.sum {n, 0} fun i => x ^ i / ↑i !
case refine_2 n : ℕ x : ℝ hx : 0 ≤ x hn : n ≠ 0 ⊢ x ^ n / ↑n ! < x ^ n / ↑n ! + x ^ 0 / ↑0!
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
exp_factorial_bound_of_ne_zero
[169, 1]
[176, 7]
simp
case refine_2 n : ℕ x : ℝ hx : 0 ≤ x hn : n ≠ 0 ⊢ x ^ n / ↑n ! < x ^ n / ↑n ! + x ^ 0 / ↑0!
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
exp_factorial_bound_of_ne_zero
[169, 1]
[176, 7]
intro x _
case refine_1 n : ℕ x : ℝ hx : 0 ≤ x hn : n ≠ 0 ⊢ ∀ i ∉ {n, 0}, 0 ≤ x ^ i / ↑i !
case refine_1 n : ℕ x✝ : ℝ hx : 0 ≤ x✝ hn : n ≠ 0 x : ℕ a✝ : x ∉ {n, 0} ⊢ 0 ≤ x✝ ^ x / ↑x !
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
exp_factorial_bound_of_ne_zero
[169, 1]
[176, 7]
positivity
case refine_1 n : ℕ x✝ : ℝ hx : 0 ≤ x✝ hn : n ≠ 0 x : ℕ a✝ : x ∉ {n, 0} ⊢ 0 ≤ x✝ ^ x / ↑x !
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
factorial_bound_exp
[178, 1]
[182, 15]
rw [div_pow, ← rpow_nat_cast (exp 1), exp_one_rpow, div_le_iff, ← div_le_iff']
n : ℕ ⊢ (↑n / rexp 1) ^ n ≤ ↑n !
n : ℕ ⊢ ↑n ^ n / ↑n ! ≤ rexp ↑n n : ℕ ⊢ 0 < ↑n ! n : ℕ ⊢ 0 < rexp ↑n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
factorial_bound_exp
[178, 1]
[182, 15]
exact exp_factorial_bound (Nat.cast_nonneg _)
n : ℕ ⊢ ↑n ^ n / ↑n ! ≤ rexp ↑n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
factorial_bound_exp
[178, 1]
[182, 15]
positivity
n : ℕ ⊢ 0 < ↑n !
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
factorial_bound_exp
[178, 1]
[182, 15]
positivity
n : ℕ ⊢ 0 < rexp ↑n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
factorial_bound_exp_of_ne_zero
[184, 1]
[188, 15]
rw [div_pow, ← rpow_nat_cast (exp 1), exp_one_rpow, div_lt_iff, ← div_lt_iff']
n : ℕ hn : n ≠ 0 ⊢ (↑n / rexp 1) ^ n < ↑n !
n : ℕ hn : n ≠ 0 ⊢ ↑n ^ n / ↑n ! < rexp ↑n n : ℕ hn : n ≠ 0 ⊢ 0 < ↑n ! n : ℕ hn : n ≠ 0 ⊢ 0 < rexp ↑n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
factorial_bound_exp_of_ne_zero
[184, 1]
[188, 15]
exact exp_factorial_bound_of_ne_zero (Nat.cast_nonneg _) hn
n : ℕ hn : n ≠ 0 ⊢ ↑n ^ n / ↑n ! < rexp ↑n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
factorial_bound_exp_of_ne_zero
[184, 1]
[188, 15]
positivity
n : ℕ hn : n ≠ 0 ⊢ 0 < ↑n !
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
factorial_bound_exp_of_ne_zero
[184, 1]
[188, 15]
positivity
n : ℕ hn : n ≠ 0 ⊢ 0 < rexp ↑n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
Nat.choose_le_pow'
[191, 1]
[193, 45]
simpa using Nat.choose_le_pow (α := α) r n
α : Type u_1 inst✝ : LinearOrderedSemifield α r n : ℕ ⊢ ↑(choose n r) ≤ ↑n ^ r / ↑r !
