url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Order.lean | Order.not_lt_of_le | [53, 1] | [61, 18] | simp [leOfOrd, cmp] at h | α : Type
inst✝ : Order α
x y : α
h : x ≤ y
cmp : compare x y = Ordering.gt
⊢ ¬y < x | α : Type
inst✝ : Order α
x y : α
cmp : compare x y = Ordering.gt
h : Ordering.gt.isLE = true
⊢ ¬y < x |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Order.lean | Order.not_lt_of_le | [53, 1] | [61, 18] | contradiction | α : Type
inst✝ : Order α
x y : α
cmp : compare x y = Ordering.gt
h : Ordering.gt.isLE = true
⊢ ¬y < x | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Order.lean | Order.le_of_lt | [63, 1] | [70, 18] | show (compare x y).isLE | α : Type
inst✝ : Order α
x y : α
h : x < y
⊢ x ≤ y | α : Type
inst✝ : Order α
x y : α
h : x < y
⊢ (compare x y).isLE = true |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Order.lean | Order.le_of_lt | [63, 1] | [70, 18] | simp [ltOfOrd] at h | α : Type
inst✝ : Order α
x y : α
h : x < y
⊢ (compare x y).isLE = true | α : Type
inst✝ : Order α
x y : α
h : compare x y = Ordering.lt
⊢ (compare x y).isLE = true |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Order.lean | Order.le_of_lt | [63, 1] | [70, 18] | match cmp : compare x y with
| .lt => decide
| .eq | .gt =>
rw [cmp] at h
contradiction | α : Type
inst✝ : Order α
x y : α
h : compare x y = Ordering.lt
⊢ (compare x y).isLE = true | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Order.lean | Order.le_of_lt | [63, 1] | [70, 18] | decide | α : Type
inst✝ : Order α
x y : α
h cmp : compare x y = Ordering.lt
⊢ Ordering.lt.isLE = true | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Order.lean | Order.le_of_lt | [63, 1] | [70, 18] | rw [cmp] at h | α : Type
inst✝ : Order α
x y : α
h : compare x y = Ordering.lt
cmp : compare x y = Ordering.gt
⊢ Ordering.gt.isLE = true | α : Type
inst✝ : Order α
x y : α
h : Ordering.gt = Ordering.lt
cmp : compare x y = Ordering.gt
⊢ Ordering.gt.isLE = true |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Order.lean | Order.le_of_lt | [63, 1] | [70, 18] | contradiction | α : Type
inst✝ : Order α
x y : α
h : Ordering.gt = Ordering.lt
cmp : compare x y = Ordering.gt
⊢ Ordering.gt.isLE = true | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | induction arr, first, i, j, fi, ij using partitionImpl.induct' with
| base arr first i j fi _ h =>
revert result
simp [*]
have : i = first := Fin.eq_of_val_eq (Nat.le_antisymm (Nat.le_of_not_lt h) fi)
exact this ▸ inv
| step_lt arr first i j _ _ fi _ lt _ ih =>
have inv : LoopInvariant arr first i.prev j last := by
apply LoopInvariant.intro
. intro k ik kj
have ik : i.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ik
cases Nat.eq_or_lt_of_le ik with
| inl ik =>
simp [Fin.eq_of_val_eq ik] at lt
exact lt
| inr ik => exact inv.1 k ik kj
. exact inv.2
. intro ij
have ij : i.val ≤ j.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ij
cases Nat.eq_or_lt_of_le ij with
| inl ij =>
simp [Fin.eq_of_val_eq ij.symm]
assumption
| inr ij => exact inv.3 ij
simp [*] at eq
apply ih inv result eq
| step_ge arr first i j _ ij fi _ _ _ ih =>
let swapped := arr.swap i j
have sf : swapped[first] = arr[first] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt fi
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt (Nat.lt_of_lt_of_le fi ij)
let result := partitionImpl swapped first i.prev j.prev (by assumption) (by assumption)
subst eq
simp [*]
have inv : LoopInvariant swapped first i.prev j.prev last := by
apply LoopInvariant.intro
. intro k ik kj
have ik : i.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ik
cases Nat.eq_or_lt_of_le ik with
| inl ik =>
have : swapped[k] = arr[j] := by
simp [Fin.eq_of_val_eq ik.symm]
apply Vec.get_swap_left
rw [this, sf]
exact inv.3 (Nat.lt_of_lt_of_le (Fin.eq_of_val_eq ik.symm ▸ kj) (Nat.sub_le ..))
