url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
have ij : i.val ≤ j.val - 1 := by rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)] exact ij
case inv₃ α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev this : ↑j - 1 < ↑j ⊢ swapped[j.prev] < swapped[first]
case inv₃ α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝¹ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝ : i.prev < j.prev this : ↑j - 1 < ↑j ij : ↑i ≤ ↑j - 1 ⊢ swapped[j.prev] < swapped[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
cases Nat.eq_or_lt_of_le ij with | inl ij => have : swapped[j.prev] = arr[j] := by simp [ij.symm, Fin.prev] apply Vec.get_swap_left rw [this, sf] have : i < j := Nat.lt_of_le_of_lt (by assumption : i.val ≤ j.val - 1) (by assumption) exact inv.3 this | inr ij => have : swapped[j.prev] = arr[j.prev] := by apply Vec.get_swap_neq . apply Fin.ne_of_val_ne exact Nat.ne_of_gt ij . apply Fin.ne_of_val_ne exact Nat.ne_of_lt (by assumption) rw [this, sf] apply inv.1 j.prev ij (by assumption)
case inv₃ α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝¹ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝ : i.prev < j.prev this : ↑j - 1 < ↑j ij : ↑i ≤ ↑j - 1 ⊢ swapped[j.prev] < swapped[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
show j.val - 1 + 1 ≤ j.val
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev ⊢ ↑j - 1 < ↑j
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev ⊢ ↑j - 1 + 1 ≤ ↑j
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
rw [Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi (by assumption)))]
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev ⊢ ↑j - 1 + 1 ≤ ↑j
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev ⊢ ↑j ≤ ↑j
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
apply Nat.le_refl
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev ⊢ ↑j ≤ ↑j
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
assumption
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev ⊢ ↑i ≤ ↑j
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev this : ↑j - 1 < ↑j ⊢ ↑i ≤ ↑j - 1
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev this : ↑j - 1 < ↑j ⊢ ↑i - Nat.succ 0 + Nat.succ 0 ≤ ↑j - 1
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
exact ij
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝ : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij : i.prev < j.prev this : ↑j - 1 < ↑j ⊢ ↑i - Nat.succ 0 + Nat.succ 0 ≤ ↑j - 1
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
have : swapped[j.prev] = arr[j] := by simp [ij.symm, Fin.prev] apply Vec.get_swap_left
case inv₃.inl α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 ⊢ swapped[j.prev] < swapped[first]
case inv₃.inl α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 this : swapped[j.prev] = arr[j] ⊢ swapped[j.prev] < swapped[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
rw [this, sf]
case inv₃.inl α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 this : swapped[j.prev] = arr[j] ⊢ swapped[j.prev] < swapped[first]
case inv₃.inl α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 this : swapped[j.prev] = arr[j] ⊢ arr[j] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
have : i < j := Nat.lt_of_le_of_lt (by assumption : i.val ≤ j.val - 1) (by assumption)
case inv₃.inl α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 this : swapped[j.prev] = arr[j] ⊢ arr[j] < arr[first]
case inv₃.inl α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝¹ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 this✝ : swapped[j.prev] = arr[j] this : i < j ⊢ arr[j] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
exact inv.3 this
case inv₃.inl α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝¹ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 this✝ : swapped[j.prev] = arr[j] this : i < j ⊢ arr[j] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
simp [ij.symm, Fin.prev]
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 ⊢ swapped[j.prev] = arr[j]
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 ⊢ swapped[i] = arr[j]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
apply Vec.get_swap_left
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 ⊢ swapped[i] = arr[j]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
assumption
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 this : swapped[j.prev] = arr[j] ⊢ ↑i ≤ ↑j - 1
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
assumption
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i = ↑j - 1 this : swapped[j.prev] = arr[j] ⊢ ↑j - 1 < ↑j
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
have : swapped[j.prev] = arr[j.prev] := by apply Vec.get_swap_neq . apply Fin.ne_of_val_ne exact Nat.ne_of_gt ij . apply Fin.ne_of_val_ne exact Nat.ne_of_lt (by assumption)
case inv₃.inr α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ swapped[j.prev] < swapped[first]
case inv₃.inr α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 this : swapped[j.prev] = arr[j.prev] ⊢ swapped[j.prev] < swapped[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