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound
[195, 1]
[202, 47]
cases' Nat.eq_zero_or_pos t with h h
n t : ℕ ⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t
case inl n t : ℕ h : t = 0 ⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t case inr n t : ℕ h : t > 0 ⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound
[195, 1]
[202, 47]
refine' (Nat.choose_le_pow' t n).trans _
case inr n t : ℕ h : t > 0 ⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t
case inr n t : ℕ h : t > 0 ⊢ ↑n ^ t / ↑t ! ≤ (rexp 1 * ↑n / ↑t) ^ t
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound
[195, 1]
[202, 47]
refine' (div_le_div_of_le_left _ _ factorial_bound_exp).trans _
case inr n t : ℕ h : t > 0 ⊢ ↑n ^ t / ↑t ! ≤ (rexp 1 * ↑n / ↑t) ^ t
case inr.refine'_1 n t : ℕ h : t > 0 ⊢ 0 ≤ ↑n ^ t case inr.refine'_2 n t : ℕ h : t > 0 ⊢ 0 < (↑t / rexp 1) ^ t case inr.refine'_3 n t : ℕ h : t > 0 ⊢ ↑n ^ t / (↑t / rexp 1) ^ t ≤ (rexp 1 * ↑n / ↑t) ^ t
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound
[195, 1]
[202, 47]
rw [← div_pow, div_div_eq_mul_div, mul_comm]
case inr.refine'_3 n t : ℕ h : t > 0 ⊢ ↑n ^ t / (↑t / rexp 1) ^ t ≤ (rexp 1 * ↑n / ↑t) ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound
[195, 1]
[202, 47]
simp [h]
case inl n t : ℕ h : t = 0 ⊢ ↑(Nat.choose n t) ≤ (rexp 1 * ↑n / ↑t) ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound
[195, 1]
[202, 47]
positivity
case inr.refine'_1 n t : ℕ h : t > 0 ⊢ 0 ≤ ↑n ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound
[195, 1]
[202, 47]
positivity
case inr.refine'_2 n t : ℕ h : t > 0 ⊢ 0 < (↑t / rexp 1) ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound_of_pos
[204, 1]
[210, 47]
refine' (Nat.choose_le_pow' t n).trans_lt _
n t : ℕ hn : n ≠ 0 ht : t ≠ 0 ⊢ ↑(Nat.choose n t) < (rexp 1 * ↑n / ↑t) ^ t
n t : ℕ hn : n ≠ 0 ht : t ≠ 0 ⊢ ↑n ^ t / ↑t ! < (rexp 1 * ↑n / ↑t) ^ t
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound_of_pos
[204, 1]
[210, 47]
refine' (div_lt_div_of_lt_left _ _ (factorial_bound_exp_of_ne_zero ht)).trans_eq _
n t : ℕ hn : n ≠ 0 ht : t ≠ 0 ⊢ ↑n ^ t / ↑t ! < (rexp 1 * ↑n / ↑t) ^ t
case refine'_1 n t : ℕ hn : n ≠ 0 ht : t ≠ 0 ⊢ 0 < ↑n ^ t case refine'_2 n t : ℕ hn : n ≠ 0 ht : t ≠ 0 ⊢ 0 < (↑t / rexp 1) ^ t case refine'_3 n t : ℕ hn : n ≠ 0 ht : t ≠ 0 ⊢ ↑n ^ t / (↑t / rexp 1) ^ t = (rexp 1 * ↑n / ↑t) ^ t
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound_of_pos
[204, 1]
[210, 47]
rw [← div_pow, div_div_eq_mul_div, mul_comm]
case refine'_3 n t : ℕ hn : n ≠ 0 ht : t ≠ 0 ⊢ ↑n ^ t / (↑t / rexp 1) ^ t = (rexp 1 * ↑n / ↑t) ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound_of_pos
[204, 1]
[210, 47]
positivity
case refine'_1 n t : ℕ hn : n ≠ 0 ht : t ≠ 0 ⊢ 0 < ↑n ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound_of_pos
[204, 1]
[210, 47]
positivity
case refine'_2 n t : ℕ hn : n ≠ 0 ht : t ≠ 0 ⊢ 0 < (↑t / rexp 1) ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
choose_upper_bound'
[213, 1]
[214, 97]
rw [mul_div_assoc, mul_pow, ← exp_one_rpow t, rpow_nat_cast]
n t : ℕ ⊢ (rexp 1 * ↑n / ↑t) ^ t = rexp ↑t * (↑n / ↑t) ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.card_top_edgeSet
[38, 1]
[40, 70]
rw [Fintype.card_congr topEdgeSetEquiv, Sym2.card_subtype_not_diag]
V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝¹ : DecidableEq V inst✝ : Fintype V ⊢ Fintype.card ↑(edgeSet ⊤) = Nat.choose (Fintype.card V) 2
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.edgeSet_eq_empty_iff
[42, 1]
[43, 34]
rw [← edgeSet_bot, edgeSet_inj]
