url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Basic.lean
Nat.choose_le_pow_left
[22, 1]
[28, 17]
exact zero_le'
case inr s t : ℕ h : s < t ⊢ 0 ≤ (s + 1 - t) ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Basic.lean
Nat.choose_le_pow_left
[22, 1]
[28, 17]
obtain ⟨s, rfl⟩ := exists_add_of_le h
case inl s t : ℕ h : t ≤ s ⊢ choose s t ≤ (s + 1 - t) ^ t
case inl.intro t s : ℕ h : t ≤ t + s ⊢ choose (t + s) t ≤ (t + s + 1 - t) ^ t
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Basic.lean
Nat.choose_le_pow_left
[22, 1]
[28, 17]
refine (choose_add_le_pow_left t s).trans ?_
case inl.intro t s : ℕ h : t ≤ t + s ⊢ choose (t + s) t ≤ (t + s + 1 - t) ^ t
case inl.intro t s : ℕ h : t ≤ t + s ⊢ (s + 1) ^ t ≤ (t + s + 1 - t) ^ t
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Choose/Basic.lean
Nat.choose_le_pow_left
[22, 1]
[28, 17]
rw [add_assoc, Nat.add_sub_cancel_left]
case inl.intro t s : ℕ h : t ≤ t + s ⊢ (s + 1) ^ t ≤ (t + s + 1 - t) ^ t
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Algebra/BigOperators/Ring.lean
sum_tsub
[17, 1]
[23, 77]
rw [← Finset.sum_add_distrib]
α : Type u_1 β : Type u_2 inst✝⁶ : AddCommMonoid β inst✝⁵ : PartialOrder β inst✝⁴ : ExistsAddOfLE β inst✝³ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : ContravariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub β inst✝ : OrderedSub β s : Finset α f g : α → β hfg : ∀ x ∈ s, g x ≤ f x ⊢ ∑ x in s, (f x - g x) + ∑ x in s, g x = ∑ x in s, f x
α : Type u_1 β : Type u_2 inst✝⁶ : AddCommMonoid β inst✝⁵ : PartialOrder β inst✝⁴ : ExistsAddOfLE β inst✝³ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : ContravariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub β inst✝ : OrderedSub β s : Finset α f g : α → β hfg : ∀ x ∈ s, g x ≤ f x ⊢ ∑ x in s, (f x - g x + g x) = ∑ x in s, f x
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Algebra/BigOperators/Ring.lean
sum_tsub
[17, 1]
[23, 77]
exact Finset.sum_congr rfl fun x hx => tsub_add_cancel_of_le <| hfg _ hx
α : Type u_1 β : Type u_2 inst✝⁶ : AddCommMonoid β inst✝⁵ : PartialOrder β inst✝⁴ : ExistsAddOfLE β inst✝³ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝² : ContravariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝¹ : Sub β inst✝ : OrderedSub β s : Finset α f g : α → β hfg : ∀ x ∈ s, g x ≤ f x ⊢ ∑ x in s, (f x - g x + g x) = ∑ x in s, f x
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Factorial/Basic.lean
Nat.asc_le_pow_mul_factorial
[17, 1]
[23, 7]
induction' s with s ih
s t : ℕ ⊢ ascFactorial t s ≤ s ! * (t + 1) ^ s
case zero t : ℕ ⊢ ascFactorial t zero ≤ zero ! * (t + 1) ^ zero case succ t s : ℕ ih : ascFactorial t s ≤ s ! * (t + 1) ^ s ⊢ ascFactorial t (succ s) ≤ (succ s)! * (t + 1) ^ succ s
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Factorial/Basic.lean
Nat.asc_le_pow_mul_factorial
[17, 1]
[23, 7]
rw [ascFactorial_succ, factorial_succ, pow_succ', mul_mul_mul_comm]
case succ t s : ℕ ih : ascFactorial t s ≤ s ! * (t + 1) ^ s ⊢ ascFactorial t (succ s) ≤ (succ s)! * (t + 1) ^ succ s
case succ t s : ℕ ih : ascFactorial t s ≤ s ! * (t + 1) ^ s ⊢ (t + s + 1) * ascFactorial t s ≤ (s + 1) * (t + 1) * (s ! * (t + 1) ^ s)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Factorial/Basic.lean
Nat.asc_le_pow_mul_factorial
[17, 1]
[23, 7]
refine' Nat.mul_le_mul _ ih
case succ t s : ℕ ih : ascFactorial t s ≤ s ! * (t + 1) ^ s ⊢ (t + s + 1) * ascFactorial t s ≤ (s + 1) * (t + 1) * (s ! * (t + 1) ^ s)
case succ t s : ℕ ih : ascFactorial t s ≤ s ! * (t + 1) ^ s ⊢ t + s + 1 ≤ (s + 1) * (t + 1)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Factorial/Basic.lean
Nat.asc_le_pow_mul_factorial
[17, 1]
[23, 7]
rw [add_comm t, add_one_mul s, mul_add_one s, add_assoc]
case succ t s : ℕ ih : ascFactorial t s ≤ s ! * (t + 1) ^ s ⊢ t + s + 1 ≤ (s + 1) * (t + 1)
case succ t s : ℕ ih : ascFactorial t s ≤ s ! * (t + 1) ^ s ⊢ s + (t + 1) ≤ s * t + s + (t + 1)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Factorial/Basic.lean