rw [this, sf]
case inv₃.inr α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 this : swapped[j.prev] = arr[j.prev] ⊢ swapped[j.prev] < swapped[first]
case inv₃.inr α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 this : swapped[j.prev] = arr[j.prev] ⊢ arr[j.prev] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
apply inv.1 j.prev ij (by assumption)
case inv₃.inr α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 this : swapped[j.prev] = arr[j.prev] ⊢ arr[j.prev] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
apply Vec.get_swap_neq
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ swapped[j.prev] = arr[j.prev]
case ki α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ j.prev ≠ i case kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ j.prev ≠ j
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
. apply Fin.ne_of_val_ne exact Nat.ne_of_gt ij
case ki α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ j.prev ≠ i case kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ j.prev ≠ j
case kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ j.prev ≠ j
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
. apply Fin.ne_of_val_ne exact Nat.ne_of_lt (by assumption)
case kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ j.prev ≠ j
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
apply Fin.ne_of_val_ne
case ki α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ j.prev ≠ i
case ki.h α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ ¬↑j.prev = ↑i
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
exact Nat.ne_of_gt ij
case ki.h α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ ¬↑j.prev = ↑i
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
apply Fin.ne_of_val_ne
case kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ j.prev ≠ j
case kj.h α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ ¬↑j.prev = ↑j
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
exact Nat.ne_of_lt (by assumption)
case kj.h α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ ¬↑j.prev = ↑j
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
assumption
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 ⊢ ↑j.prev < ↑j
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
assumption
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij✝² : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ ij✝¹ : i.prev < j.prev this✝ : ↑j - 1 < ↑j ij✝ : ↑i ≤ ↑j - 1 ij : ↑i < ↑j - 1 this : swapped[j.prev] = arr[j.prev] ⊢ j.prev < j
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.loop_invariant
[21, 1]
[141, 33]
rfl
α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ last : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih : LoopInvariant (arr.swap i j) first i.prev j.prev last → ∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n), partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last inv✝ : LoopInvariant arr first i j last swapped : Vec α n := arr.swap i j sf : swapped[first] = arr[first] result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝ inv : LoopInvariant swapped first i.prev j.prev last ⊢ partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
induction arr, first, i, j, fi, ij using partitionImpl.induct' with | base => simp [*] | step_lt => simp [*] | step_ge arr first i j _ ij fi => simp [*] have fj : first < j := Nat.lt_of_lt_of_le fi ij apply Vec.get_swap_neq . apply Fin.ne_of_val_ne exact Nat.ne_of_lt fi . apply Fin.ne_of_val_ne exact Nat.ne_of_lt fj
α : Type inst✝ : Ord α n : Nat arr : Vec α n first i j : Fin n fi : first ≤ i ij : i ≤ j ⊢ (partitionImpl arr first i j fi ij).snd[first] = arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
simp [*]
case base α : Type inst✝ : Ord α n : Nat first i j : Fin n arr✝ : Vec α n first✝ i✝ j✝ : Fin n fi✝ : first✝ ≤ i✝ ij✝ : i✝ ≤ j✝ x✝ : ¬first✝ < i✝ ⊢ (partitionImpl arr✝ first✝ i✝ j✝ fi✝ ij✝).snd[first✝] = arr✝[first✝]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
simp [*]
case step_lt α : Type inst✝ : Ord α n : Nat first i j : Fin n arr✝ : Vec α n first✝ i✝ j✝ : Fin n fi✝ : first✝ ≤ i✝ ij✝ : i✝ ≤ j✝ x✝³ : first✝ < i✝ x✝² : ↑first✝ ≤ ↑i✝ - 1 x✝¹ : arr✝[i✝] < arr✝[first✝] x✝ : ↑i✝ - 1 ≤ ↑j✝ ih✝ : (partitionImpl arr✝ first✝ i✝.prev j✝ x✝² x✝).snd[first✝] = arr✝[first✝] ⊢ (partitionImpl arr✝ first✝ i✝ j✝ fi✝ ij✝).snd[first✝] = arr✝[first✝]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
simp [*]
case step_ge α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] ⊢ (partitionImpl arr first i j fi✝ ij).snd[first] = arr[first]
case step_ge α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] ⊢ (arr.swap i j)[first] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
have fj : first < j := Nat.lt_of_lt_of_le fi ij
case step_ge α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] ⊢ (arr.swap i j)[first] = arr[first]
case step_ge α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ (arr.swap i j)[first] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