| inr ik =>
have kj : k < j := (Nat.lt_of_lt_of_le kj (Nat.sub_le ..))
have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt ik
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt kj
rw [this, sf]
exact inv.1 k ik kj
. intro k jk kl
have jk : j.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi ij)))]
exact jk
cases Nat.eq_or_lt_of_le jk with
| inl jk =>
have : swapped[k] = arr[i] := by
simp [Fin.eq_of_val_eq jk.symm]
apply Vec.get_swap_right
rw [this, sf]
assumption
| inr jk =>
have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt (Nat.lt_of_le_of_lt ij jk)
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt jk
rw [this, sf]
exact inv.2 k jk kl
. intro ij
have : j.val - 1 < j.val := by
show j.val - 1 + 1 ≤ j.val
rw [Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi (by assumption)))]
apply Nat.le_refl
have ij : i.val ≤ j.val - 1 := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ij
cases Nat.eq_or_lt_of_le ij with
| inl ij =>
have : swapped[j.prev] = arr[j] := by
simp [ij.symm, Fin.prev]
apply Vec.get_swap_left
rw [this, sf]
have : i < j := Nat.lt_of_le_of_lt (by assumption : i.val ≤ j.val - 1) (by assumption)
exact inv.3 this
| inr ij =>
have : swapped[j.prev] = arr[j.prev] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt ij
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt (by assumption)
rw [this, sf]
apply inv.1 j.prev ij (by assumption)
exact ih inv result (by rfl) | α : Type
inst✝ : Ord α
n : Nat
arr : Vec α n
first i j last : Fin n
fi : first ≤ i
ij : i ≤ j
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi ij = result
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | revert result | case base
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi : first ≤ i
ij✝ : i ≤ j
h : ¬first < i
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi ij✝ = result
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last | case base
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi : first ≤ i
ij✝ : i ≤ j
h : ¬first < i
inv : LoopInvariant arr first i j last
⊢ ∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i j fi ij✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | simp [*] | case base
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi : first ≤ i
ij✝ : i ≤ j
h : ¬first < i
inv : LoopInvariant arr first i j last
⊢ ∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i j fi ij✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last | case base
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi : first ≤ i
ij✝ : i ≤ j
h : ¬first < i
inv : LoopInvariant arr first i j last
⊢ LoopInvariant arr first first j last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have : i = first := Fin.eq_of_val_eq (Nat.le_antisymm (Nat.le_of_not_lt h) fi) | case base
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi : first ≤ i
ij✝ : i ≤ j
h : ¬first < i
inv : LoopInvariant arr first i j last
⊢ LoopInvariant arr first first j last | case base
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi : first ≤ i
ij✝ : i ≤ j
h : ¬first < i
inv : LoopInvariant arr first i j last
this : i = first
⊢ LoopInvariant arr first first j last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact this ▸ inv | case base
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi : first ≤ i
ij✝ : i ≤ j
h : ¬first < i
inv : LoopInvariant arr first i j last
this : i = first
⊢ LoopInvariant arr first first j last | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have inv : LoopInvariant arr first i.prev j last := by
apply LoopInvariant.intro
. intro k ik kj
have ik : i.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ik
cases Nat.eq_or_lt_of_le ik with
| inl ik =>
simp [Fin.eq_of_val_eq ik] at lt
exact lt
| inr ik => exact inv.1 k ik kj
. exact inv.2
. intro ij
have ij : i.val ≤ j.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ij
cases Nat.eq_or_lt_of_le ij with
| inl ij =>
simp [Fin.eq_of_val_eq ij.symm]
assumption
| inr ij => exact inv.3 ij | case step_lt
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last | case step_lt
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv✝ : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
inv : LoopInvariant arr first i.prev j last
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | simp [*] at eq | case step_lt
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv✝ : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
inv : LoopInvariant arr first i.prev j last
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last | case step_lt
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv✝ : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
inv : LoopInvariant arr first i.prev j last
eq : partitionImpl arr first i.prev j ⋯ ⋯ = result
