url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact inv.2 k mk kl
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last this : swapped[k] = arr'[k] ⊢ ¬arr'[k] < arr'[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply Vec.get_swap_neq
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ swapped[k] = arr'[k]
case ki α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ k ≠ first case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. apply Fin.ne_of_val_ne exact Nat.ne_of_gt (Nat.lt_of_le_of_lt mid.property.1 mk)
case ki α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ k ≠ first case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. apply Fin.ne_of_val_ne exact Nat.ne_of_gt mk
case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply Fin.ne_of_val_ne
case ki α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ k ≠ first
case ki.h α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ ¬↑k = ↑first
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact Nat.ne_of_gt (Nat.lt_of_le_of_lt mid.property.1 mk)
case ki.h α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ ¬↑k = ↑first
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply Fin.ne_of_val_ne
case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
case kj.h α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ ¬↑k = ↑⟨↑mid.val, this✝¹⟩
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact Nat.ne_of_gt mk
case kj.h α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ ¬↑k = ↑⟨↑mid.val, this✝¹⟩
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
simp [*]
case left α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]
case left α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply p₁
case left α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply And.intro
case right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
case right.left α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ result.snd[result.fst.val] = arr[first] case right.right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. simp [*]
case right.left α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ result.snd[result.fst.val] = arr[first] case right.right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
case right.right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. simp [*] apply p₃
case right.right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
simp [*]
case right.left α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ result.snd[result.fst.val] = arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
simp [*]
case right.right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
case right.right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply p₃
case right.right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl.get_lt
[253, 1]
[258, 20]
let p := quickSortImpl_permuted arr first last
α : Type inst✝ : Ord α n : Nat arr : Vec α n first : Nat last k : Fin n lt : ↑k < first ⊢ (quickSortImpl arr first last)[k] = arr[k]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first : Nat last k : Fin n lt : ↑k < first p : permuted n first (↑last) arr (quickSortImpl arr first last) := quickSortImpl_permuted arr first last ⊢ (quickSortImpl arr first last)[k] = arr[k]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl.get_lt
[253, 1]
[258, 20]
exact p.get_lt lt
α : Type inst✝ : Ord α n : Nat arr : Vec α n first : Nat last k : Fin n lt : ↑k < first p : permuted n first (↑last) arr (quickSortImpl arr first last) := quickSortImpl_permuted arr first last ⊢ (quickSortImpl arr first last)[k] = arr[k]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl.get_gt
[260, 1]
[265, 20]
let p := quickSortImpl_permuted arr first last
α : Type inst✝ : Ord α n : Nat arr : Vec α n first : Nat last k : Fin n gt : k > last ⊢ (quickSortImpl arr first last)[k] = arr[k]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first : Nat last k : Fin n gt : k > last p : permuted n first (↑last) arr (quickSortImpl arr first last) := quickSortImpl_permuted arr first last ⊢ (quickSortImpl arr first last)[k] = arr[k]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl.get_gt
[260, 1]
[265, 20]
exact p.get_gt gt
α : Type inst✝ : Ord α n : Nat arr : Vec α n first : Nat last k : Fin n gt : k > last p : permuted n first (↑last) arr (quickSortImpl arr first last) := quickSortImpl_permuted arr first last ⊢ (quickSortImpl arr first last)[k] = arr[k]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
induction arr, first, last using quickSortImpl.induct' with | base arr first last h => simp [*] intro i j fi ij jl have : first = last := Nat.le_antisymm (Nat.le_trans (Nat.le_trans fi ij) jl) (Nat.le_of_not_gt h) subst this have : i = last := Fin.eq_of_val_eq (Nat.le_antisymm (Nat.le_trans ij jl) fi) subst this have : i = j := Fin.eq_of_val_eq (Nat.le_antisymm ij jl) subst this apply Order.refl | step arr first last lt parted eq ih₁ ih₂ => have : first < n := Nat.lt_trans lt last.isLt simp [*] intro i j fi ij jl let mid := parted.1 have mn : mid.val < n := Nat.lt_of_le_of_lt mid.property.2 last.isLt let sorted := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (mid.val + 1) last let ⟨l, m, r⟩ := partition.partition arr ⟨first, by assumption⟩ last (Nat.le_of_lt lt) parted eq have getL (k : Fin n) (fk : first ≤ k) (km : k < mid.val) : sorted[k] <o arr[first] := by rw [quickSortImpl.get_lt (lt := (Nat.lt_trans km (Nat.lt_succ_self ..)))] let p := quickSortImpl_permuted parted.2 first mid.val.prev let ⟨k', ⟨index, fk', km'⟩⟩ := permuted_map_index_in_range_inv p k fk (Nat.le_sub_one_of_lt km) let inv := index ▸ permuted_map_index p k' rw [←inv] apply l k' fk' (Nat.lt_of_le_of_lt km' (Nat.sub_lt_self (by decide) (Nat.zero_lt_of_lt km))) have getM (k : Fin n) (eq : mid.val = k.val): sorted[k] = arr[first] := by let mid' : Fin n := ⟨mid.val, mn⟩ have : k = mid' := by apply Fin.eq_of_val_eq simp [eq] subst this rw [quickSortImpl.get_lt (k := mid') (lt := Nat.lt_succ_self ..)] cases Nat.eq_zero_or_pos mid.val with | inl zero => have zero : mid.val = Fin.mk 0 mid.val.pos := by apply Fin.eq_of_val_eq simp [zero] simp [zero] at * exact m | inr pos => rw [quickSortImpl.get_gt (k := mid') (gt := Nat.sub_lt_self (by decide) (Nat.zero_lt_of_lt pos))] exact m have getR (k : Fin n) (mk : mid.val < k) (kl : k ≤ last) : ¬sorted[k] <o arr[first] := by let p := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (mid.val + 1) last let ⟨k', ⟨index, mk', kl'⟩⟩ := permuted_map_index_in_range_inv p k mk kl let inv := index ▸ permuted_map_index p k' rw [←inv] have : mid.val.prev.val ≤ mid.val := by simp exact (Nat.sub_le ..) rw [quickSortImpl.get_gt (gt := Nat.lt_of_le_of_lt this mk')] apply r k' mk' kl' have getLM (k : Fin n) (fk : first ≤ k) (km : k ≤ mid.val) : sorted[k] ≤o arr[first] := by cases Nat.eq_or_lt_of_le km with | inl km => rw [getM k km.symm] apply Order.refl | inr km => exact Order.le_of_lt (getL k fk km) have getMR (k : Fin n) (mk : mid.val ≤ k) (kl : k ≤ last) : ¬sorted[k] <o arr[first] := by match Nat.eq_or_lt_of_le mk with | .inl mk => rw [getM k mk] apply Order.irrefl | .inr mk => exact getR k mk kl cases Nat.range_split i j mid ij with | lt im jm => rw [quickSortImpl.get_lt (lt := Nat.lt_trans im (Nat.lt_succ_self ..))] rw [quickSortImpl.get_lt (lt := Nat.lt_trans jm (Nat.lt_succ_self ..))] exact ih₁ i j fi ij (Nat.le_sub_of_add_le jm) | ge mi mj => exact ih₂ i j mi ij jl | split im mj => have h₁ : sorted[i] ≤o arr[first] := getLM i fi im have h₂ : arr[first] ≤o sorted[j] := Order.le_of_not_lt (getMR j mj jl) apply Order.trans h₁ h₂
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n ⊢ sortedRange (quickSortImpl arr first last) first ↑last
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
simp [*]
case base α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n h : ¬first < ↑last ⊢ sortedRange (quickSortImpl arr first last) first ↑last
case base α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n h : ¬first < ↑last ⊢ sortedRange arr first ↑last
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
intro i j fi ij jl
case base α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n h : ¬first < ↑last ⊢ sortedRange arr first ↑last
case base α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n h : ¬first < ↑last i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last ⊢ (compare arr[i] arr[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have : first = last := Nat.le_antisymm (Nat.le_trans (Nat.le_trans fi ij) jl) (Nat.le_of_not_gt h)
case base α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n h : ¬first < ↑last i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last ⊢ (compare arr[i] arr[j]).isLE = true
case base α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n h : ¬first < ↑last i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last this : first = ↑last ⊢ (compare arr[i] arr[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
subst this
case base α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n h : ¬first < ↑last i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last this : first = ↑last ⊢ (compare arr[i] arr[j]).isLE = true
case base α : Type inst✝ : Order α n : Nat arr : Vec α n last i j : Fin n ij : i ≤ j jl : ↑j ≤ ↑last h : ¬↑last < ↑last fi : ↑last ≤ ↑i ⊢ (compare arr[i] arr[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have : i = last := Fin.eq_of_val_eq (Nat.le_antisymm (Nat.le_trans ij jl) fi)
case base α : Type inst✝ : Order α n : Nat arr : Vec α n last i j : Fin n ij : i ≤ j jl : ↑j ≤ ↑last h : ¬↑last < ↑last fi : ↑last ≤ ↑i ⊢ (compare arr[i] arr[j]).isLE = true
case base α : Type inst✝ : Order α n : Nat arr : Vec α n last i j : Fin n ij : i ≤ j jl : ↑j ≤ ↑last h : ¬↑last < ↑last fi : ↑last ≤ ↑i this : i = last ⊢ (compare arr[i] arr[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
subst this
case base α : Type inst✝ : Order α n : Nat arr : Vec α n last i j : Fin n ij : i ≤ j jl : ↑j ≤ ↑last h : ¬↑last < ↑last fi : ↑last ≤ ↑i this : i = last ⊢ (compare arr[i] arr[j]).isLE = true
case base α : Type inst✝ : Order α n : Nat arr : Vec α n i j : Fin n ij : i ≤ j jl : ↑j ≤ ↑i h : ¬↑i < ↑i fi : ↑i ≤ ↑i ⊢ (compare arr[i] arr[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have : i = j := Fin.eq_of_val_eq (Nat.le_antisymm ij jl)
case base α : Type inst✝ : Order α n : Nat arr : Vec α n i j : Fin n ij : i ≤ j jl : ↑j ≤ ↑i h : ¬↑i < ↑i fi : ↑i ≤ ↑i ⊢ (compare arr[i] arr[j]).isLE = true
case base α : Type inst✝ : Order α n : Nat arr : Vec α n i j : Fin n ij : i ≤ j jl : ↑j ≤ ↑i h : ¬↑i < ↑i fi : ↑i ≤ ↑i this : i = j ⊢ (compare arr[i] arr[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
subst this