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G : SimpleGraph V ⊢ edgeSet G = ∅ ↔ G = ⊥
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.disjoint_edgeSet
[45, 1]
[47, 90]
rw [Set.disjoint_iff_inter_eq_empty, disjoint_iff, ← edgeSet_inf, edgeSet_eq_empty_iff]
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V ⊢ Disjoint (edgeSet G) (edgeSet H) ↔ Disjoint G H
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.disjoint_left
[49, 1]
[50, 78]
simp only [← disjoint_edgeSet, Set.disjoint_left, Sym2.forall, mem_edgeSet]
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V ⊢ Disjoint G H ↔ ∀ (x y : V), Adj G x y → ¬Adj H x y
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.adj_sup_iff
[53, 1]
[58, 39]
induction' s using Finset.cons_induction_on with a s has ih
V✝ : Type u_1 V' : Type u_2 G : SimpleGraph V✝ K : Type u_3 K' : Type u_4 ι : Type u_5 V : Type u_6 s : Finset ι f : ι → SimpleGraph V x y : V ⊢ Adj (sup s f) x y ↔ ∃ i ∈ s, Adj (f i) x y
case h₁ V✝ : Type u_1 V' : Type u_2 G : SimpleGraph V✝ K : Type u_3 K' : Type u_4 ι : Type u_5 V : Type u_6 f : ι → SimpleGraph V x y : V ⊢ Adj (sup ∅ f) x y ↔ ∃ i ∈ ∅, Adj (f i) x y case h₂ V✝ : Type u_1 V' : Type u_2 G : SimpleGraph V✝ K : Type u_3 K' : Type u_4 ι : Type u_5 V : Type u_6 f : ι → SimpleGraph V x y : V a : ι s : Finset ι has : a ∉ s ih : Adj (sup s f) x y ↔ ∃ i ∈ s, Adj (f i) x y ⊢ Adj (sup (cons a s has) f) x y ↔ ∃ i ∈ cons a s has, Adj (f i) x y
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.adj_sup_iff
[53, 1]
[58, 39]
simp
case h₁ V✝ : Type u_1 V' : Type u_2 G : SimpleGraph V✝ K : Type u_3 K' : Type u_4 ι : Type u_5 V : Type u_6 f : ι → SimpleGraph V x y : V ⊢ Adj (sup ∅ f) x y ↔ ∃ i ∈ ∅, Adj (f i) x y
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.adj_sup_iff
[53, 1]
[58, 39]
simp [or_and_right, exists_or, ih]
case h₂ V✝ : Type u_1 V' : Type u_2 G : SimpleGraph V✝ K : Type u_3 K' : Type u_4 ι : Type u_5 V : Type u_6 f : ι → SimpleGraph V x y : V a : ι s : Finset ι has : a ∉ s ih : Adj (sup s f) x y ↔ ∃ i ∈ s, Adj (f i) x y ⊢ Adj (sup (cons a s has) f) x y ↔ ∃ i ∈ cons a s has, Adj (f i) x y
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_bot
[71, 1]
[71, 90]
ext y
V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 x : V ⊢ neighborSet ⊥ x = ∅
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 x y : V ⊢ y ∈ neighborSet ⊥ x ↔ y ∈ ∅
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_bot
[71, 1]
[71, 90]
simp
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 x y : V ⊢ y ∈ neighborSet ⊥ x ↔ y ∈ ∅
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_top
[73, 1]
[75, 70]
ext y
V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 x : V ⊢ neighborSet ⊤ x = {x}ᶜ
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 x y : V ⊢ y ∈ neighborSet ⊤ x ↔ y ∈ {x}ᶜ
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_top
[73, 1]
[75, 70]
rw [mem_neighborSet, top_adj, Set.mem_compl_singleton_iff, ne_comm]
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 x y : V ⊢ y ∈ neighborSet ⊤ x ↔ y ∈ {x}ᶜ
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_sup
[77, 1]
[78, 80]
ext y
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x : V ⊢ neighborSet (G ⊔ H) x = neighborSet G x ∪ neighborSet H x
case h V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x y : V ⊢ y ∈ neighborSet (G ⊔ H) x ↔ y ∈ neighborSet G x ∪ neighborSet H x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_sup
[77, 1]
[78, 80]
simp
case h V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x y : V ⊢ y ∈ neighborSet (G ⊔ H) x ↔ y ∈ neighborSet G x ∪ neighborSet H x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_inf