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply ih inv result eq | case step_lt
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv✝ : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
inv : LoopInvariant arr first i.prev j last
eq : partitionImpl arr first i.prev j ⋯ ⋯ = result
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply LoopInvariant.intro | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ LoopInvariant arr first i.prev j last | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ ∀ (k : Fin n), i.prev < k → k < j → arr[k] < arr[first]
case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ ∀ (k : Fin n), j < k → k ≤ last → ¬arr[k] < arr[first]
case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ i.prev < j → arr[j] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . intro k ik kj
have ik : i.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ik
cases Nat.eq_or_lt_of_le ik with
| inl ik =>
simp [Fin.eq_of_val_eq ik] at lt
exact lt
| inr ik => exact inv.1 k ik kj | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ ∀ (k : Fin n), i.prev < k → k < j → arr[k] < arr[first]
case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ ∀ (k : Fin n), j < k → k ≤ last → ¬arr[k] < arr[first]
case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ i.prev < j → arr[j] < arr[first] | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ ∀ (k : Fin n), j < k → k ≤ last → ¬arr[k] < arr[first]
case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ i.prev < j → arr[j] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . exact inv.2 | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ ∀ (k : Fin n), j < k → k ≤ last → ¬arr[k] < arr[first]
case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ i.prev < j → arr[j] < arr[first] | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ i.prev < j → arr[j] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . intro ij
have ij : i.val ≤ j.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ij
cases Nat.eq_or_lt_of_le ij with
| inl ij =>
simp [Fin.eq_of_val_eq ij.symm]
assumption
| inr ij => exact inv.3 ij | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ i.prev < j → arr[j] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | intro k ik kj | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ ∀ (k : Fin n), i.prev < k → k < j → arr[k] < arr[first] | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik : i.prev < k
kj : k < j
⊢ arr[k] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have ik : i.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ik | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik : i.prev < k
kj : k < j
⊢ arr[k] < arr[first] | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik✝ : i.prev < k
kj : k < j
ik : ↑i ≤ ↑k
⊢ arr[k] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | cases Nat.eq_or_lt_of_le ik with
| inl ik =>
simp [Fin.eq_of_val_eq ik] at lt
exact lt
| inr ik => exact inv.1 k ik kj | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik✝ : i.prev < k
kj : k < j
ik : ↑i ≤ ↑k
⊢ arr[k] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)] | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik : i.prev < k
kj : k < j
⊢ ↑i ≤ ↑k | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik : i.prev < k
kj : k < j
⊢ ↑i - Nat.succ 0 + Nat.succ 0 ≤ ↑k |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact ik | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik : i.prev < k
kj : k < j
⊢ ↑i - Nat.succ 0 + Nat.succ 0 ≤ ↑k | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | simp [Fin.eq_of_val_eq ik] at lt | case inv₁.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik✝¹ : i.prev < k
kj : k < j
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
⊢ arr[k] < arr[first] | case inv₁.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik✝¹ : i.prev < k
kj : k < j
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
lt : arr[k] < arr[first]
⊢ arr[k] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact lt | case inv₁.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik✝¹ : i.prev < k
kj : k < j
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
lt : arr[k] < arr[first]
⊢ arr[k] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact inv.1 k ik kj | case inv₁.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
k : Fin n
ik✝¹ : i.prev < k
kj : k < j
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
⊢ arr[k] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact inv.2 | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ ∀ (k : Fin n), j < k → k ≤ last → ¬arr[k] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | intro ij | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