case base α : Type inst✝ : Order α n : Nat arr : Vec α n i j : Fin n ij : i ≤ j jl : ↑j ≤ ↑i h : ¬↑i < ↑i fi : ↑i ≤ ↑i this : i = j ⊢ (compare arr[i] arr[j]).isLE = true
case base α : Type inst✝ : Order α n : Nat arr : Vec α n i : Fin n h : ¬↑i < ↑i fi : ↑i ≤ ↑i ij : i ≤ i jl : ↑i ≤ ↑i ⊢ (compare arr[i] arr[i]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
apply Order.refl
case base α : Type inst✝ : Order α n : Nat arr : Vec α n i : Fin n h : ¬↑i < ↑i fi : ↑i ≤ ↑i ij : i ≤ i jl : ↑i ≤ ↑i ⊢ (compare arr[i] arr[i]).isLE = true
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have : first < n := Nat.lt_trans lt last.isLt
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last ⊢ sortedRange (quickSortImpl arr first last) first ↑last
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n ⊢ sortedRange (quickSortImpl arr first last) first ↑last
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
simp [*]
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n ⊢ sortedRange (quickSortImpl arr first last) first ↑last
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n ⊢ sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) first ↑last
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
intro i j fi ij jl
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n ⊢ sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) first ↑last
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let mid := parted.1
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have mn : mid.val < n := Nat.lt_of_le_of_lt mid.property.2 last.isLt
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let sorted := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (mid.val + 1) last
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let ⟨l, m, r⟩ := partition.partition arr ⟨first, by assumption⟩ last (Nat.le_of_lt lt) parted eq
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have getL (k : Fin n) (fk : first ≤ k) (km : k < mid.val) : sorted[k] <o arr[first] := by rw [quickSortImpl.get_lt (lt := (Nat.lt_trans km (Nat.lt_succ_self ..)))] let p := quickSortImpl_permuted parted.2 first mid.val.prev let ⟨k', ⟨index, fk', km'⟩⟩ := permuted_map_index_in_range_inv p k fk (Nat.le_sub_one_of_lt km) let inv := index ▸ permuted_map_index p k' rw [←inv] apply l k' fk' (Nat.lt_of_le_of_lt km' (Nat.sub_lt_self (by decide) (Nat.zero_lt_of_lt km)))
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have getM (k : Fin n) (eq : mid.val = k.val): sorted[k] = arr[first] := by let mid' : Fin n := ⟨mid.val, mn⟩ have : k = mid' := by apply Fin.eq_of_val_eq simp [eq] subst this rw [quickSortImpl.get_lt (k := mid') (lt := Nat.lt_succ_self ..)] cases Nat.eq_zero_or_pos mid.val with | inl zero => have zero : mid.val = Fin.mk 0 mid.val.pos := by apply Fin.eq_of_val_eq simp [zero] simp [zero] at * exact m | inr pos => rw [quickSortImpl.get_gt (k := mid') (gt := Nat.sub_lt_self (by decide) (Nat.zero_lt_of_lt pos))] exact m
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have getR (k : Fin n) (mk : mid.val < k) (kl : k ≤ last) : ¬sorted[k] <o arr[first] := by let p := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (mid.val + 1) last let ⟨k', ⟨index, mk', kl'⟩⟩ := permuted_map_index_in_range_inv p k mk kl let inv := index ▸ permuted_map_index p k' rw [←inv] have : mid.val.prev.val ≤ mid.val := by simp exact (Nat.sub_le ..) rw [quickSortImpl.get_gt (gt := Nat.lt_of_le_of_lt this mk')] apply r k' mk' kl'
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have getLM (k : Fin n) (fk : first ≤ k) (km : k ≤ mid.val) : sorted[k] ≤o arr[first] := by cases Nat.eq_or_lt_of_le km with | inl km => rw [getM k km.symm] apply Order.refl | inr km => exact Order.le_of_lt (getL k fk km)
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have getMR (k : Fin n) (mk : mid.val ≤ k) (kl : k ≤ last) : ¬sorted[k] <o arr[first] := by match Nat.eq_or_lt_of_le mk with | .inl mk => rw [getM k mk] apply Order.irrefl | .inr mk => exact getR k mk kl
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
cases Nat.range_split i j mid ij with | lt im jm => rw [quickSortImpl.get_lt (lt := Nat.lt_trans im (Nat.lt_succ_self ..))] rw [quickSortImpl.get_lt (lt := Nat.lt_trans jm (Nat.lt_succ_self ..))] exact ih₁ i j fi ij (Nat.le_sub_of_add_le jm) | ge mi mj => exact ih₂ i j mi ij jl | split im mj => have h₁ : sorted[i] ≤o arr[first] := getLM i fi im have h₂ : arr[first] ≤o sorted[j] := Order.le_of_not_lt (getMR j mj jl) apply Order.trans h₁ h₂
case step α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
assumption
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last ⊢ first < n
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [quickSortImpl.get_lt (lt := (Nat.lt_trans km (Nat.lt_succ_self ..)))]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val ⊢ sorted[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val ⊢ (quickSortImpl parted.snd first mid.val.prev)[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let p := quickSortImpl_permuted parted.2 first mid.val.prev
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val ⊢ (quickSortImpl parted.snd first mid.val.prev)[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val p : permuted n first (↑mid.val.prev) parted.snd (quickSortImpl parted.snd first mid.val.prev) := quickSortImpl_permuted parted.snd first mid.val.prev ⊢ (quickSortImpl parted.snd first mid.val.prev)[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let ⟨k', ⟨index, fk', km'⟩⟩ := permuted_map_index_in_range_inv p k fk (Nat.le_sub_one_of_lt km)