[80, 1]
[83, 58]
ext y
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x : V ⊢ neighborSet (G ⊓ H) x = neighborSet G x ∩ neighborSet H x
case h V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x y : V ⊢ y ∈ neighborSet (G ⊓ H) x ↔ y ∈ neighborSet G x ∩ neighborSet H x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_inf
[80, 1]
[83, 58]
simp only [mem_neighborSet, inf_adj, Set.mem_inter_iff]
case h V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x y : V ⊢ y ∈ neighborSet (G ⊓ H) x ↔ y ∈ neighborSet G x ∩ neighborSet H x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_iSup
[85, 1]
[86, 74]
ext y
V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 s : ι → SimpleGraph V x : V ⊢ neighborSet (⨆ i, s i) x = ⋃ i, neighborSet (s i) x
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 s : ι → SimpleGraph V x y : V ⊢ y ∈ neighborSet (⨆ i, s i) x ↔ y ∈ ⋃ i, neighborSet (s i) x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_iSup
[85, 1]
[86, 74]
simp
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 s : ι → SimpleGraph V x y : V ⊢ y ∈ neighborSet (⨆ i, s i) x ↔ y ∈ ⋃ i, neighborSet (s i) x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_iInf
[88, 1]
[96, 23]
ext y
V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 inst✝ : Nonempty ι s : ι → SimpleGraph V x : V ⊢ neighborSet (⨅ i, s i) x = ⋂ i, neighborSet (s i) x
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 inst✝ : Nonempty ι s : ι → SimpleGraph V x y : V ⊢ y ∈ neighborSet (⨅ i, s i) x ↔ y ∈ ⋂ i, neighborSet (s i) x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_iInf
[88, 1]
[96, 23]
simp only [mem_neighborSet, iInf_adj, Ne.def, Set.iInf_eq_iInter, Set.mem_iInter, and_iff_left_iff_imp]
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 inst✝ : Nonempty ι s : ι → SimpleGraph V x y : V ⊢ y ∈ neighborSet (⨅ i, s i) x ↔ y ∈ ⋂ i, neighborSet (s i) x
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 inst✝ : Nonempty ι s : ι → SimpleGraph V x y : V ⊢ (∀ (i : ι), Adj (s i) x y) → ¬x = y
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_iInf
[88, 1]
[96, 23]
intro h
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 inst✝ : Nonempty ι s : ι → SimpleGraph V x y : V ⊢ (∀ (i : ι), Adj (s i) x y) → ¬x = y
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 inst✝ : Nonempty ι s : ι → SimpleGraph V x y : V h : ∀ (i : ι), Adj (s i) x y ⊢ ¬x = y
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_iInf
[88, 1]
[96, 23]
inhabit ι
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 inst✝ : Nonempty ι s : ι → SimpleGraph V x y : V h : ∀ (i : ι), Adj (s i) x y ⊢ ¬x = y
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 inst✝ : Nonempty ι s : ι → SimpleGraph V x y : V h : ∀ (i : ι), Adj (s i) x y inhabited_h : Inhabited ι ⊢ ¬x = y
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_iInf
[88, 1]
[96, 23]
exact (h default).ne
case h V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 ι : Type u_5 inst✝ : Nonempty ι s : ι → SimpleGraph V x y : V h : ∀ (i : ι), Adj (s i) x y inhabited_h : Inhabited ι ⊢ ¬x = y
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborSet_disjoint
[98, 1]
[100, 85]
rw [Set.disjoint_iff_inter_eq_empty, ← neighborSet_inf, h.eq_bot, neighborSet_bot]
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x : V h : Disjoint G H ⊢ Disjoint (neighborSet G x) (neighborSet H x)
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_bot
[107, 1]
[107, 96]
ext y
V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 x : V ⊢ neighborFinset ⊥ x = ∅
