url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | succLtTwoPow | [60, 1] | [71, 38] | apply Nat.one_lt_pow <;> linarith | case intro.succ
u : β
h : Nat.succ (2 + u) < 2 ^ (2 + u)
β’ 1 < 2 ^ (2 + u) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | simp | n : β
hn : 32 β€ n
β’ 2 * n = (2 * n) ^ (6β»ΒΉ * 6) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | apply Real.rpow_mul (by linarith) | n : β
hn : 32 β€ n
β’ (2 * n) ^ (6β»ΒΉ * 6) = ((2 * n) ^ 6β»ΒΉ) ^ 6 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | linarith | n : β
hn : 32 β€ n
β’ 0 β€ 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | apply Real.rpow_lt_rpow _ _ (by norm_num) | n : β
hn : 32 β€ n
β’ ((2 * n) ^ 6β»ΒΉ) ^ 6 < (ββ(2 * n) ^ 6β»ΒΉββ + 1) ^ 6 | n : β
hn : 32 β€ n
β’ 0 β€ (2 * n) ^ 6β»ΒΉ
n : β
hn : 32 β€ n
β’ (2 * n) ^ 6β»ΒΉ < ββ(2 * n) ^ 6β»ΒΉββ + 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | . apply Real.rpow_nonneg_of_nonneg; linarith | n : β
hn : 32 β€ n
β’ 0 β€ (2 * n) ^ 6β»ΒΉ
n : β
hn : 32 β€ n
β’ (2 * n) ^ 6β»ΒΉ < ββ(2 * n) ^ 6β»ΒΉββ + 1 | n : β
hn : 32 β€ n
β’ (2 * n) ^ 6β»ΒΉ < ββ(2 * n) ^ 6β»ΒΉββ + 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | . apply Nat.lt_floor_add_one | n : β
hn : 32 β€ n
β’ (2 * n) ^ 6β»ΒΉ < ββ(2 * n) ^ 6β»ΒΉββ + 1 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | norm_num | n : β
hn : 32 β€ n
β’ 0 < 6 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | apply Real.rpow_nonneg_of_nonneg | n : β
hn : 32 β€ n
β’ 0 β€ (2 * n) ^ 6β»ΒΉ | case hx
n : β
hn : 32 β€ n
β’ 0 β€ 2 * n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | linarith | case hx
n : β
hn : 32 β€ n
β’ 0 β€ 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | apply Nat.lt_floor_add_one | n : β
hn : 32 β€ n
β’ (2 * n) ^ 6β»ΒΉ < ββ(2 * n) ^ 6β»ΒΉββ + 1 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | norm_cast | n : β
hn : 32 β€ n
β’ (ββ(2 * n) ^ 6β»ΒΉββ + 1) ^ 6 < 2 ^ (6 * ββ(2 * n) ^ 6β»ΒΉββ) | n : β
hn : 32 β€ n
β’ (β(2 * n) ^ 6β»ΒΉββ + 1) ^ 6 < 2 ^ (6 * β(2 * n) ^ 6β»ΒΉββ) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | conv => rhs; rhs; rw [mul_comm] | n : β
hn : 32 β€ n
β’ (β(2 * n) ^ 6β»ΒΉββ + 1) ^ 6 < 2 ^ (6 * β(2 * n) ^ 6β»ΒΉββ) | n : β
hn : 32 β€ n
β’ (β(2 * n) ^ 6β»ΒΉββ + 1) ^ 6 < 2 ^ (β(2 * n) ^ 6β»ΒΉββ * 6) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | rw [Nat.pow_mul] | n : β
hn : 32 β€ n
β’ (β(2 * n) ^ 6β»ΒΉββ + 1) ^ 6 < 2 ^ (β(2 * n) ^ 6β»ΒΉββ * 6) | n : β
hn : 32 β€ n
β’ (β(2 * n) ^ 6β»ΒΉββ + 1) ^ 6 < (2 ^ β(2 * n) ^ 6β»ΒΉββ) ^ 6 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | apply Nat.pow_lt_pow_of_lt_left _ (by norm_num) | n : β
hn : 32 β€ n
β’ (β(2 * n) ^ 6β»ΒΉββ + 1) ^ 6 < (2 ^ β(2 * n) ^ 6β»ΒΉββ) ^ 6 | n : β
hn : 32 β€ n
β’ β(2 * n) ^ 6β»ΒΉββ + 1 < 2 ^ β(2 * n) ^ 6β»ΒΉββ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | apply succLtTwoPow | n : β
hn : 32 β€ n
β’ β(2 * n) ^ 6β»ΒΉββ + 1 < 2 ^ β(2 * n) ^ 6β»ΒΉββ | case h2
n : β
hn : 32 β€ n
β’ 2 β€ β(2 * n) ^ 6β»ΒΉββ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | have h0 : 0 β€ (2 * n) ^ 6β»ΒΉ | case h2
n : β
hn : 32 β€ n
β’ 2 β€ β(2 * n) ^ 6β»ΒΉββ | case h0
n : β
hn : 32 β€ n
β’ 0 β€ (2 * n) ^ 6β»ΒΉ
case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 β€ β(2 * n) ^ 6β»ΒΉββ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | . apply le_of_lt; apply Real.rpow_pos_of_pos; linarith | case h0
n : β
hn : 32 β€ n
β’ 0 β€ (2 * n) ^ 6β»ΒΉ