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val p : permuted n first (↑mid.val.prev) parted.snd (quickSortImpl parted.snd first mid.val.prev) := quickSortImpl_permuted parted.snd first mid.val.prev ⊢ (quickSortImpl parted.snd first mid.val.prev)[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val p : permuted n first (↑mid.val.prev) parted.snd (quickSortImpl parted.snd first mid.val.prev) := quickSortImpl_permuted parted.snd first mid.val.prev k' : Fin n index : p.to_map k' = k fk' : first ≤ ↑k' km' : ↑k' ≤ ↑mid.val.prev ⊢ (quickSortImpl parted.snd first mid.val.prev)[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let inv := index ▸ permuted_map_index p k'
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val p : permuted n first (↑mid.val.prev) parted.snd (quickSortImpl parted.snd first mid.val.prev) := quickSortImpl_permuted parted.snd first mid.val.prev k' : Fin n index : p.to_map k' = k fk' : first ≤ ↑k' km' : ↑k' ≤ ↑mid.val.prev ⊢ (quickSortImpl parted.snd first mid.val.prev)[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val p : permuted n first (↑mid.val.prev) parted.snd (quickSortImpl parted.snd first mid.val.prev) := quickSortImpl_permuted parted.snd first mid.val.prev k' : Fin n index : p.to_map k' = k fk' : first ≤ ↑k' km' : ↑k' ≤ ↑mid.val.prev inv : parted.snd[k'] = (quickSortImpl parted.snd first mid.val.prev)[k] := index ▸ permuted_map_index p k' ⊢ (quickSortImpl parted.snd first mid.val.prev)[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [←inv]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val p : permuted n first (↑mid.val.prev) parted.snd (quickSortImpl parted.snd first mid.val.prev) := quickSortImpl_permuted parted.snd first mid.val.prev k' : Fin n index : p.to_map k' = k fk' : first ≤ ↑k' km' : ↑k' ≤ ↑mid.val.prev inv : parted.snd[k'] = (quickSortImpl parted.snd first mid.val.prev)[k] := index ▸ permuted_map_index p k' ⊢ (quickSortImpl parted.snd first mid.val.prev)[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val p : permuted n first (↑mid.val.prev) parted.snd (quickSortImpl parted.snd first mid.val.prev) := quickSortImpl_permuted parted.snd first mid.val.prev k' : Fin n index : p.to_map k' = k fk' : first ≤ ↑k' km' : ↑k' ≤ ↑mid.val.prev inv : parted.snd[k'] = (quickSortImpl parted.snd first mid.val.prev)[k] := index ▸ permuted_map_index p k' ⊢ parted.snd[k'] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
apply l k' fk' (Nat.lt_of_le_of_lt km' (Nat.sub_lt_self (by decide) (Nat.zero_lt_of_lt km)))
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val p : permuted n first (↑mid.val.prev) parted.snd (quickSortImpl parted.snd first mid.val.prev) := quickSortImpl_permuted parted.snd first mid.val.prev k' : Fin n index : p.to_map k' = k fk' : first ≤ ↑k' km' : ↑k' ≤ ↑mid.val.prev inv : parted.snd[k'] = (quickSortImpl parted.snd first mid.val.prev)[k] := index ▸ permuted_map_index p k' ⊢ parted.snd[k'] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
decide
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] k : Fin n fk : first ≤ ↑k km : k < mid.val p : permuted n first (↑mid.val.prev) parted.snd (quickSortImpl parted.snd first mid.val.prev) := quickSortImpl_permuted parted.snd first mid.val.prev k' : Fin n index : p.to_map k' = k fk' : first ≤ ↑k' km' : ↑k' ≤ ↑mid.val.prev inv : parted.snd[k'] = (quickSortImpl parted.snd first mid.val.prev)[k] := index ▸ permuted_map_index p k' ⊢ 0 < 1
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let mid' : Fin n := ⟨mid.val, mn⟩
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] k : Fin n eq : ↑mid.val = ↑k ⊢ sorted[k] = arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] k : Fin n eq : ↑mid.val = ↑k mid' : Fin n := ⟨↑mid.val, mn⟩ ⊢ sorted[k] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have : k = mid' := by apply Fin.eq_of_val_eq simp [eq]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] k : Fin n eq : ↑mid.val = ↑k mid' : Fin n := ⟨↑mid.val, mn⟩ ⊢ sorted[k] = arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this✝ : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this✝⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this✝⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this✝⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this✝⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] k : Fin n eq : ↑mid.val = ↑k mid' : Fin n := ⟨↑mid.val, mn⟩ this : k = mid' ⊢ sorted[k] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
subst this
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this✝ : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this✝⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this✝⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this✝⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this✝⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] k : Fin n eq : ↑mid.val = ↑k mid' : Fin n := ⟨↑mid.val, mn⟩ this : k = mid' ⊢ sorted[k] = arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' ⊢ sorted[mid'] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [quickSortImpl.get_lt (k := mid') (lt := Nat.lt_succ_self ..)]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' ⊢ sorted[mid'] = arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' ⊢ (quickSortImpl parted.snd first mid.val.prev)[mid'] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