⊢ i.prev < j → arr[j] < arr[first] | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
ij : i.prev < j
⊢ arr[j] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have ij : i.val ≤ j.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ij | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
ij : i.prev < j
⊢ arr[j] < arr[first] | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝¹ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝¹ = result
ij✝ : i.prev < j
ij : ↑i ≤ ↑j
⊢ arr[j] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | cases Nat.eq_or_lt_of_le ij with
| inl ij =>
simp [Fin.eq_of_val_eq ij.symm]
assumption
| inr ij => exact inv.3 ij | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝¹ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝¹ = result
ij✝ : i.prev < j
ij : ↑i ≤ ↑j
⊢ arr[j] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)] | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
ij : i.prev < j
⊢ ↑i ≤ ↑j | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
ij : i.prev < j
⊢ ↑i - Nat.succ 0 + Nat.succ 0 ≤ ↑j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact ij | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝ = result
ij : i.prev < j
⊢ ↑i - Nat.succ 0 + Nat.succ 0 ≤ ↑j | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | simp [Fin.eq_of_val_eq ij.symm] | case inv₃.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝² : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝² = result
ij✝¹ : i.prev < j
ij✝ : ↑i ≤ ↑j
ij : ↑i = ↑j
⊢ arr[j] < arr[first] | case inv₃.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝² : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝² = result
ij✝¹ : i.prev < j
ij✝ : ↑i ≤ ↑j
ij : ↑i = ↑j
⊢ arr[i] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | assumption | case inv₃.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝² : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝² = result
ij✝¹ : i.prev < j
ij✝ : ↑i ≤ ↑j
ij : ↑i = ↑j
⊢ arr[i] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact inv.3 ij | case inv₃.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝² : i ≤ j
fi : first < i
x✝¹ : ↑first ≤ ↑i - 1
lt : arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j
ih :
LoopInvariant arr first i.prev j last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n),
partitionImpl arr first i.prev j x✝¹ x✝ = result → LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij✝² = result
ij✝¹ : i.prev < j
ij✝ : ↑i ≤ ↑j
ij : ↑i < ↑j
⊢ arr[j] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | let swapped := arr.swap i j | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have sf : swapped[first] = arr[first] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt fi
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt (Nat.lt_of_lt_of_le fi ij) | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | let result := partitionImpl swapped first i.prev j.prev (by assumption) (by assumption) | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
⊢ LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result✝ : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result✝
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ LoopInvariant result✝.snd first first ⟨↑result✝.fst.val, ⋯⟩ last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | subst eq | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result✝ : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result✝
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ LoopInvariant result✝.snd first first ⟨↑result✝.fst.val, ⋯⟩ last | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ LoopInvariant (partitionImpl arr first i j fi✝ ij).snd first first ⟨↑(partitionImpl arr first i j fi✝ ij).fst.val, ⋯⟩
last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | simp [*] | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ LoopInvariant (partitionImpl arr first i j fi✝ ij).snd first first ⟨↑(partitionImpl arr first i j fi✝ ij).fst.val, ⋯⟩
last | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ LoopInvariant (partitionImpl (arr.swap i j) first i.prev j.prev ⋯ ⋯).snd first first
(partitionImpl (arr.swap i j) first i.prev j.prev ⋯ ⋯).1.val last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have inv : LoopInvariant swapped first i.prev j.prev last := by
apply LoopInvariant.intro
. intro k ik kj
have ik : i.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ik
cases Nat.eq_or_lt_of_le ik with
| inl ik =>
have : swapped[k] = arr[j] := by
simp [Fin.eq_of_val_eq ik.symm]
apply Vec.get_swap_left
rw [this, sf]
exact inv.3 (Nat.lt_of_lt_of_le (Fin.eq_of_val_eq ik.symm ▸ kj) (Nat.sub_le ..))
| inr ik =>
have kj : k < j := (Nat.lt_of_lt_of_le kj (Nat.sub_le ..))