case a V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 x y : V ⊢ y ∈ neighborFinset ⊥ x ↔ y ∈ ∅
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_bot
[107, 1]
[107, 96]
simp
case a V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 x y : V ⊢ y ∈ neighborFinset ⊥ x ↔ y ∈ ∅
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_top
[109, 1]
[112, 77]
ext y
V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝¹ : Fintype V inst✝ : DecidableEq V x : V ⊢ neighborFinset ⊤ x = {x}ᶜ
case a V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝¹ : Fintype V inst✝ : DecidableEq V x y : V ⊢ y ∈ neighborFinset ⊤ x ↔ y ∈ {x}ᶜ
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_top
[109, 1]
[112, 77]
rw [mem_neighborFinset, top_adj, Finset.mem_compl, mem_singleton, ne_comm]
case a V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝¹ : Fintype V inst✝ : DecidableEq V x y : V ⊢ y ∈ neighborFinset ⊤ x ↔ y ∈ {x}ᶜ
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_sup
[114, 1]
[116, 89]
ext y
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝³ : DecidableEq V G H : SimpleGraph V x : V inst✝² : Fintype ↑(neighborSet (G ⊔ H) x) inst✝¹ : Fintype ↑(neighborSet G x) inst✝ : Fintype ↑(neighborSet H x) ⊢ neighborFinset (G ⊔ H) x = neighborFinset G x ∪ neighborFinset H x
case a V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝³ : DecidableEq V G H : SimpleGraph V x : V inst✝² : Fintype ↑(neighborSet (G ⊔ H) x) inst✝¹ : Fintype ↑(neighborSet G x) inst✝ : Fintype ↑(neighborSet H x) y : V ⊢ y ∈ neighborFinset (G ⊔ H) x ↔ y ∈ neighborFinset G x ∪ neighborFinset H x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_sup
[114, 1]
[116, 89]
simp
case a V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝³ : DecidableEq V G H : SimpleGraph V x : V inst✝² : Fintype ↑(neighborSet (G ⊔ H) x) inst✝¹ : Fintype ↑(neighborSet G x) inst✝ : Fintype ↑(neighborSet H x) y : V ⊢ y ∈ neighborFinset (G ⊔ H) x ↔ y ∈ neighborFinset G x ∪ neighborFinset H x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_inf
[118, 1]
[120, 89]
ext y
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝³ : DecidableEq V G H : SimpleGraph V x : V inst✝² : Fintype ↑(neighborSet (G ⊓ H) x) inst✝¹ : Fintype ↑(neighborSet G x) inst✝ : Fintype ↑(neighborSet H x) ⊢ neighborFinset (G ⊓ H) x = neighborFinset G x ∩ neighborFinset H x
case a V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝³ : DecidableEq V G H : SimpleGraph V x : V inst✝² : Fintype ↑(neighborSet (G ⊓ H) x) inst✝¹ : Fintype ↑(neighborSet G x) inst✝ : Fintype ↑(neighborSet H x) y : V ⊢ y ∈ neighborFinset (G ⊓ H) x ↔ y ∈ neighborFinset G x ∩ neighborFinset H x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_inf
[118, 1]
[120, 89]
simp
case a V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝³ : DecidableEq V G H : SimpleGraph V x : V inst✝² : Fintype ↑(neighborSet (G ⊓ H) x) inst✝¹ : Fintype ↑(neighborSet G x) inst✝ : Fintype ↑(neighborSet H x) y : V ⊢ y ∈ neighborFinset (G ⊓ H) x ↔ y ∈ neighborFinset G x ∩ neighborFinset H x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_supr
[126, 1]
[128, 93]
ext y
V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝² : DecidableEq V ι : Type u_5 s : Finset ι f : ι → SimpleGraph V x : V inst✝¹ : (i : ι) → Fintype ↑(neighborSet (f i) x) inst✝ : Fintype ↑(neighborSet (sup s f) x) ⊢ neighborFinset (sup s f) x = Finset.biUnion s fun i => neighborFinset (f i) x