cases Nat.eq_zero_or_pos mid.val with | inl zero => have zero : mid.val = Fin.mk 0 mid.val.pos := by apply Fin.eq_of_val_eq simp [zero] simp [zero] at * exact m | inr pos => rw [quickSortImpl.get_gt (k := mid') (gt := Nat.sub_lt_self (by decide) (Nat.zero_lt_of_lt pos))] exact m
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' ⊢ (quickSortImpl parted.snd first mid.val.prev)[mid'] = arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
apply Fin.eq_of_val_eq
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] k : Fin n eq : ↑mid.val = ↑k mid' : Fin n := ⟨↑mid.val, mn⟩ ⊢ k = mid'
case a α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] k : Fin n eq : ↑mid.val = ↑k mid' : Fin n := ⟨↑mid.val, mn⟩ ⊢ ↑k = ↑mid'
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
simp [eq]
case a α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] k : Fin n eq : ↑mid.val = ↑k mid' : Fin n := ⟨↑mid.val, mn⟩ ⊢ ↑k = ↑mid'
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have zero : mid.val = Fin.mk 0 mid.val.pos := by apply Fin.eq_of_val_eq simp [zero]
case inl α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' zero : ↑mid.val = 0 ⊢ (quickSortImpl parted.snd first mid.val.prev)[mid'] = arr[first]
case inl α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' zero✝ : ↑mid.val = 0 zero : mid.val = ⟨0, ⋯⟩ ⊢ (quickSortImpl parted.snd first mid.val.prev)[mid'] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
simp [zero] at *
case inl α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' zero✝ : ↑mid.val = 0 zero : mid.val = ⟨0, ⋯⟩ ⊢ (quickSortImpl parted.snd first mid.val.prev)[mid'] = arr[first]
case inl α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first (↑parted.fst.val - 1) ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] mid' : Fin n := ⟨↑mid.val, mn⟩ zero✝¹ : mid.val = ⟨0, ⋯⟩ getL : ∀ (k : Fin n), first ≤ ↑k → k < ⟨0, ⋯⟩ → sorted[k] < arr[first] eq zero✝ zero : True ⊢ parted.snd[mid'] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
exact m
case inl α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first (↑parted.fst.val - 1) ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] mid' : Fin n := ⟨↑mid.val, mn⟩ zero✝¹ : mid.val = ⟨0, ⋯⟩ getL : ∀ (k : Fin n), first ≤ ↑k → k < ⟨0, ⋯⟩ → sorted[k] < arr[first] eq zero✝ zero : True ⊢ parted.snd[mid'] = arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
apply Fin.eq_of_val_eq
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' zero : ↑mid.val = 0 ⊢ mid.val = ⟨0, ⋯⟩
case a α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' zero : ↑mid.val = 0 ⊢ ↑mid.val = ↑⟨0, ⋯⟩
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
simp [zero]
case a α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' zero : ↑mid.val = 0 ⊢ ↑mid.val = ↑⟨0, ⋯⟩
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [quickSortImpl.get_gt (k := mid') (gt := Nat.sub_lt_self (by decide) (Nat.zero_lt_of_lt pos))]
case inr α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' pos : ↑mid.val > 0 ⊢ (quickSortImpl parted.snd first mid.val.prev)[mid'] = arr[first]
case inr α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' pos : ↑mid.val > 0 ⊢ parted.snd[mid'] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
exact m
case inr α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' pos : ↑mid.val > 0 ⊢ parted.snd[mid'] = arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
decide
α : Type inst✝ : Order α n : Nat arr✝ : Vec α n first✝ : Nat last : Fin n lt : first✝ < ↑last parted : { mid // first✝ ≤ ↑mid ∧ mid ≤ last } × Vec α n eq✝ : partition arr✝ ⟨first✝, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first✝ parted.fst.val.prev) first✝ ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first✝ parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first✝ < n i j : Fin n fi : first✝ ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first✝ ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first✝ mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first✝, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr✝[⟨first✝, this⟩] m : parted.snd[parted.fst.val] = arr✝[⟨first✝, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr✝[⟨first✝, this⟩] getL : ∀ (k : Fin n), first✝ ≤ ↑k → k < mid.val → sorted[k] < arr✝[first✝] mid' : Fin n := ⟨↑mid.val, mn⟩ eq : ↑mid.val = ↑mid' pos : ↑mid.val > 0 arr : Vec α n first : Nat ⊢ 0 < Nat.succ 0
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let p := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (mid.val + 1) last
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last ⊢ ¬sorted[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last ⊢ ¬sorted[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let ⟨k', ⟨index, mk', kl'⟩⟩ := permuted_map_index_in_range_inv p k mk kl
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last ⊢ ¬sorted[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last ⊢ ¬sorted[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
let inv := index ▸ permuted_map_index p k'