case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 β€ β(2 * n) ^ 6β»ΒΉββ | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 β€ β(2 * n) ^ 6β»ΒΉββ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | rw [Nat.le_floor_iff h0] | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 β€ β(2 * n) ^ 6β»ΒΉββ | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ β2 β€ (2 * n) ^ 6β»ΒΉ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | norm_cast | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ β2 β€ (2 * n) ^ 6β»ΒΉ | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 β€ (2 * n) ^ 6β»ΒΉ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | rw [β Real.rpow_le_rpow_iff (by norm_num) h0 (by norm_num : (0:β) < 6)] | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 β€ (2 * n) ^ 6β»ΒΉ | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 β€ ((2 * n) ^ 6β»ΒΉ) ^ 6 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | rw [β Real.rpow_mul (by linarith)] | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 β€ ((2 * n) ^ 6β»ΒΉ) ^ 6 | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 β€ (2 * n) ^ (6β»ΒΉ * 6) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | simp | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 β€ (2 * n) ^ (6β»ΒΉ * 6) | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 β€ 2 * n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | rw [mul_comm] | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 β€ 2 * n | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 β€ n * 2 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | rw [β div_le_iff (by norm_num)] | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 β€ n * 2 | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 / 2 β€ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | norm_cast | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 2 ^ 6 / 2 β€ n | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ β(2 ^ 6) / 2 β€ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | norm_num | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ β(2 ^ 6) / 2 β€ n | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 32 β€ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | assumption | case h2
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 32 β€ n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | apply le_of_lt | case h0
n : β
hn : 32 β€ n
β’ 0 β€ (2 * n) ^ 6β»ΒΉ | case h0.a
n : β
hn : 32 β€ n
β’ 0 < (2 * n) ^ 6β»ΒΉ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | apply Real.rpow_pos_of_pos | case h0.a
n : β
hn : 32 β€ n
β’ 0 < (2 * n) ^ 6β»ΒΉ | case h0.a.hx
n : β
hn : 32 β€ n
β’ 0 < 2 * n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | linarith | case h0.a.hx
n : β
hn : 32 β€ n
β’ 0 < 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | norm_num | n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 0 β€ 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | norm_num | n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 0 < 6 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | linarith | n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 0 β€ 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | norm_num | n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ 0 < 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | rw [Real.rpow_le_rpow_left_iff (by norm_num)] | n : β
hn : 32 β€ n
β’ 2 ^ (6 * ββ(2 * n) ^ 6β»ΒΉββ) β€ 2 ^ (6 * (2 * n) ^ 6β»ΒΉ) | n : β
hn : 32 β€ n
β’ 6 * ββ(2 * n) ^ 6β»ΒΉββ β€ 6 * (2 * n) ^ 6β»ΒΉ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | rw [mul_le_mul_left (by norm_num)] | n : β
hn : 32 β€ n
β’ 6 * ββ(2 * n) ^ 6β»ΒΉββ β€ 6 * (2 * n) ^ 6β»ΒΉ | n : β
hn : 32 β€ n
β’ ββ(2 * n) ^ 6β»ΒΉββ β€ (2 * n) ^ 6β»ΒΉ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | have h0 : 0 β€ (2 * n) ^ 6β»ΒΉ | n : β
hn : 32 β€ n
β’ ββ(2 * n) ^ 6β»ΒΉββ β€ (2 * n) ^ 6β»ΒΉ | case h0
n : β
hn : 32 β€ n
β’ 0 β€ (2 * n) ^ 6β»ΒΉ
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ ββ(2 * n) ^ 6β»ΒΉββ β€ (2 * n) ^ 6β»ΒΉ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | . apply le_of_lt; apply Real.rpow_pos_of_pos; linarith | case h0
n : β
hn : 32 β€ n
β’ 0 β€ (2 * n) ^ 6β»ΒΉ
n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ ββ(2 * n) ^ 6β»ΒΉββ β€ (2 * n) ^ 6β»ΒΉ | n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ ββ(2 * n) ^ 6β»ΒΉββ β€ (2 * n) ^ 6β»ΒΉ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | exact Nat.floor_le h0 | n : β
hn : 32 β€ n