case a V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝² : DecidableEq V ι : Type u_5 s : Finset ι f : ι → SimpleGraph V x : V inst✝¹ : (i : ι) → Fintype ↑(neighborSet (f i) x) inst✝ : Fintype ↑(neighborSet (sup s f) x) y : V ⊢ y ∈ neighborFinset (sup s f) x ↔ y ∈ Finset.biUnion s fun i => neighborFinset (f i) x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_supr
[126, 1]
[128, 93]
simp
case a V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 inst✝² : DecidableEq V ι : Type u_5 s : Finset ι f : ι → SimpleGraph V x : V inst✝¹ : (i : ι) → Fintype ↑(neighborSet (f i) x) inst✝ : Fintype ↑(neighborSet (sup s f) x) y : V ⊢ y ∈ neighborFinset (sup s f) x ↔ y ∈ Finset.biUnion s fun i => neighborFinset (f i) x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.coe_neighborFinset
[131, 1]
[132, 99]
rw [neighborFinset_def, Set.coe_toFinset]
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G : SimpleGraph V x : V inst✝ : Fintype ↑(neighborSet G x) ⊢ ↑(neighborFinset G x) = neighborSet G x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_disjoint
[134, 1]
[137, 92]
rw [← disjoint_coe, coe_neighborFinset, coe_neighborFinset]
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x : V inst✝¹ : Fintype ↑(neighborSet G x) inst✝ : Fintype ↑(neighborSet H x) h : Disjoint G H ⊢ Disjoint (neighborFinset G x) (neighborFinset H x)
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x : V inst✝¹ : Fintype ↑(neighborSet G x) inst✝ : Fintype ↑(neighborSet H x) h : Disjoint G H ⊢ Disjoint (neighborSet G x) (neighborSet H x)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.neighborFinset_disjoint
[134, 1]
[137, 92]
exact neighborSet_disjoint h
V : Type u_1 V' : Type u_2 G✝ : SimpleGraph V K : Type u_3 K' : Type u_4 G H : SimpleGraph V x : V inst✝¹ : Fintype ↑(neighborSet G x) inst✝ : Fintype ↑(neighborSet H x) h : Disjoint G H ⊢ Disjoint (neighborSet G x) (neighborSet H x)
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.degree_eq_zero_iff
[141, 1]
[142, 73]
rw [← not_exists, ← degree_pos_iff_exists_adj, not_lt, le_zero_iff]
V : Type u_1 V' : Type u_2 G : SimpleGraph V K : Type u_3 K' : Type u_4 v : V inst✝ : Fintype ↑(neighborSet G v) ⊢ degree G v = 0 ↔ ∀ (w : V), ¬Adj G v w
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.exists_even_degree
[27, 1]
[36, 19]
rw [Ne.def, filter_eq_self] at this
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) this : filter (fun x => Odd (degree G x)) univ ≠ univ ⊢ ∃ v, Even (degree G v)
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) this : ¬∀ x ∈ univ, Odd (degree G x) ⊢ ∃ v, Even (degree G v)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.exists_even_degree
[27, 1]
[36, 19]
simpa using this
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) this : ¬∀ x ∈ univ, Odd (degree G x) ⊢ ∃ v, Even (degree G v)
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.exists_even_degree
[27, 1]
[36, 19]
rw [←card_lt_iff_ne_univ, (card_le_univ _).lt_iff_ne]
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) ⊢ filter (fun x => Odd (degree G x)) univ ≠ univ
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) ⊢ Finset.card (filter (fun x => Odd (degree G x)) univ) ≠ Fintype.card V
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.exists_even_degree
[27, 1]
[36, 19]
intro h
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) ⊢ Finset.card (filter (fun x => Odd (degree G x)) univ) ≠ Fintype.card V
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V ⊢ False
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.exists_even_degree
[27, 1]
[36, 19]
have h' := even_card_odd_degree_vertices G
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V ⊢ False