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last ⊢ ¬sorted[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' ⊢ ¬sorted[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [←inv]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' ⊢ ¬sorted[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' ⊢ ¬(quickSortImpl parted.snd first mid.val.prev)[k'] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have : mid.val.prev.val ≤ mid.val := by simp exact (Nat.sub_le ..)
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' ⊢ ¬(quickSortImpl parted.snd first mid.val.prev)[k'] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this✝ : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this✝⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this✝⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this✝⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this✝⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' this : ↑mid.val.prev ≤ ↑mid.val ⊢ ¬(quickSortImpl parted.snd first mid.val.prev)[k'] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [quickSortImpl.get_gt (gt := Nat.lt_of_le_of_lt this mk')]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this✝ : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this✝⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this✝⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this✝⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this✝⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' this : ↑mid.val.prev ≤ ↑mid.val ⊢ ¬(quickSortImpl parted.snd first mid.val.prev)[k'] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this✝ : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this✝⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this✝⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this✝⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this✝⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' this : ↑mid.val.prev ≤ ↑mid.val ⊢ ¬parted.snd[k'] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
apply r k' mk' kl'
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this✝ : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this✝⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this✝⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this✝⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this✝⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' this : ↑mid.val.prev ≤ ↑mid.val ⊢ ¬parted.snd[k'] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
simp
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' ⊢ ↑mid.val.prev ≤ ↑mid.val
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' ⊢ ↑mid.val - 1 ≤ ↑mid.val
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
exact (Nat.sub_le ..)
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] k : Fin n mk : mid.val < k kl : k ≤ last p : permuted n (↑mid.val + 1) (↑last) (quickSortImpl parted.snd first mid.val.prev) (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last) := quickSortImpl_permuted (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last k' : Fin n index : p.to_map k' = k mk' : ↑mid.val + 1 ≤ ↑k' kl' : ↑k' ≤ ↑last inv : (quickSortImpl parted.snd first mid.val.prev)[k'] = (quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last)[k] := index ▸ permuted_map_index p k' ⊢ ↑mid.val - 1 ≤ ↑mid.val
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
cases Nat.eq_or_lt_of_le km with | inl km => rw [getM k km.symm] apply Order.refl | inr km => exact Order.le_of_lt (getL k fk km)
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] k : Fin n fk : first ≤ ↑k km : k ≤ mid.val ⊢ sorted[k] ≤ arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [getM k km.symm]
case inl α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] k : Fin n fk : first ≤ ↑k km✝ : k ≤ mid.val km : ↑k = ↑mid.val ⊢ sorted[k] ≤ arr[first]
case inl α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] k : Fin n fk : first ≤ ↑k km✝ : k ≤ mid.val km : ↑k = ↑mid.val ⊢ arr[first] ≤ arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
apply Order.refl
case inl α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] k : Fin n fk : first ≤ ↑k km✝ : k ≤ mid.val km : ↑k = ↑mid.val ⊢ arr[first] ≤ arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
exact Order.le_of_lt (getL k fk km)
case inr α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] k : Fin n fk : first ≤ ↑k km✝ : k ≤ mid.val km : ↑k < ↑mid.val ⊢ sorted[k] ≤ arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
match Nat.eq_or_lt_of_le mk with | .inl mk => rw [getM k mk] apply Order.irrefl | .inr mk => exact getR k mk kl
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] k : Fin n mk : mid.val ≤ k kl : k ≤ last ⊢ ¬sorted[k] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [getM k mk]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] k : Fin n mk✝ : mid.val ≤ k kl : k ≤ last mk : ↑mid.val = ↑k ⊢ ¬sorted[k] < arr[first]
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] k : Fin n mk✝ : mid.val ≤ k kl : k ≤ last mk : ↑mid.val = ↑k ⊢ ¬arr[first] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
apply Order.irrefl
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] k : Fin n mk✝ : mid.val ≤ k kl : k ≤ last mk : ↑mid.val = ↑k ⊢ ¬arr[first] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
exact getR k mk kl
α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] k : Fin n mk✝ : mid.val ≤ k kl : k ≤ last mk : ↑mid.val < ↑k ⊢ ¬sorted[k] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [quickSortImpl.get_lt (lt := Nat.lt_trans im (Nat.lt_succ_self ..))]