Nat.asc_le_pow_mul_factorial
[17, 1]
[23, 7]
simp
case succ t s : ℕ ih : ascFactorial t s ≤ s ! * (t + 1) ^ s ⊢ s + (t + 1) ≤ s * t + s + (t + 1)
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Data/Nat/Factorial/Basic.lean
Nat.asc_le_pow_mul_factorial
[17, 1]
[23, 7]
simp
case zero t : ℕ ⊢ ascFactorial t zero ≤ zero ! * (t + 1) ^ zero
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_ratio
[28, 1]
[38, 35]
rw [mul_div_assoc', mul_add, eq_div_iff, ← cast_add_one, div_mul_eq_mul_div, mul_comm, ← cast_mul, succ_mul_centralBinom_succ, cast_mul, mul_div_cancel]
α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ ↑(centralBinom (n + 1)) / ↑(centralBinom n) = 4 * ((↑n + 1 / 2) / (↑n + 1))
α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ ↑(2 * (2 * n + 1)) = 4 * ↑n + 4 * (1 / 2) case h α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ ↑(centralBinom n) ≠ 0 α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ ↑n + 1 ≠ 0
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_ratio
[28, 1]
[38, 35]
exact Nat.cast_add_one_ne_zero _
α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ ↑n + 1 ≠ 0
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_ratio
[28, 1]
[38, 35]
rw [mul_add_one, ← mul_assoc, cast_add, cast_mul]
α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ ↑(2 * (2 * n + 1)) = 4 * ↑n + 4 * (1 / 2)
α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ ↑(2 * 2) * ↑n + ↑2 = 4 * ↑n + 4 * (1 / 2)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_ratio
[28, 1]
[38, 35]
norm_num1
α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ ↑(2 * 2) * ↑n + ↑2 = 4 * ↑n + 4 * (1 / 2)
α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ 4 * ↑n + 2 = 4 * ↑n + 2
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_ratio
[28, 1]
[38, 35]
rfl
α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ 4 * ↑n + 2 = 4 * ↑n + 2
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_ratio
[28, 1]
[38, 35]
rw [Nat.cast_ne_zero]
case h α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ ↑(centralBinom n) ≠ 0
case h α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ centralBinom n ≠ 0
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_ratio
[28, 1]
[38, 35]
exact centralBinom_ne_zero _
case h α : Type u_1 inst✝¹ : Field α inst✝ : CharZero α n : ℕ ⊢ centralBinom n ≠ 0
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
upper_monotone_aux
[42, 1]
[50, 23]
rw [← Real.sqrt_div]
n : ℕ ⊢ (↑n + 1 / 2) / (↑n + 1) ≤ Real.sqrt (↑n + 1 / 3) / Real.sqrt (↑n + 1 + 1 / 3)
n : ℕ ⊢ (↑n + 1 / 2) / (↑n + 1) ≤ Real.sqrt ((↑n + 1 / 3) / (↑n + 1 + 1 / 3)) case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 3
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
upper_monotone_aux
[42, 1]
[50, 23]
refine' Real.le_sqrt_of_sq_le _
n : ℕ ⊢ (↑n + 1 / 2) / (↑n + 1) ≤ Real.sqrt ((↑n + 1 / 3) / (↑n + 1 + 1 / 3)) case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 3
n : ℕ ⊢ ((↑n + 1 / 2) / (↑n + 1)) ^ 2 ≤ (↑n + 1 / 3) / (↑n + 1 + 1 / 3) case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 3
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
upper_monotone_aux
[42, 1]
[50, 23]
rw [div_pow, div_le_div_iff]
n : ℕ ⊢ ((↑n + 1 / 2) / (↑n + 1)) ^ 2 ≤ (↑n + 1 / 3) / (↑n + 1 + 1 / 3) case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 3
n : ℕ ⊢ (↑n + 1 / 2) ^ 2 * (↑n + 1 + 1 / 3) ≤ (↑n + 1 / 3) * (↑n + 1) ^ 2 case b0 n : ℕ ⊢ 0 < (↑n + 1) ^ 2 case d0 n : ℕ ⊢ 0 < ↑n + 1 + 1 / 3 case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 3
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
upper_monotone_aux
[42, 1]
[50, 23]
all_goals positivity
case b0 n : ℕ ⊢ 0 < (↑n + 1) ^ 2 case d0 n : ℕ ⊢ 0 < ↑n + 1 + 1 / 3 case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 3
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
upper_monotone_aux
[42, 1]
[50, 23]
ring_nf
n : ℕ ⊢ (↑n + 1 / 2) ^ 2 * (↑n + 1 + 1 / 3) ≤ (↑n + 1 / 3) * (↑n + 1) ^ 2