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V h' : Even (Finset.card (filter (fun v => Odd (degree G v)) univ)) ⊢ False
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.exists_even_degree
[27, 1]
[36, 19]
rw [h, Nat.even_iff_not_odd] at h'
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V h' : Even (Finset.card (filter (fun v => Odd (degree G v)) univ)) ⊢ False
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V h' : ¬Odd (Fintype.card V) ⊢ False
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.exists_even_degree
[27, 1]
[36, 19]
exact h' hV
V : Type u_1 G : SimpleGraph V inst✝¹ : Fintype V inst✝ : DecidableRel G.Adj hV : Odd (Fintype.card V) h : Finset.card (filter (fun x => Odd (degree G x)) univ) = Fintype.card V h' : ¬Odd (Fintype.card V) ⊢ False
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean
Nat.choose_le_two_pow
[19, 1]
[25, 17]
cases' le_or_lt k n with h h
n k : ℕ ⊢ choose n k ≤ 2 ^ n
case inl n k : ℕ h : k ≤ n ⊢ choose n k ≤ 2 ^ n case inr n k : ℕ h : n < k ⊢ choose n k ≤ 2 ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean
Nat.choose_le_two_pow
[19, 1]
[25, 17]
rw [choose_eq_zero_of_lt h]
case inr n k : ℕ h : n < k ⊢ choose n k ≤ 2 ^ n
case inr n k : ℕ h : n < k ⊢ 0 ≤ 2 ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean
Nat.choose_le_two_pow
[19, 1]
[25, 17]
exact zero_le'
case inr n k : ℕ h : n < k ⊢ 0 ≤ 2 ^ n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean
Nat.choose_le_two_pow
[19, 1]
[25, 17]
rw [← sum_range_choose n]
case inl n k : ℕ h : k ≤ n ⊢ choose n k ≤ 2 ^ n
case inl n k : ℕ h : k ≤ n ⊢ choose n k ≤ Finset.sum (range (n + 1)) fun m => choose n m
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean
Nat.choose_le_two_pow
[19, 1]
[25, 17]
refine' single_le_sum (fun _ _ => zero_le') _
case inl n k : ℕ h : k ≤ n ⊢ choose n k ≤ Finset.sum (range (n + 1)) fun m => choose n m
case inl n k : ℕ h : k ≤ n ⊢ k ∈ range (n + 1)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Sum.lean
Nat.choose_le_two_pow
[19, 1]
[25, 17]
rwa [mem_range_succ_iff]
case inl n k : ℕ h : k ≤ n ⊢ k ∈ range (n + 1)
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
symmetric_isSquare
[22, 1]
[23, 76]
simpa using h.mul (FiniteField.isSquare_neg_one_iff.2 hF)
F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : Fintype.card F % 4 ≠ 3 x✝¹ x✝ : F h : (fun x y => IsSquare (x - y)) x✝¹ x✝ ⊢ (fun x y => IsSquare (x - y)) x✝ x✝¹
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
have : (univ.filter fun x : F => ¬IsSquare x) = univ.filter fun x : F => x ≠ 0 ∧ ¬IsSquare x := by refine' filter_congr _ simp (config := { contextual := true }) [not_imp_not]
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => ¬IsSquare x) univ) = Fintype.card F / 2
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => ¬IsSquare x) univ) = Fintype.card F / 2
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
rw [this]
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => ¬IsSquare x) univ) = Fintype.card F / 2
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
have cf := quadraticChar_sum_zero hF
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : (Finset.sum univ fun a => ↑(quadraticChar F) a) = 0 ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
simp only [quadraticChar_apply, quadraticCharFun] at cf
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : (Finset.sum univ fun a => ↑(quadraticChar F) a) = 0 ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : (Finset.sum univ fun x => if x = 0 then 0 else if IsSquare x then 1 else -1) = 0 ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