have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt ik
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt kj
rw [this, sf]
exact inv.1 k ik kj
. intro k jk kl
have jk : j.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi ij)))]
exact jk
cases Nat.eq_or_lt_of_le jk with
| inl jk =>
have : swapped[k] = arr[i] := by
simp [Fin.eq_of_val_eq jk.symm]
apply Vec.get_swap_right
rw [this, sf]
assumption
| inr jk =>
have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt (Nat.lt_of_le_of_lt ij jk)
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt jk
rw [this, sf]
exact inv.2 k jk kl
. intro ij
have : j.val - 1 < j.val := by
show j.val - 1 + 1 ≤ j.val
rw [Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi (by assumption)))]
apply Nat.le_refl
have ij : i.val ≤ j.val - 1 := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ij
cases Nat.eq_or_lt_of_le ij with
| inl ij =>
have : swapped[j.prev] = arr[j] := by
simp [ij.symm, Fin.prev]
apply Vec.get_swap_left
rw [this, sf]
have : i < j := Nat.lt_of_le_of_lt (by assumption : i.val ≤ j.val - 1) (by assumption)
exact inv.3 this
| inr ij =>
have : swapped[j.prev] = arr[j.prev] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt ij
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt (by assumption)
rw [this, sf]
apply inv.1 j.prev ij (by assumption) | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ LoopInvariant (partitionImpl (arr.swap i j) first i.prev j.prev ⋯ ⋯).snd first first
(partitionImpl (arr.swap i j) first i.prev j.prev ⋯ ⋯).1.val last | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv✝ : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
inv : LoopInvariant swapped first i.prev j.prev last
⊢ LoopInvariant (partitionImpl (arr.swap i j) first i.prev j.prev ⋯ ⋯).snd first first
(partitionImpl (arr.swap i j) first i.prev j.prev ⋯ ⋯).1.val last |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact ih inv result (by rfl) | case step_ge
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv✝ : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
inv : LoopInvariant swapped first i.prev j.prev last
⊢ LoopInvariant (partitionImpl (arr.swap i j) first i.prev j.prev ⋯ ⋯).snd first first
(partitionImpl (arr.swap i j) first i.prev j.prev ⋯ ⋯).1.val last | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Vec.get_swap_neq | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ swapped[first] = arr[first] | case ki
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ first ≠ i
case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ first ≠ j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . apply Fin.ne_of_val_ne
exact Nat.ne_of_lt fi | case ki
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ first ≠ i
case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ first ≠ j | case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ first ≠ j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . apply Fin.ne_of_val_ne
exact Nat.ne_of_lt (Nat.lt_of_lt_of_le fi ij) | case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ first ≠ j | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Fin.ne_of_val_ne | case ki
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ first ≠ i | case ki.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ ¬↑first = ↑i |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact Nat.ne_of_lt fi | case ki.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ ¬↑first = ↑i | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Fin.ne_of_val_ne | case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ first ≠ j | case kj.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ ¬↑first = ↑j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact Nat.ne_of_lt (Nat.lt_of_lt_of_le fi ij) | case kj.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
⊢ ¬↑first = ↑j | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | assumption | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
⊢ first ≤ i.prev | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | assumption | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
result : { mid // first ≤ mid ∧ mid ≤ j } × Vec α n
eq : partitionImpl arr first i j fi✝ ij = result
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
⊢ i.prev ≤ j.prev | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply LoopInvariant.intro | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ LoopInvariant swapped first i.prev j.prev last | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ ∀ (k : Fin n), i.prev < k → k < j.prev → swapped[k] < swapped[first]
case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ ∀ (k : Fin n), j.prev < k → k ≤ last → ¬swapped[k] < swapped[first]
case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ i.prev < j.prev → swapped[j.prev] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . intro k ik kj
have ik : i.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ik
cases Nat.eq_or_lt_of_le ik with
| inl ik =>
have : swapped[k] = arr[j] := by
simp [Fin.eq_of_val_eq ik.symm]
apply Vec.get_swap_left
rw [this, sf]
exact inv.3 (Nat.lt_of_lt_of_le (Fin.eq_of_val_eq ik.symm ▸ kj) (Nat.sub_le ..))
| inr ik =>
have kj : k < j := (Nat.lt_of_lt_of_le kj (Nat.sub_le ..))