n : ℕ ⊢ ↑(Int.ofNat 1) / ↑3 + ↑n * (↑(Int.ofNat 19) / ↑12) + ↑n ^ 2 * (↑(Int.ofNat 7) / ↑3) + ↑n ^ 3 ≤ ↑(Int.ofNat 1) / ↑3 + ↑n * (↑(Int.ofNat 5) / ↑3) + ↑n ^ 2 * (↑(Int.ofNat 7) / ↑3) + ↑n ^ 3
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
upper_monotone_aux
[42, 1]
[50, 23]
gcongr _ + _ * ?_ + _ + _
n : ℕ ⊢ ↑(Int.ofNat 1) / ↑3 + ↑n * (↑(Int.ofNat 19) / ↑12) + ↑n ^ 2 * (↑(Int.ofNat 7) / ↑3) + ↑n ^ 3 ≤ ↑(Int.ofNat 1) / ↑3 + ↑n * (↑(Int.ofNat 5) / ↑3) + ↑n ^ 2 * (↑(Int.ofNat 7) / ↑3) + ↑n ^ 3
case bc.bc.bc.h n : ℕ ⊢ ↑(Int.ofNat 19) / ↑12 ≤ ↑(Int.ofNat 5) / ↑3
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
upper_monotone_aux
[42, 1]
[50, 23]
norm_num1
case bc.bc.bc.h n : ℕ ⊢ ↑(Int.ofNat 19) / ↑12 ≤ ↑(Int.ofNat 5) / ↑3
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
upper_monotone_aux
[42, 1]
[50, 23]
positivity
case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 3
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
lower_monotone_aux
[52, 1]
[58, 23]
rw [← Real.sqrt_div, sqrt_le_left, div_pow, div_le_div_iff]
n : ℕ ⊢ Real.sqrt (↑n + 1 / 4) / Real.sqrt (↑n + 1 + 1 / 4) ≤ (↑n + 1 / 2) / (↑n + 1)
n : ℕ ⊢ (↑n + 1 / 4) * (↑n + 1) ^ 2 ≤ (↑n + 1 / 2) ^ 2 * (↑n + 1 + 1 / 4) case b0 n : ℕ ⊢ 0 < ↑n + 1 + 1 / 4 case d0 n : ℕ ⊢ 0 < (↑n + 1) ^ 2 n : ℕ ⊢ 0 ≤ (↑n + 1 / 2) / (↑n + 1) case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 4
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
lower_monotone_aux
[52, 1]
[58, 23]
all_goals positivity
case b0 n : ℕ ⊢ 0 < ↑n + 1 + 1 / 4 case d0 n : ℕ ⊢ 0 < (↑n + 1) ^ 2 n : ℕ ⊢ 0 ≤ (↑n + 1 / 2) / (↑n + 1) case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 4
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
lower_monotone_aux
[52, 1]
[58, 23]
ring_nf
n : ℕ ⊢ (↑n + 1 / 4) * (↑n + 1) ^ 2 ≤ (↑n + 1 / 2) ^ 2 * (↑n + 1 + 1 / 4)
n : ℕ ⊢ ↑(Int.ofNat 1) / ↑4 + ↑n * (↑(Int.ofNat 3) / ↑2) + ↑n ^ 2 * (↑(Int.ofNat 9) / ↑4) + ↑n ^ 3 ≤ ↑(Int.ofNat 5) / ↑16 + ↑n * (↑(Int.ofNat 3) / ↑2) + ↑n ^ 2 * (↑(Int.ofNat 9) / ↑4) + ↑n ^ 3
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
lower_monotone_aux
[52, 1]
[58, 23]
gcongr ?_ + _ + _ + _
n : ℕ ⊢ ↑(Int.ofNat 1) / ↑4 + ↑n * (↑(Int.ofNat 3) / ↑2) + ↑n ^ 2 * (↑(Int.ofNat 9) / ↑4) + ↑n ^ 3 ≤ ↑(Int.ofNat 5) / ↑16 + ↑n * (↑(Int.ofNat 3) / ↑2) + ↑n ^ 2 * (↑(Int.ofNat 9) / ↑4) + ↑n ^ 3
case bc.bc.bc n : ℕ ⊢ ↑(Int.ofNat 1) / ↑4 ≤ ↑(Int.ofNat 5) / ↑16
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
lower_monotone_aux
[52, 1]
[58, 23]
norm_num1
case bc.bc.bc n : ℕ ⊢ ↑(Int.ofNat 1) / ↑4 ≤ ↑(Int.ofNat 5) / ↑16
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
lower_monotone_aux
[52, 1]
[58, 23]
positivity
case hx n : ℕ ⊢ 0 ≤ ↑n + 1 / 4
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
refine' monotone_nat_of_le_succ _
⊢ Monotone centralBinomialLower
⊢ ∀ (n : ℕ), centralBinomialLower n ≤ centralBinomialLower (n + 1)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
intro n
⊢ ∀ (n : ℕ), centralBinomialLower n ≤ centralBinomialLower (n + 1)
n : ℕ ⊢ centralBinomialLower n ≤ centralBinomialLower (n + 1)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
rw [centralBinomialLower, centralBinomialLower, _root_.pow_succ, ←div_div]
n : ℕ ⊢ centralBinomialLower n ≤ centralBinomialLower (n + 1)
n : ℕ ⊢ ↑(centralBinom n) * Real.sqrt (↑n + 1 / 4) / 4 ^ n ≤ ↑(centralBinom (n + 1)) * Real.sqrt (↑(n + 1) + 1 / 4) / 4 / 4 ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
refine' div_le_div_of_le (by positivity) _
n : ℕ ⊢ ↑(centralBinom n) * Real.sqrt (↑n + 1 / 4) / 4 ^ n ≤ ↑(centralBinom (n + 1)) * Real.sqrt (↑(n + 1) + 1 / 4) / 4 / 4 ^ n
n : ℕ ⊢ ↑(centralBinom n) * Real.sqrt (↑n + 1 / 4) ≤ ↑(centralBinom (n + 1)) * Real.sqrt (↑(n + 1) + 1 / 4) / 4
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
rw [le_div_iff, mul_assoc, mul_comm, ← div_le_div_iff, centralBinom_ratio, mul_comm, mul_div_assoc, Nat.cast_add_one]
n : ℕ ⊢ ↑(centralBinom n) * Real.sqrt (↑n + 1 / 4) ≤ ↑(centralBinom (n + 1)) * Real.sqrt (↑(n + 1) + 1 / 4) / 4