rw [sum_ite, sum_const_zero, zero_add, sum_ite, sum_const, sum_const, nsmul_eq_mul, nsmul_eq_mul, mul_neg, mul_one, mul_one, add_neg_eq_zero, Nat.cast_inj, filter_filter, filter_filter] at cf
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : (Finset.sum univ fun x => if x = 0 then 0 else if IsSquare x then 1 else -1) = 0 ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
rw [← cf, and_self_iff]
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 ∧ Finset.card (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) = Fintype.card F / 2
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
have : ((univ.filter fun x : F => x ≠ 0 ∧ IsSquare x) ∪ univ.filter fun x : F => x ≠ 0 ∧ ¬IsSquare x) ∪ {0} = univ := by simp only [← filter_or, ← and_or_left, em, and_true_iff, filter_ne'] rw [union_comm, ← insert_eq, insert_erase] exact mem_univ _
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
have h' := congr_arg Finset.card this
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ h' : Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0}) = Finset.card univ ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
rw [card_disjoint_union, card_disjoint_union, card_singleton, card_univ, ← cf, ← two_mul, ← bit0_eq_two_mul, ← bit1] at h'
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ h' : Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0}) = Finset.card univ ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ h' : bit1 (Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ)) = Fintype.card F ⊢ Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) = Fintype.card F / 2 F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ h' : Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) + Finset.card {0} = Finset.card univ ⊢ Disjoint (filter (fun x => x ≠ 0 ∧ IsSquare x) univ) (filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this✝ : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) this : filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ h' : Finset.card (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0}) = Finset.card univ ⊢ Disjoint (filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ) {0}
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
refine' filter_congr _
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 ⊢ filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 ⊢ ∀ x ∈ univ, ¬IsSquare x ↔ x ≠ 0 ∧ ¬IsSquare x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
simp (config := { contextual := true }) [not_imp_not]
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 ⊢ ∀ x ∈ univ, ¬IsSquare x ↔ x ≠ 0 ∧ ¬IsSquare x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
simp only [← filter_or, ← and_or_left, em, and_true_iff, filter_ne']
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) ⊢ filter (fun x => x ≠ 0 ∧ IsSquare x) univ ∪ filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ ∪ {0} = univ
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) ⊢ erase univ 0 ∪ {0} = univ
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
card_non_zero_square_non_square
[25, 1]
[53, 9]
rw [union_comm, ← insert_eq, insert_erase]
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) ⊢ erase univ 0 ∪ {0} = univ
F : Type u_1 inst✝² : Fintype F inst✝¹ : Field F inst✝ : DecidableEq F hF : ringChar F ≠ 2 this : filter (fun x => ¬IsSquare x) univ = filter (fun x => x ≠ 0 ∧ ¬IsSquare x) univ cf : Finset.card (filter (fun a => ¬a = 0 ∧ IsSquare a) univ) = Finset.card (filter (fun a => ¬a = 0 ∧ ¬IsSquare a) univ) ⊢ 0 ∈ univ