apply Vec.get_swap_neq
case step_ge α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ (arr.swap i j)[first] = arr[first]
case step_ge.ki α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ first ≠ i case step_ge.kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ first ≠ j
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
. apply Fin.ne_of_val_ne exact Nat.ne_of_lt fi
case step_ge.ki α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ first ≠ i case step_ge.kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ first ≠ j
case step_ge.kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ first ≠ j
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
. apply Fin.ne_of_val_ne exact Nat.ne_of_lt fj
case step_ge.kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ first ≠ j
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
apply Fin.ne_of_val_ne
case step_ge.ki α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ first ≠ i
case step_ge.ki.h α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ ¬↑first = ↑i
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
exact Nat.ne_of_lt fi
case step_ge.ki.h α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ ¬↑first = ↑i
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
apply Fin.ne_of_val_ne
case step_ge.kj α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ first ≠ j
case step_ge.kj.h α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ ¬↑first = ↑j
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partitionImpl.first_eq
[143, 1]
[157, 28]
exact Nat.ne_of_lt fj
case step_ge.kj.h α : Type inst✝ : Ord α n : Nat first✝ i✝ j✝ : Fin n arr : Vec α n first i j : Fin n fi✝ : first ≤ i ij : i ≤ j fi : first < i x✝² : ↑first ≤ ↑i - 1 x✝¹ : ¬arr[i] < arr[first] x✝ : ↑i - 1 ≤ ↑j - 1 ih✝ : (partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝).snd[first] = (arr.swap i j)[first] fj : first < j ⊢ ¬↑first = ↑j
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
let afterLoop := partitionImpl arr first last last fl (Nat.le_refl _)
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
let mid := afterLoop.1
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
let arr' := afterLoop.2
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have : mid < n := Nat.lt_of_le_of_lt mid.property.2 last.isLt
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
let swapped := arr'.swap first ⟨mid, by assumption⟩
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this⟩ ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have : result.1 = mid := by rw [←eq] unfold partition simp [afterLoop]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this⟩ ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝⟩ this : result.fst = mid ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have : result.2 = swapped := by rw [←eq] unfold partition simp [afterLoop, dbgTraceIfShared]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝⟩ this : result.fst = mid ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have first_eq : arr'[first] = arr[first] := by apply partitionImpl.first_eq
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
let inv₀ : partitionImpl.LoopInvariant arr first last last last := by apply partitionImpl.LoopInvariant.intro . intro k lk kl exact (Nat.lt_irrefl k (Nat.lt_trans kl lk)).elim . intro k lk kl exact (Nat.lt_irrefl k (Nat.lt_of_le_of_lt kl lk)).elim . intro ll exact (Nat.lt_irrefl last ll).elim
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
let inv := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl _) inv₀ afterLoop (by rfl)
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have p₁ (k : Fin n) (fk : first ≤ k) (km : k.val < mid) : swapped[k] <o arr[first] := by cases Nat.eq_or_lt_of_le fk with | inl fk => have : swapped[k] = swapped[first] := by simp [Fin.eq_of_val_eq fk] rw [this] have : swapped[first] = arr'[mid.val] := by apply Vec.get_swap_left rw [this, ←first_eq] exact inv.3 (Fin.eq_of_val_eq fk ▸ km) | inr fk => have : swapped[k] = arr'[k] := by apply Vec.get_swap_neq . apply Fin.ne_of_val_ne exact Nat.ne_of_gt fk . apply Fin.ne_of_val_ne exact Nat.ne_of_lt km rw [this, ←first_eq] exact inv.1 k fk km
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have p₂ : swapped[mid.val] = arr[first] := by have : swapped[mid.val] = arr'[first] := by apply Vec.get_swap_right rw [this] assumption
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have p₃ (k : Fin n) (mk : mid < k.val) (kl : k ≤ last) : ¬swapped[k] <o arr[first] := by have : swapped[k] = arr'[k] := by apply Vec.get_swap_neq . apply Fin.ne_of_val_ne exact Nat.ne_of_gt (Nat.lt_of_le_of_lt mid.property.1 mk) . apply Fin.ne_of_val_ne exact Nat.ne_of_gt mk rw [this, ←first_eq] exact inv.2 k mk kl
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply And.intro
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ (∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first]) ∧ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