n : ℕ ⊢ 4 * (Real.sqrt (↑n + 1 / 4) / Real.sqrt (↑n + 1 + 1 / 4)) ≤ 4 * ((↑n + 1 / 2) / (↑n + 1)) case b0 n : ℕ ⊢ 0 < Real.sqrt (↑(n + 1) + 1 / 4) case d0 n : ℕ ⊢ 0 < ↑(centralBinom n) n : ℕ ⊢ 0 < 4
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
refine' mul_le_mul_of_nonneg_left (lower_monotone_aux n) (by positivity)
n : ℕ ⊢ 4 * (Real.sqrt (↑n + 1 / 4) / Real.sqrt (↑n + 1 + 1 / 4)) ≤ 4 * ((↑n + 1 / 2) / (↑n + 1)) case b0 n : ℕ ⊢ 0 < Real.sqrt (↑(n + 1) + 1 / 4) case d0 n : ℕ ⊢ 0 < ↑(centralBinom n) n : ℕ ⊢ 0 < 4
case b0 n : ℕ ⊢ 0 < Real.sqrt (↑(n + 1) + 1 / 4) case d0 n : ℕ ⊢ 0 < ↑(centralBinom n) n : ℕ ⊢ 0 < 4
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
positivity
n : ℕ ⊢ 0 ≤ 4 ^ n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
positivity
n : ℕ ⊢ 0 ≤ 4
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
positivity
case b0 n : ℕ ⊢ 0 < Real.sqrt (↑(n + 1) + 1 / 4)
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
rw [Nat.cast_pos]
case d0 n : ℕ ⊢ 0 < ↑(centralBinom n)
case d0 n : ℕ ⊢ 0 < centralBinom n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
exact centralBinom_pos _
case d0 n : ℕ ⊢ 0 < centralBinom n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_monotone
[66, 1]
[77, 15]
positivity
n : ℕ ⊢ 0 < 4
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
refine' antitone_nat_of_succ_le _
⊢ Antitone centralBinomialUpper
⊢ ∀ (n : ℕ), centralBinomialUpper (n + 1) ≤ centralBinomialUpper n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
intro n
⊢ ∀ (n : ℕ), centralBinomialUpper (n + 1) ≤ centralBinomialUpper n
n : ℕ ⊢ centralBinomialUpper (n + 1) ≤ centralBinomialUpper n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
rw [centralBinomialUpper, centralBinomialUpper, _root_.pow_succ, ← div_div]
n : ℕ ⊢ centralBinomialUpper (n + 1) ≤ centralBinomialUpper n
n : ℕ ⊢ ↑(centralBinom (n + 1)) * Real.sqrt (↑(n + 1) + 1 / 3) / 4 / 4 ^ n ≤ ↑(centralBinom n) * Real.sqrt (↑n + 1 / 3) / 4 ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
refine' div_le_div_of_le (by positivity) _
n : ℕ ⊢ ↑(centralBinom (n + 1)) * Real.sqrt (↑(n + 1) + 1 / 3) / 4 / 4 ^ n ≤ ↑(centralBinom n) * Real.sqrt (↑n + 1 / 3) / 4 ^ n
n : ℕ ⊢ ↑(centralBinom (n + 1)) * Real.sqrt (↑(n + 1) + 1 / 3) / 4 ≤ ↑(centralBinom n) * Real.sqrt (↑n + 1 / 3)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
rw [div_le_iff, mul_assoc, mul_comm _ (_ * _), ← div_le_div_iff, mul_comm, mul_div_assoc, centralBinom_ratio, Nat.cast_add_one]
n : ℕ ⊢ ↑(centralBinom (n + 1)) * Real.sqrt (↑(n + 1) + 1 / 3) / 4 ≤ ↑(centralBinom n) * Real.sqrt (↑n + 1 / 3)
n : ℕ ⊢ 4 * ((↑n + 1 / 2) / (↑n + 1)) ≤ 4 * (Real.sqrt (↑n + 1 / 3) / Real.sqrt (↑n + 1 + 1 / 3)) case b0 n : ℕ ⊢ 0 < ↑(centralBinom n) case d0 n : ℕ ⊢ 0 < Real.sqrt (↑(n + 1) + 1 / 3) n : ℕ ⊢ 0 < 4
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
refine' mul_le_mul_of_nonneg_left (upper_monotone_aux _) (by positivity)
n : ℕ ⊢ 4 * ((↑n + 1 / 2) / (↑n + 1)) ≤ 4 * (Real.sqrt (↑n + 1 / 3) / Real.sqrt (↑n + 1 + 1 / 3)) case b0 n : ℕ ⊢ 0 < ↑(centralBinom n) case d0 n : ℕ ⊢ 0 < Real.sqrt (↑(n + 1) + 1 / 3) n : ℕ ⊢ 0 < 4
case b0 n : ℕ ⊢ 0 < ↑(centralBinom n) case d0 n : ℕ ⊢ 0 < Real.sqrt (↑(n + 1) + 1 / 3) n : ℕ ⊢ 0 < 4
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
positivity
n : ℕ ⊢ 0 ≤ 4 ^ n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
positivity
n : ℕ ⊢ 0 ≤ 4
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
rw [Nat.cast_pos]
case b0 n : ℕ ⊢ 0 < ↑(centralBinom n)
case b0 n : ℕ ⊢ 0 < centralBinom n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
exact centralBinom_pos _
case b0 n : ℕ ⊢ 0 < centralBinom n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
positivity
case d0 n : ℕ ⊢ 0 < Real.sqrt (↑(n + 1) + 1 / 3)
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_monotone
[85, 1]
[98, 15]
positivity
n : ℕ ⊢ 0 < 4
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
have := Real.pi_pos
⊢ Tendsto (fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) atTop (𝓝 (Real.sqrt π)⁻¹)