have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt ik
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt kj
rw [this, sf]
exact inv.1 k ik kj | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ ∀ (k : Fin n), i.prev < k → k < j.prev → swapped[k] < swapped[first]
case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ ∀ (k : Fin n), j.prev < k → k ≤ last → ¬swapped[k] < swapped[first]
case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ i.prev < j.prev → swapped[j.prev] < swapped[first] | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ ∀ (k : Fin n), j.prev < k → k ≤ last → ¬swapped[k] < swapped[first]
case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ i.prev < j.prev → swapped[j.prev] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . intro k jk kl
have jk : j.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi ij)))]
exact jk
cases Nat.eq_or_lt_of_le jk with
| inl jk =>
have : swapped[k] = arr[i] := by
simp [Fin.eq_of_val_eq jk.symm]
apply Vec.get_swap_right
rw [this, sf]
assumption
| inr jk =>
have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt (Nat.lt_of_le_of_lt ij jk)
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt jk
rw [this, sf]
exact inv.2 k jk kl | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ ∀ (k : Fin n), j.prev < k → k ≤ last → ¬swapped[k] < swapped[first]
case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ i.prev < j.prev → swapped[j.prev] < swapped[first] | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ i.prev < j.prev → swapped[j.prev] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . intro ij
have : j.val - 1 < j.val := by
show j.val - 1 + 1 ≤ j.val
rw [Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi (by assumption)))]
apply Nat.le_refl
have ij : i.val ≤ j.val - 1 := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ij
cases Nat.eq_or_lt_of_le ij with
| inl ij =>
have : swapped[j.prev] = arr[j] := by
simp [ij.symm, Fin.prev]
apply Vec.get_swap_left
rw [this, sf]
have : i < j := Nat.lt_of_le_of_lt (by assumption : i.val ≤ j.val - 1) (by assumption)
exact inv.3 this
| inr ij =>
have : swapped[j.prev] = arr[j.prev] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt ij
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt (by assumption)
rw [this, sf]
apply inv.1 j.prev ij (by assumption) | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ i.prev < j.prev → swapped[j.prev] < swapped[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | intro k ik kj | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ ∀ (k : Fin n), i.prev < k → k < j.prev → swapped[k] < swapped[first] | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik : i.prev < k
kj : k < j.prev
⊢ swapped[k] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have ik : i.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)]
exact ik | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik : i.prev < k
kj : k < j.prev
⊢ swapped[k] < swapped[first] | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝ : i.prev < k
kj : k < j.prev
ik : ↑i ≤ ↑k
⊢ swapped[k] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | cases Nat.eq_or_lt_of_le ik with
| inl ik =>
have : swapped[k] = arr[j] := by
simp [Fin.eq_of_val_eq ik.symm]
apply Vec.get_swap_left
rw [this, sf]
exact inv.3 (Nat.lt_of_lt_of_le (Fin.eq_of_val_eq ik.symm ▸ kj) (Nat.sub_le ..))
| inr ik =>
have kj : k < j := (Nat.lt_of_lt_of_le kj (Nat.sub_le ..))
have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt ik
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt kj
rw [this, sf]
exact inv.1 k ik kj | case inv₁
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝ : i.prev < k
kj : k < j.prev
ik : ↑i ≤ ↑k
⊢ swapped[k] < swapped[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt fi)] | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik : i.prev < k
kj : k < j.prev
⊢ ↑i ≤ ↑k | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik : i.prev < k
kj : k < j.prev
⊢ ↑i - Nat.succ 0 + Nat.succ 0 ≤ ↑k |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact ik | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik : i.prev < k
kj : k < j.prev
⊢ ↑i - Nat.succ 0 + Nat.succ 0 ≤ ↑k | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have : swapped[k] = arr[j] := by
simp [Fin.eq_of_val_eq ik.symm]
apply Vec.get_swap_left | case inv₁.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
⊢ swapped[k] < swapped[first] | case inv₁.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
this : swapped[k] = arr[j]
⊢ swapped[k] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | rw [this, sf] | case inv₁.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
this : swapped[k] = arr[j]
⊢ swapped[k] < swapped[first] | case inv₁.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
this : swapped[k] = arr[j]
⊢ arr[j] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact inv.3 (Nat.lt_of_lt_of_le (Fin.eq_of_val_eq ik.symm ▸ kj) (Nat.sub_le ..)) | case inv₁.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
this : swapped[k] = arr[j]