case left α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first] case right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. simp [*] apply p₁
case left α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ ∀ (k : Fin n), first ≤ k → ↑k < ↑result.fst.val → result.snd[k] < arr[first] case right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
case right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. apply And.intro . simp [*] . simp [*] apply p₃
case right α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] p₃ : ∀ (k : Fin n), ↑mid.val < ↑k → k ≤ last → ¬swapped[k] < arr[first] ⊢ result.snd[result.fst.val] = arr[first] ∧ ∀ (k : Fin n), ↑result.fst.val < ↑k → k ≤ last → ¬result.snd[k] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
assumption
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n ⊢ ↑mid.val < n
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
rw [←eq]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this⟩ ⊢ result.fst = mid
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this⟩ ⊢ (_root_.partition arr first last fl).fst = mid
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
unfold partition
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this⟩ ⊢ (_root_.partition arr first last fl).fst = mid
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this⟩ ⊢ (let result := partitionImpl arr first last last fl ⋯; let mid := result.fst; let arr_1 := result.snd; (mid, (dbgTraceIfShared "swap2" arr_1).swap first ⟨↑mid.val, ⋯⟩)).fst = mid
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
simp [afterLoop]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this⟩ ⊢ (let result := partitionImpl arr first last last fl ⋯; let mid := result.fst; let arr_1 := result.snd; (mid, (dbgTraceIfShared "swap2" arr_1).swap first ⟨↑mid.val, ⋯⟩)).fst = mid
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
rw [←eq]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝⟩ this : result.fst = mid ⊢ result.snd = swapped
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝⟩ this : result.fst = mid ⊢ (_root_.partition arr first last fl).snd = swapped
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
unfold partition
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝⟩ this : result.fst = mid ⊢ (_root_.partition arr first last fl).snd = swapped
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝⟩ this : result.fst = mid ⊢ (let result := partitionImpl arr first last last fl ⋯; let mid := result.fst; let arr_1 := result.snd; (mid, (dbgTraceIfShared "swap2" arr_1).swap first ⟨↑mid.val, ⋯⟩)).snd = swapped
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
simp [afterLoop, dbgTraceIfShared]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝⟩ this : result.fst = mid ⊢ (let result := partitionImpl arr first last last fl ⋯; let mid := result.fst; let arr_1 := result.snd; (mid, (dbgTraceIfShared "swap2" arr_1).swap first ⟨↑mid.val, ⋯⟩)).snd = swapped
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply partitionImpl.first_eq
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped ⊢ arr'[first] = arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply partitionImpl.LoopInvariant.intro
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ partitionImpl.LoopInvariant arr first last last last
case inv₁ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ ∀ (k : Fin n), last < k → k < last → arr[k] < arr[first] case inv₂ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ ∀ (k : Fin n), last < k → k ≤ last → ¬arr[k] < arr[first] case inv₃ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ last < last → arr[last] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. intro k lk kl exact (Nat.lt_irrefl k (Nat.lt_trans kl lk)).elim
case inv₁ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ ∀ (k : Fin n), last < k → k < last → arr[k] < arr[first] case inv₂ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ ∀ (k : Fin n), last < k → k ≤ last → ¬arr[k] < arr[first] case inv₃ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ last < last → arr[last] < arr[first]
case inv₂ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ ∀ (k : Fin n), last < k → k ≤ last → ¬arr[k] < arr[first] case inv₃ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ last < last → arr[last] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. intro k lk kl exact (Nat.lt_irrefl k (Nat.lt_of_le_of_lt kl lk)).elim
case inv₂ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ ∀ (k : Fin n), last < k → k ≤ last → ¬arr[k] < arr[first] case inv₃ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ last < last → arr[last] < arr[first]
case inv₃ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ last < last → arr[last] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. intro ll exact (Nat.lt_irrefl last ll).elim
case inv₃ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ last < last → arr[last] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
intro k lk kl
case inv₁ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ ∀ (k : Fin n), last < k → k < last → arr[k] < arr[first]