this : 0 < π ⊢ Tendsto (fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) atTop (𝓝 (Real.sqrt π)⁻¹)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
have : (sqrt π)⁻¹ = sqrt π / sqrt π ^ 2 := by rw [inv_eq_one_div, sq, ← div_div, div_self] positivity
this : 0 < π ⊢ Tendsto (fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) atTop (𝓝 (Real.sqrt π)⁻¹)
this✝ : 0 < π this : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 ⊢ Tendsto (fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) atTop (𝓝 (Real.sqrt π)⁻¹)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
rw [this]
this✝ : 0 < π this : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 ⊢ Tendsto (fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) atTop (𝓝 (Real.sqrt π)⁻¹)
this✝ : 0 < π this : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 ⊢ Tendsto (fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) atTop (𝓝 (Real.sqrt π / Real.sqrt π ^ 2))
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
have : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (sqrt π)) := by refine' Tendsto.comp Stirling.tendsto_stirlingSeq_sqrt_pi _ exact tendsto_id.const_mul_atTop' two_pos
this✝ : 0 < π this : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 ⊢ Tendsto (fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) atTop (𝓝 (Real.sqrt π / Real.sqrt π ^ 2))
this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) ⊢ Tendsto (fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) atTop (𝓝 (Real.sqrt π / Real.sqrt π ^ 2))
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
refine' (this.div (Stirling.tendsto_stirlingSeq_sqrt_pi.pow 2) (by positivity)).congr' _
this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) ⊢ Tendsto (fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) atTop (𝓝 (Real.sqrt π / Real.sqrt π ^ 2))
this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) ⊢ ((fun n => Stirling.stirlingSeq (2 * n)) / fun x => Stirling.stirlingSeq x ^ 2) =ᶠ[atTop] fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
filter_upwards [eventually_gt_atTop (0 : ℕ)] with n hn
this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) ⊢ ((fun n => Stirling.stirlingSeq (2 * n)) / fun x => Stirling.stirlingSeq x ^ 2) =ᶠ[atTop] fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ((fun n => Stirling.stirlingSeq (2 * n)) / fun x => Stirling.stirlingSeq x ^ 2) n = ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
dsimp
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ((fun n => Stirling.stirlingSeq (2 * n)) / fun x => Stirling.stirlingSeq x ^ 2) n = ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ Stirling.stirlingSeq (2 * n) / Stirling.stirlingSeq n ^ 2 = ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
rw [Stirling.stirlingSeq, Stirling.stirlingSeq, centralBinom, two_mul n, cast_add_choose, ←two_mul]
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ Stirling.stirlingSeq (2 * n) / Stirling.stirlingSeq n ^ 2 = ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(2 * n)! / (Real.sqrt (2 * ↑(2 * n)) * (↑(2 * n) / rexp 1) ^ (2 * n)) / (↑n ! / (Real.sqrt (2 * ↑n) * (↑n / rexp 1) ^ n)) ^ 2 = ↑(2 * n)! / (↑n ! * ↑n !) * Real.sqrt ↑n / 4 ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
field_simp
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(2 * n)! / (Real.sqrt (2 * ↑(2 * n)) * (↑(2 * n) / rexp 1) ^ (2 * n)) / (↑n ! / (Real.sqrt (2 * ↑n) * (↑n / rexp 1) ^ n)) ^ 2 = ↑(2 * n)! / (↑n ! * ↑n !) * Real.sqrt ↑n / 4 ^ n
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(2 * n)! * rexp 1 ^ (2 * n) * (Real.sqrt 2 * Real.sqrt ↑n * ↑n ^ n) ^ 2 * (↑n ! * ↑n ! * 4 ^ n) = ↑(2 * n)! * Real.sqrt ↑n * (Real.sqrt 2 * (Real.sqrt 2 * Real.sqrt ↑n) * (2 * ↑n) ^ (2 * n) * (↑n ! * rexp 1 ^ n) ^ 2)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
ring_nf