⊢ arr[j] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | simp [Fin.eq_of_val_eq ik.symm] | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
⊢ swapped[k] = arr[j] | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
⊢ swapped[i] = arr[j] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Vec.get_swap_left | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i = ↑k
⊢ swapped[i] = arr[j] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have kj : k < j := (Nat.lt_of_lt_of_le kj (Nat.sub_le ..)) | case inv₁.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
⊢ swapped[k] < swapped[first] | case inv₁.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ swapped[k] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt ik
. apply Fin.ne_of_val_ne
exact Nat.ne_of_lt kj | case inv₁.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ swapped[k] < swapped[first] | case inv₁.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
this : swapped[k] = arr[k]
⊢ swapped[k] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | rw [this, sf] | case inv₁.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
this : swapped[k] = arr[k]
⊢ swapped[k] < swapped[first] | case inv₁.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
this : swapped[k] = arr[k]
⊢ arr[k] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact inv.1 k ik kj | case inv₁.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
this : swapped[k] = arr[k]
⊢ arr[k] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Vec.get_swap_neq | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ swapped[k] = arr[k] | case ki
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ k ≠ i
case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ k ≠ j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . apply Fin.ne_of_val_ne
exact Nat.ne_of_gt ik | case ki
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ k ≠ i
case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ k ≠ j | case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ k ≠ j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . apply Fin.ne_of_val_ne
exact Nat.ne_of_lt kj | case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ k ≠ j | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Fin.ne_of_val_ne | case ki
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ k ≠ i | case ki.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ ¬↑k = ↑i |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact Nat.ne_of_gt ik | case ki.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ ¬↑k = ↑i | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Fin.ne_of_val_ne | case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ k ≠ j | case kj.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ ¬↑k = ↑j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact Nat.ne_of_lt kj | case kj.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
ik✝¹ : i.prev < k
kj✝ : k < j.prev
ik✝ : ↑i ≤ ↑k
ik : ↑i < ↑k
kj : k < j
⊢ ¬↑k = ↑j | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | intro k jk kl | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ ∀ (k : Fin n), j.prev < k → k ≤ last → ¬swapped[k] < swapped[first] | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk : j.prev < k
kl : k ≤ last
⊢ ¬swapped[k] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have jk : j.val ≤ k.val := by
rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi ij)))]
exact jk | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk : j.prev < k
kl : k ≤ last
⊢ ¬swapped[k] < swapped[first] | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝ : j.prev < k
kl : k ≤ last
jk : ↑j ≤ ↑k
⊢ ¬swapped[k] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | cases Nat.eq_or_lt_of_le jk with
| inl jk =>
have : swapped[k] = arr[i] := by
simp [Fin.eq_of_val_eq jk.symm]
apply Vec.get_swap_right
rw [this, sf]
assumption
| inr jk =>
have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt (Nat.lt_of_le_of_lt ij jk)
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt jk
rw [this, sf]
exact inv.2 k jk kl | case inv₂
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝ : j.prev < k
kl : k ≤ last
jk : ↑j ≤ ↑k
⊢ ¬swapped[k] < swapped[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | rw [←Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi ij)))] | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk : j.prev < k
kl : k ≤ last
⊢ ↑j ≤ ↑k | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk : j.prev < k
kl : k ≤ last
⊢ ↑j - Nat.succ 0 + Nat.succ 0 ≤ ↑k |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact jk | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk : j.prev < k
kl : k ≤ last
⊢ ↑j - Nat.succ 0 + Nat.succ 0 ≤ ↑k | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have : swapped[k] = arr[i] := by
simp [Fin.eq_of_val_eq jk.symm]
apply Vec.get_swap_right | case inv₂.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j = ↑k
⊢ ¬swapped[k] < swapped[first] | case inv₂.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j = ↑k