case inv₁ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] k : Fin n lk : last < k kl : k < last ⊢ arr[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact (Nat.lt_irrefl k (Nat.lt_trans kl lk)).elim
case inv₁ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] k : Fin n lk : last < k kl : k < last ⊢ arr[k] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
intro k lk kl
case inv₂ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ ∀ (k : Fin n), last < k → k ≤ last → ¬arr[k] < arr[first]
case inv₂ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] k : Fin n lk : last < k kl : k ≤ last ⊢ ¬arr[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact (Nat.lt_irrefl k (Nat.lt_of_le_of_lt kl lk)).elim
case inv₂ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] k : Fin n lk : last < k kl : k ≤ last ⊢ ¬arr[k] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
intro ll
case inv₃ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ⊢ last < last → arr[last] < arr[first]
case inv₃ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ll : last < last ⊢ arr[last] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact (Nat.lt_irrefl last ll).elim
case inv₃ α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] ll : last < last ⊢ arr[last] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
rfl
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } ⊢ partitionImpl arr first last last fl ⋯ = afterLoop
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
cases Nat.eq_or_lt_of_le fk with | inl fk => have : swapped[k] = swapped[first] := by simp [Fin.eq_of_val_eq fk] rw [this] have : swapped[first] = arr'[mid.val] := by apply Vec.get_swap_left rw [this, ←first_eq] exact inv.3 (Fin.eq_of_val_eq fk ▸ km) | inr fk => have : swapped[k] = arr'[k] := by apply Vec.get_swap_neq . apply Fin.ne_of_val_ne exact Nat.ne_of_gt fk . apply Fin.ne_of_val_ne exact Nat.ne_of_lt km rw [this, ←first_eq] exact inv.1 k fk km
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk : first ≤ k km : ↑k < ↑mid.val ⊢ swapped[k] < arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have : swapped[k] = swapped[first] := by simp [Fin.eq_of_val_eq fk]
case inl α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k ⊢ swapped[k] < arr[first]
case inl α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k this : swapped[k] = swapped[first] ⊢ swapped[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
rw [this]
case inl α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k this : swapped[k] = swapped[first] ⊢ swapped[k] < arr[first]
case inl α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k this : swapped[k] = swapped[first] ⊢ swapped[first] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have : swapped[first] = arr'[mid.val] := by apply Vec.get_swap_left
case inl α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k this : swapped[k] = swapped[first] ⊢ swapped[first] < arr[first]
case inl α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝³ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝³⟩ this✝² : result.fst = mid this✝¹ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k this✝ : swapped[k] = swapped[first] this : swapped[first] = arr'[mid.val] ⊢ swapped[first] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
rw [this, ←first_eq]
case inl α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝³ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝³⟩ this✝² : result.fst = mid this✝¹ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k this✝ : swapped[k] = swapped[first] this : swapped[first] = arr'[mid.val] ⊢ swapped[first] < arr[first]
case inl α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝³ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝³⟩ this✝² : result.fst = mid this✝¹ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k this✝ : swapped[k] = swapped[first] this : swapped[first] = arr'[mid.val] ⊢ arr'[mid.val] < arr'[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact inv.3 (Fin.eq_of_val_eq fk ▸ km)
case inl α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝³ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝³⟩ this✝² : result.fst = mid this✝¹ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k this✝ : swapped[k] = swapped[first] this : swapped[first] = arr'[mid.val] ⊢ arr'[mid.val] < arr'[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
simp [Fin.eq_of_val_eq fk]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k ⊢ swapped[k] = swapped[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply Vec.get_swap_left
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first = ↑k this : swapped[k] = swapped[first] ⊢ swapped[first] = arr'[mid.val]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have : swapped[k] = arr'[k] := by apply Vec.get_swap_neq . apply Fin.ne_of_val_ne exact Nat.ne_of_gt fk . apply Fin.ne_of_val_ne exact Nat.ne_of_lt km
case inr α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ swapped[k] < arr[first]