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(2 * n)! * rexp 1 ^ (2 * n) * (Real.sqrt 2 * Real.sqrt ↑n * ↑n ^ n) ^ 2 * (↑n ! * ↑n ! * 4 ^ n) = ↑(2 * n)! * Real.sqrt ↑n * (Real.sqrt 2 * (Real.sqrt 2 * Real.sqrt ↑n) * (2 * ↑n) ^ (2 * n) * (↑n ! * rexp 1 ^ n) ^ 2)
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(n * 2)! * rexp 1 ^ (n * 2) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (n * 2) * ↑n ! ^ 2 * 4 ^ n = ↑(n * 2)! * rexp 1 ^ (n * 2) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (n * 2) * ↑n ! ^ 2 * 2 ^ (n * 2)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
rw [mul_comm n 2, pow_mul (2 : ℝ)]
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(n * 2)! * rexp 1 ^ (n * 2) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (n * 2) * ↑n ! ^ 2 * 4 ^ n = ↑(n * 2)! * rexp 1 ^ (n * 2) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (n * 2) * ↑n ! ^ 2 * 2 ^ (n * 2)
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(2 * n)! * rexp 1 ^ (2 * n) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (2 * n) * ↑n ! ^ 2 * 4 ^ n = ↑(2 * n)! * rexp 1 ^ (2 * n) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (2 * n) * ↑n ! ^ 2 * (2 ^ 2) ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
norm_num1
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(2 * n)! * rexp 1 ^ (2 * n) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (2 * n) * ↑n ! ^ 2 * 4 ^ n = ↑(2 * n)! * rexp 1 ^ (2 * n) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (2 * n) * ↑n ! ^ 2 * (2 ^ 2) ^ n
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(2 * n)! * rexp 1 ^ (2 * n) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (2 * n) * ↑n ! ^ 2 * 4 ^ n = ↑(2 * n)! * rexp 1 ^ (2 * n) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (2 * n) * ↑n ! ^ 2 * 4 ^ n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
rfl
case h this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) n : ℕ hn : 0 < n ⊢ ↑(2 * n)! * rexp 1 ^ (2 * n) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (2 * n) * ↑n ! ^ 2 * 4 ^ n = ↑(2 * n)! * rexp 1 ^ (2 * n) * Real.sqrt 2 ^ 2 * Real.sqrt ↑n ^ 2 * ↑n ^ (2 * n) * ↑n ! ^ 2 * 4 ^ n
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
rw [inv_eq_one_div, sq, ← div_div, div_self]
this : 0 < π ⊢ (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2
this : 0 < π ⊢ Real.sqrt π ≠ 0
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
positivity
this : 0 < π ⊢ Real.sqrt π ≠ 0
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
refine' Tendsto.comp Stirling.tendsto_stirlingSeq_sqrt_pi _
this✝ : 0 < π this : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 ⊢ Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π))
this✝ : 0 < π this : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 ⊢ Tendsto (fun n => 2 * n) atTop atTop
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
exact tendsto_id.const_mul_atTop' two_pos
this✝ : 0 < π this : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 ⊢ Tendsto (fun n => 2 * n) atTop atTop
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinom_limit
[100, 1]
[119, 6]
positivity
this✝¹ : 0 < π this✝ : (Real.sqrt π)⁻¹ = Real.sqrt π / Real.sqrt π ^ 2 this : Tendsto (fun n => Stirling.stirlingSeq (2 * n)) atTop (𝓝 (Real.sqrt π)) ⊢ Real.sqrt π ^ 2 ≠ 0
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_limit
[121, 1]
[131, 15]
have : (sqrt π)⁻¹ = (sqrt π)⁻¹ / Real.sqrt 1 := by rw [Real.sqrt_one, div_one]
⊢ Tendsto centralBinomialUpper atTop (𝓝 (Real.sqrt π)⁻¹)
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 ⊢ Tendsto centralBinomialUpper atTop (𝓝 (Real.sqrt π)⁻¹)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_limit
[121, 1]
[131, 15]
have h : Real.sqrt 1 ≠ 0 := sqrt_ne_zero'.2 zero_lt_one
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 ⊢ Tendsto centralBinomialUpper atTop (𝓝 (Real.sqrt π)⁻¹)
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ Tendsto centralBinomialUpper atTop (𝓝 (Real.sqrt π)⁻¹)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_limit
[121, 1]
[131, 15]
rw [this]