this : swapped[k] = arr[i]
⊢ ¬swapped[k] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | rw [this, sf] | case inv₂.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j = ↑k
this : swapped[k] = arr[i]
⊢ ¬swapped[k] < swapped[first] | case inv₂.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j = ↑k
this : swapped[k] = arr[i]
⊢ ¬arr[i] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | assumption | case inv₂.inl
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j = ↑k
this : swapped[k] = arr[i]
⊢ ¬arr[i] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | simp [Fin.eq_of_val_eq jk.symm] | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j = ↑k
⊢ swapped[k] = arr[i] | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j = ↑k
⊢ swapped[j] = arr[i] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Vec.get_swap_right | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j = ↑k
⊢ swapped[j] = arr[i] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have : swapped[k] = arr[k] := by
apply Vec.get_swap_neq
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt (Nat.lt_of_le_of_lt ij jk)
. apply Fin.ne_of_val_ne
exact Nat.ne_of_gt jk | case inv₂.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ ¬swapped[k] < swapped[first] | case inv₂.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
this : swapped[k] = arr[k]
⊢ ¬swapped[k] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | rw [this, sf] | case inv₂.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
this : swapped[k] = arr[k]
⊢ ¬swapped[k] < swapped[first] | case inv₂.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
this : swapped[k] = arr[k]
⊢ ¬arr[k] < arr[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact inv.2 k jk kl | case inv₂.inr
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
this : swapped[k] = arr[k]
⊢ ¬arr[k] < arr[first] | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Vec.get_swap_neq | α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ swapped[k] = arr[k] | case ki
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ k ≠ i
case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ k ≠ j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . apply Fin.ne_of_val_ne
exact Nat.ne_of_gt (Nat.lt_of_le_of_lt ij jk) | case ki
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ k ≠ i
case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ k ≠ j | case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ k ≠ j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | . apply Fin.ne_of_val_ne
exact Nat.ne_of_gt jk | case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ k ≠ j | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Fin.ne_of_val_ne | case ki
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ k ≠ i | case ki.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ ¬↑k = ↑i |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact Nat.ne_of_gt (Nat.lt_of_le_of_lt ij jk) | case ki.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ ¬↑k = ↑i | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | apply Fin.ne_of_val_ne | case kj
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ k ≠ j | case kj.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ ¬↑k = ↑j |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | exact Nat.ne_of_gt jk | case kj.h
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
k : Fin n
jk✝¹ : j.prev < k
kl : k ≤ last
jk✝ : ↑j ≤ ↑k
jk : ↑j < ↑k
⊢ ¬↑k = ↑j | no goals |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | intro ij | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
⊢ i.prev < j.prev → swapped[j.prev] < swapped[first] | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
ij : i.prev < j.prev
⊢ swapped[j.prev] < swapped[first] |
https://github.com/pandaman64/QuickSortInLean.git | ab0aaee0aed280959328844f9a6cd13bf00c5935 | QuickSortInLean/Sorted.lean | partitionImpl.loop_invariant | [21, 1] | [141, 33] | have : j.val - 1 < j.val := by
show j.val - 1 + 1 ≤ j.val
rw [Nat.sub_add_cancel (Nat.zero_lt_of_lt (Nat.lt_of_lt_of_le fi (by assumption)))]
apply Nat.le_refl | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
ij : i.prev < j.prev
⊢ swapped[j.prev] < swapped[first] | case inv₃
α : Type
inst✝ : Ord α
n : Nat
first✝ i✝ j✝ last : Fin n
arr : Vec α n
first i j : Fin n
fi✝ : first ≤ i
ij✝ : i ≤ j
fi : first < i
x✝² : ↑first ≤ ↑i - 1
x✝¹ : ¬arr[i] < arr[first]
x✝ : ↑i - 1 ≤ ↑j - 1
ih :
LoopInvariant (arr.swap i j) first i.prev j.prev last →
∀ (result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n),
partitionImpl (arr.swap i j) first i.prev j.prev x✝² x✝ = result →
LoopInvariant result.snd first first ⟨↑result.fst.val, ⋯⟩ last
inv : LoopInvariant arr first i j last
swapped : Vec α n := arr.swap i j
sf : swapped[first] = arr[first]
result : { mid // first ≤ mid ∧ mid ≤ j.prev } × Vec α n := partitionImpl swapped first i.prev j.prev x✝² x✝
ij : i.prev < j.prev
this : ↑j - 1 < ↑j
⊢ swapped[j.prev] < swapped[first] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.