case step.lt α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i < ↑mid.val jm : ↑j < ↑mid.val ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step.lt α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i < ↑mid.val jm : ↑j < ↑mid.val ⊢ (compare (quickSortImpl parted.snd first parted.fst.val.prev)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
rw [quickSortImpl.get_lt (lt := Nat.lt_trans jm (Nat.lt_succ_self ..))]
case step.lt α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i < ↑mid.val jm : ↑j < ↑mid.val ⊢ (compare (quickSortImpl parted.snd first parted.fst.val.prev)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step.lt α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i < ↑mid.val jm : ↑j < ↑mid.val ⊢ (compare (quickSortImpl parted.snd first parted.fst.val.prev)[i] (quickSortImpl parted.snd first parted.fst.val.prev)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
exact ih₁ i j fi ij (Nat.le_sub_of_add_le jm)
case step.lt α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i < ↑mid.val jm : ↑j < ↑mid.val ⊢ (compare (quickSortImpl parted.snd first parted.fst.val.prev)[i] (quickSortImpl parted.snd first parted.fst.val.prev)[j]).isLE = true
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
exact ih₂ i j mi ij jl
case step.ge α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] mi : ↑mid.val < ↑i mj : ↑mid.val < ↑j ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have h₁ : sorted[i] ≤o arr[first] := getLM i fi im
case step.split α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i ≤ ↑mid.val mj : ↑mid.val ≤ ↑j ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step.split α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i ≤ ↑mid.val mj : ↑mid.val ≤ ↑j h₁ : sorted[i] ≤ arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
have h₂ : arr[first] ≤o sorted[j] := Order.le_of_not_lt (getMR j mj jl)
case step.split α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i ≤ ↑mid.val mj : ↑mid.val ≤ ↑j h₁ : sorted[i] ≤ arr[first] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
case step.split α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i ≤ ↑mid.val mj : ↑mid.val ≤ ↑j h₁ : sorted[i] ≤ arr[first] h₂ : arr[first] ≤ sorted[j] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSortImpl_sortedRange
[267, 1]
[352, 30]
apply Order.trans h₁ h₂
case step.split α : Type inst✝ : Order α n : Nat arr : Vec α n first : Nat last : Fin n lt : first < ↑last parted : { mid // first ≤ ↑mid ∧ mid ≤ last } × Vec α n eq : partition arr ⟨first, ⋯⟩ last ⋯ = parted ih₁ : sortedRange (quickSortImpl parted.snd first parted.fst.val.prev) first ↑parted.fst.val.prev ih₂ : sortedRange (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last) (↑parted.fst.val + 1) ↑last this : first < n i j : Fin n fi : first ≤ ↑i ij : i ≤ j jl : ↑j ≤ ↑last mid : { mid // first ≤ ↑mid ∧ mid ≤ last } := parted.fst mn : ↑mid.val < n sorted : Vec α n := quickSortImpl (quickSortImpl parted.snd first mid.val.prev) (↑mid.val + 1) last l : ∀ (k : Fin n), ⟨first, this⟩ ≤ k → ↑k < ↑parted.fst.val → parted.snd[k] < arr[⟨first, this⟩] m : parted.snd[parted.fst.val] = arr[⟨first, this⟩] r : ∀ (k : Fin n), ↑parted.fst.val < ↑k → k ≤ last → ¬parted.snd[k] < arr[⟨first, this⟩] getL : ∀ (k : Fin n), first ≤ ↑k → k < mid.val → sorted[k] < arr[first] getM : ∀ (k : Fin n), ↑mid.val = ↑k → sorted[k] = arr[first] getR : ∀ (k : Fin n), mid.val < k → k ≤ last → ¬sorted[k] < arr[first] getLM : ∀ (k : Fin n), first ≤ ↑k → k ≤ mid.val → sorted[k] ≤ arr[first] getMR : ∀ (k : Fin n), mid.val ≤ k → k ≤ last → ¬sorted[k] < arr[first] im : ↑i ≤ ↑mid.val mj : ↑mid.val ≤ ↑j h₁ : sorted[i] ≤ arr[first] h₂ : arr[first] ≤ sorted[j] ⊢ (compare (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[i] (quickSortImpl (quickSortImpl parted.snd first parted.fst.val.prev) (↑parted.fst.val + 1) last)[j]).isLE = true