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ Tendsto centralBinomialUpper atTop (𝓝 (Real.sqrt π)⁻¹)
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ Tendsto centralBinomialUpper atTop (𝓝 ((Real.sqrt π)⁻¹ / Real.sqrt 1))
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_limit
[121, 1]
[131, 15]
refine' (centralBinom_limit.div (tendsto_coe_nat_div_add_atTop (1 / 3 : ℝ)).sqrt h).congr' _
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ Tendsto centralBinomialUpper atTop (𝓝 ((Real.sqrt π)⁻¹ / Real.sqrt 1))
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ ((fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) / fun x => Real.sqrt (↑x / (↑x + 1 / 3))) =ᶠ[atTop] centralBinomialUpper
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_limit
[121, 1]
[131, 15]
filter_upwards [eventually_gt_atTop 0] with n hn
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ ((fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) / fun x => Real.sqrt (↑x / (↑x + 1 / 3))) =ᶠ[atTop] centralBinomialUpper
case h this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ ((fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) / fun x => Real.sqrt (↑x / (↑x + 1 / 3))) n = centralBinomialUpper n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_limit
[121, 1]
[131, 15]
dsimp
case h this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ ((fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) / fun x => Real.sqrt (↑x / (↑x + 1 / 3))) n = centralBinomialUpper n
case h this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n / Real.sqrt (↑n / (↑n + 1 / 3)) = centralBinomialUpper n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_limit
[121, 1]
[131, 15]
rw [sqrt_div (Nat.cast_nonneg _), centralBinomialUpper, div_div, mul_div_assoc', div_div_eq_mul_div, mul_right_comm, mul_div_mul_right]
case h this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n / Real.sqrt (↑n / (↑n + 1 / 3)) = centralBinomialUpper n
case h.hc this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ Real.sqrt ↑n ≠ 0
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_limit
[121, 1]
[131, 15]
rw [Real.sqrt_one, div_one]
⊢ (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_limit
[121, 1]
[131, 15]
positivity
case h.hc this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ Real.sqrt ↑n ≠ 0
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_limit
[133, 1]
[142, 15]
have : (sqrt π)⁻¹ = (sqrt π)⁻¹ / Real.sqrt 1 := by rw [Real.sqrt_one, div_one]
⊢ Tendsto centralBinomialLower atTop (𝓝 (Real.sqrt π)⁻¹)
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 ⊢ Tendsto centralBinomialLower atTop (𝓝 (Real.sqrt π)⁻¹)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_limit
[133, 1]
[142, 15]
have h : Real.sqrt 1 ≠ 0 := sqrt_ne_zero'.2 zero_lt_one
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 ⊢ Tendsto centralBinomialLower atTop (𝓝 (Real.sqrt π)⁻¹)
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ Tendsto centralBinomialLower atTop (𝓝 (Real.sqrt π)⁻¹)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_limit
[133, 1]
[142, 15]
rw [this]
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ Tendsto centralBinomialLower atTop (𝓝 (Real.sqrt π)⁻¹)
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ Tendsto centralBinomialLower atTop (𝓝 ((Real.sqrt π)⁻¹ / Real.sqrt 1))
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_limit
[133, 1]
[142, 15]
refine' (centralBinom_limit.div (tendsto_coe_nat_div_add_atTop (1 / 4 : ℝ)).sqrt h).congr' _
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ Tendsto centralBinomialLower atTop (𝓝 ((Real.sqrt π)⁻¹ / Real.sqrt 1))
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ ((fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) / fun x => Real.sqrt (↑x / (↑x + 1 / 4))) =ᶠ[atTop] centralBinomialLower
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_limit
[133, 1]
[142, 15]
filter_upwards [eventually_gt_atTop 0] with n hn