case inr α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k this : swapped[k] = arr'[k] ⊢ swapped[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
rw [this, ←first_eq]
case inr α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k this : swapped[k] = arr'[k] ⊢ swapped[k] < arr[first]
case inr α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k this : swapped[k] = arr'[k] ⊢ arr'[k] < arr'[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact inv.1 k fk km
case inr α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k this : swapped[k] = arr'[k] ⊢ arr'[k] < arr'[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply Vec.get_swap_neq
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ swapped[k] = arr'[k]
case ki α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ k ≠ first case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. apply Fin.ne_of_val_ne exact Nat.ne_of_gt fk
case ki α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ k ≠ first case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
. apply Fin.ne_of_val_ne exact Nat.ne_of_lt km
case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply Fin.ne_of_val_ne
case ki α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ k ≠ first
case ki.h α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ ¬↑k = ↑first
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact Nat.ne_of_gt fk
case ki.h α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ ¬↑k = ↑first
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply Fin.ne_of_val_ne
case kj α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ k ≠ ⟨↑mid.val, this✝¹⟩
case kj.h α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ ¬↑k = ↑⟨↑mid.val, this✝¹⟩
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
exact Nat.ne_of_lt km
case kj.h α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) k : Fin n fk✝ : first ≤ k km : ↑k < ↑mid.val fk : ↑first < ↑k ⊢ ¬↑k = ↑⟨↑mid.val, this✝¹⟩
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have : swapped[mid.val] = arr'[first] := by apply Vec.get_swap_right
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] ⊢ swapped[mid.val] = arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] this : swapped[mid.val] = arr'[first] ⊢ swapped[mid.val] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
rw [this]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] this : swapped[mid.val] = arr'[first] ⊢ swapped[mid.val] = arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] this : swapped[mid.val] = arr'[first] ⊢ arr'[first] = arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
assumption
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] this : swapped[mid.val] = arr'[first] ⊢ arr'[first] = arr[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
apply Vec.get_swap_right
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] ⊢ swapped[mid.val] = arr'[first]
no goals
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
have : swapped[k] = arr'[k] := by apply Vec.get_swap_neq . apply Fin.ne_of_val_ne exact Nat.ne_of_gt (Nat.lt_of_le_of_lt mid.property.1 mk) . apply Fin.ne_of_val_ne exact Nat.ne_of_gt mk
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝¹ : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝¹⟩ this✝ : result.fst = mid this : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last ⊢ ¬swapped[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last this : swapped[k] = arr'[k] ⊢ ¬swapped[k] < arr[first]
https://github.com/pandaman64/QuickSortInLean.git
ab0aaee0aed280959328844f9a6cd13bf00c5935
QuickSortInLean/Sorted.lean
partition.partition
[159, 1]
[238, 15]
rw [this, ←first_eq]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last this : swapped[k] = arr'[k] ⊢ ¬swapped[k] < arr[first]
α : Type inst✝ : Ord α n : Nat arr : Vec α n first last : Fin n fl : first ≤ last result : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n eq : _root_.partition arr first last fl = result afterLoop : { mid // first ≤ mid ∧ mid ≤ last } × Vec α n := partitionImpl arr first last last fl ⋯ mid : { mid // first ≤ mid ∧ mid ≤ last } := afterLoop.fst arr' : Vec α n := afterLoop.snd this✝² : ↑mid.val < n swapped : Vec α n := arr'.swap first ⟨↑mid.val, this✝²⟩ this✝¹ : result.fst = mid this✝ : result.snd = swapped first_eq : arr'[first] = arr[first] inv₀ : partitionImpl.LoopInvariant arr first last last last := { inv₁ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_trans kl lk)), inv₂ := fun k lk kl => False.elim (Nat.lt_irrefl (↑k) (Nat.lt_of_le_of_lt kl lk)), inv₃ := fun ll => False.elim (Nat.lt_irrefl (↑last) ll) } inv : partitionImpl.LoopInvariant afterLoop.snd first first ⟨↑afterLoop.fst.val, ⋯⟩ last := partitionImpl.loop_invariant arr first last last last fl (Nat.le_refl ↑last) inv₀ afterLoop (Eq.refl (partitionImpl arr first last last fl (Nat.le_refl ↑last))) p₁ : ∀ (k : Fin n), first ≤ k → ↑k < ↑mid.val → swapped[k] < arr[first] p₂ : swapped[mid.val] = arr[first] k : Fin n mk : ↑mid.val < ↑k kl : k ≤ last this : swapped[k] = arr'[k] ⊢ ¬arr'[k] < arr'[first]