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort'_sortedRange
[354, 1]
[363, 46]
if h : n > 0 then simp [quickSort', h] apply quickSortImpl_sortedRange else intro i have : n = 0 := Nat.eq_zero_of_not_pos h subst n exact (Nat.not_lt_zero i.val i.isLt).elim
α : Type inst✝ : Order α n : Nat arr : Vec α n ⊢ sortedRange (quickSort' arr) 0 (n - 1)
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort'_sortedRange
[354, 1]
[363, 46]
simp [quickSort', h]
α : Type inst✝ : Order α n : Nat arr : Vec α n h : n > 0 ⊢ sortedRange (quickSort' arr) 0 (n - 1)
α : Type inst✝ : Order α n : Nat arr : Vec α n h : n > 0 ⊢ sortedRange (quickSortImpl arr 0 ⟨n - 1, ⋯⟩) 0 (n - 1)
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort'_sortedRange
[354, 1]
[363, 46]
apply quickSortImpl_sortedRange
α : Type inst✝ : Order α n : Nat arr : Vec α n h : n > 0 ⊢ sortedRange (quickSortImpl arr 0 ⟨n - 1, ⋯⟩) 0 (n - 1)
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort'_sortedRange
[354, 1]
[363, 46]
intro i
α : Type inst✝ : Order α n : Nat arr : Vec α n h : ¬n > 0 ⊢ sortedRange (quickSort' arr) 0 (n - 1)
α : Type inst✝ : Order α n : Nat arr : Vec α n h : ¬n > 0 i : Fin n ⊢ ∀ (j : Fin n), 0 ≤ ↑i → i ≤ j → ↑j ≤ n - 1 → (compare (quickSort' arr)[i] (quickSort' arr)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort'_sortedRange
[354, 1]
[363, 46]
have : n = 0 := Nat.eq_zero_of_not_pos h
α : Type inst✝ : Order α n : Nat arr : Vec α n h : ¬n > 0 i : Fin n ⊢ ∀ (j : Fin n), 0 ≤ ↑i → i ≤ j → ↑j ≤ n - 1 → (compare (quickSort' arr)[i] (quickSort' arr)[j]).isLE = true
α : Type inst✝ : Order α n : Nat arr : Vec α n h : ¬n > 0 i : Fin n this : n = 0 ⊢ ∀ (j : Fin n), 0 ≤ ↑i → i ≤ j → ↑j ≤ n - 1 → (compare (quickSort' arr)[i] (quickSort' arr)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort'_sortedRange
[354, 1]
[363, 46]
subst n
α : Type inst✝ : Order α n : Nat arr : Vec α n h : ¬n > 0 i : Fin n this : n = 0 ⊢ ∀ (j : Fin n), 0 ≤ ↑i → i ≤ j → ↑j ≤ n - 1 → (compare (quickSort' arr)[i] (quickSort' arr)[j]).isLE = true
α : Type inst✝ : Order α arr : Vec α 0 h : ¬0 > 0 i : Fin 0 ⊢ ∀ (j : Fin 0), 0 ≤ ↑i → i ≤ j → ↑j ≤ 0 - 1 → (compare (quickSort' arr)[i] (quickSort' arr)[j]).isLE = true
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort'_sortedRange
[354, 1]
[363, 46]
exact (Nat.not_lt_zero i.val i.isLt).elim
α : Type inst✝ : Order α arr : Vec α 0 h : ¬0 > 0 i : Fin 0 ⊢ ∀ (j : Fin 0), 0 ≤ ↑i → i ≤ j → ↑j ≤ 0 - 1 → (compare (quickSort' arr)[i] (quickSort' arr)[j]).isLE = true
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort_size
[365, 1]
[369, 25]
let sorted := quickSort' ⟨arr, rfl⟩
α : Type inst✝ : Order α arr : Array α ⊢ (quickSort arr).size = arr.size
α : Type inst✝ : Order α arr : Array α sorted : Vec α arr.size := quickSort' ⟨arr, ⋯⟩ ⊢ (quickSort arr).size = arr.size
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort_size
[365, 1]
[369, 25]
show sorted.val.size = arr.size
α : Type inst✝ : Order α arr : Array α sorted : Vec α arr.size := quickSort' ⟨arr, ⋯⟩ ⊢ (quickSort arr).size = arr.size
α : Type inst✝ : Order α arr : Array α sorted : Vec α arr.size := quickSort' ⟨arr, ⋯⟩ ⊢ sorted.val.size = arr.size
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
quickSort_size
[365, 1]
[369, 25]
simp [sorted.property]
α : Type inst✝ : Order α arr : Array α sorted : Vec α arr.size := quickSort' ⟨arr, ⋯⟩ ⊢ sorted.val.size = arr.size
no goals