this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 ⊢ ((fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) / fun x => Real.sqrt (↑x / (↑x + 1 / 4))) =ᶠ[atTop] centralBinomialLower
case h this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ ((fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) / fun x => Real.sqrt (↑x / (↑x + 1 / 4))) n = centralBinomialLower n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_limit
[133, 1]
[142, 15]
dsimp
case h this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ ((fun n => ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n) / fun x => Real.sqrt (↑x / (↑x + 1 / 4))) n = centralBinomialLower n
case h this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n / Real.sqrt (↑n / (↑n + 1 / 4)) = centralBinomialLower n
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_limit
[133, 1]
[142, 15]
rw [sqrt_div (Nat.cast_nonneg _), centralBinomialLower, div_div, mul_div_assoc', div_div_eq_mul_div, mul_right_comm, mul_div_mul_right]
case h this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ ↑(centralBinom n) * Real.sqrt ↑n / 4 ^ n / Real.sqrt (↑n / (↑n + 1 / 4)) = centralBinomialLower n
case h.hc this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ Real.sqrt ↑n ≠ 0
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_limit
[133, 1]
[142, 15]
rw [Real.sqrt_one, div_one]
⊢ (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_limit
[133, 1]
[142, 15]
positivity
case h.hc this : (Real.sqrt π)⁻¹ = (Real.sqrt π)⁻¹ / Real.sqrt 1 h : Real.sqrt 1 ≠ 0 n : ℕ hn : 0 < n ⊢ Real.sqrt ↑n ≠ 0
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_bound
[144, 1]
[150, 23]
have := pi_pos
n : ℕ ⊢ ↑(centralBinom n) ≤ 4 ^ n / Real.sqrt (π * (↑n + 1 / 4))
n : ℕ this : 0 < π ⊢ ↑(centralBinom n) ≤ 4 ^ n / Real.sqrt (π * (↑n + 1 / 4))
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_bound
[144, 1]
[150, 23]
have := centralBinomialLower_monotone.ge_of_tendsto centralBinomialLower_limit n
n : ℕ this : 0 < π ⊢ ↑(centralBinom n) ≤ 4 ^ n / Real.sqrt (π * (↑n + 1 / 4))
n : ℕ this✝ : 0 < π this : centralBinomialLower n ≤ (Real.sqrt π)⁻¹ ⊢ ↑(centralBinom n) ≤ 4 ^ n / Real.sqrt (π * (↑n + 1 / 4))
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_bound
[144, 1]
[150, 23]
rwa [sqrt_mul, ← div_div, le_div_iff, div_eq_mul_one_div ((4 : ℝ) ^ n : ℝ), ← div_le_iff', one_div (sqrt π)]
n : ℕ this✝ : 0 < π this : centralBinomialLower n ≤ (Real.sqrt π)⁻¹ ⊢ ↑(centralBinom n) ≤ 4 ^ n / Real.sqrt (π * (↑n + 1 / 4))
n : ℕ this✝ : 0 < π this : centralBinomialLower n ≤ (Real.sqrt π)⁻¹ ⊢ 0 < 4 ^ n n : ℕ this✝ : 0 < π this : centralBinomialLower n ≤ (Real.sqrt π)⁻¹ ⊢ 0 < Real.sqrt (↑n + 1 / 4) case hx n : ℕ this✝ : 0 < π this : centralBinomialLower n ≤ (Real.sqrt π)⁻¹ ⊢ 0 ≤ π
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_bound
[144, 1]
[150, 23]
all_goals positivity
n : ℕ this✝ : 0 < π this : centralBinomialLower n ≤ (Real.sqrt π)⁻¹ ⊢ 0 < 4 ^ n n : ℕ this✝ : 0 < π this : centralBinomialLower n ≤ (Real.sqrt π)⁻¹ ⊢ 0 < Real.sqrt (↑n + 1 / 4) case hx n : ℕ this✝ : 0 < π this : centralBinomialLower n ≤ (Real.sqrt π)⁻¹ ⊢ 0 ≤ π
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialUpper_bound
[144, 1]
[150, 23]
positivity
case hx n : ℕ this✝ : 0 < π this : centralBinomialLower n ≤ (Real.sqrt π)⁻¹ ⊢ 0 ≤ π
no goals
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_bound
[152, 1]
[157, 23]
have := pi_pos
n : ℕ ⊢ 4 ^ n / Real.sqrt (π * (↑n + 1 / 3)) ≤ ↑(centralBinom n)
n : ℕ this : 0 < π ⊢ 4 ^ n / Real.sqrt (π * (↑n + 1 / 3)) ≤ ↑(centralBinom n)
https://github.com/b-mehta/ExponentialRamsey.git
7e17b629a915a082869f494c8afa56a3e1c7a88d
ExponentialRamsey/Prereq/Mathlib/Analysis/SpecialFunctions/ExplicitStirling.lean
centralBinomialLower_bound
[152, 1]
[157, 23]
have := centralBinomialUpper_monotone.le_of_tendsto centralBinomialUpper_limit n
n : ℕ this : 0 < π ⊢ 4 ^ n / Real.sqrt (π * (↑n + 1 / 3)) ≤ ↑(centralBinom n)
n : ℕ this✝ : 0 < π this : (Real.sqrt π)⁻¹ ≤ centralBinomialUpper n ⊢ 4 ^ n / Real.sqrt (π * (↑n + 1 / 3)) ≤ ↑(centralBinom n)