h0 : 0 β€ (2 * n) ^ 6β»ΒΉ
β’ ββ(2 * n) ^ 6β»ΒΉββ β€ (2 * n) ^ 6β»ΒΉ | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | twoMulLtTwoPow | [73, 1] | [104, 28] | norm_num | n : β
hn : 32 β€ n
β’ 1 < 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | ltTwoMulSqrtTwoMul | [106, 1] | [111, 11] | rw [β div_lt_iff' (by norm_num)] | n : β
h : 81 / 2 < n
β’ 18 < 2 * Real.sqrt (2 * n) | n : β
h : 81 / 2 < n
β’ 18 / 2 < Real.sqrt (2 * n) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | ltTwoMulSqrtTwoMul | [106, 1] | [111, 11] | rw [Real.lt_sqrt (by norm_num)] | n : β
h : 81 / 2 < n
β’ 18 / 2 < Real.sqrt (2 * n) | n : β
h : 81 / 2 < n
β’ (18 / 2) ^ 2 < 2 * n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | ltTwoMulSqrtTwoMul | [106, 1] | [111, 11] | norm_num | n : β
h : 81 / 2 < n
β’ (18 / 2) ^ 2 < 2 * n | n : β
h : 81 / 2 < n
β’ 81 < 2 * n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | ltTwoMulSqrtTwoMul | [106, 1] | [111, 11] | rw [β div_lt_iff' (by norm_num)] | n : β
h : 81 / 2 < n
β’ 81 < 2 * n | n : β
h : 81 / 2 < n
β’ 81 / 2 < n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | ltTwoMulSqrtTwoMul | [106, 1] | [111, 11] | linarith | n : β
h : 81 / 2 < n
β’ 81 / 2 < n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | ltTwoMulSqrtTwoMul | [106, 1] | [111, 11] | norm_num | n : β
h : 81 / 2 < n
β’ 0 < 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | ltTwoMulSqrtTwoMul | [106, 1] | [111, 11] | norm_num | n : β
h : 81 / 2 < n
β’ 0 β€ 18 / 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | rw [β Real.rpow_mul (by norm_num)] | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 4 ^ n β€ (4 ^ (n / 3)) ^ 3 | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 4 ^ n β€ 4 ^ (n / 3 * 3) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | simp | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 4 ^ n β€ 4 ^ (n / 3 * 3) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | norm_num | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 β€ 4 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | apply Real.rpow_le_rpow _ h (by linarith) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ (4 ^ (n / 3)) ^ 3 β€ ((2 * n) ^ (1 + Real.sqrt (2 * n))) ^ 3 | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 β€ 4 ^ (n / 3) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | apply Real.rpow_nonneg_of_nonneg (by norm_num) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 β€ 4 ^ (n / 3) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 β€ 3 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | rw [Real.rpow_mul (by linarith)] | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ ((2 * n) ^ (1 + Real.sqrt (2 * n))) ^ 3 = (2 * n) ^ ((1 + Real.sqrt (2 * n)) * 3) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 β€ 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | apply Real.rpow_lt_rpow (by linarith) (twoMulLtTwoPow (by linarith)) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ (2 * n) ^ ((1 + Real.sqrt (2 * n)) * 3) < (2 ^ (6 * (2 * n) ^ 6β»ΒΉ)) ^ ((1 + Real.sqrt (2 * n)) * 3) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < (1 + Real.sqrt (2 * n)) * 3 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | simp | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < (1 + Real.sqrt (2 * n)) * 3 | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < 1 + Real.sqrt (2 * n) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | exact lt_add_of_pos_of_le (by norm_num) (Real.sqrt_nonneg _) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < 1 + Real.sqrt (2 * n) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 32 β€ n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | norm_num | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < 1 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | rw [β Real.rpow_mul (by linarith)] | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ (2 ^ (6 * (2 * n) ^ 6β»ΒΉ)) ^ ((1 + Real.sqrt (2 * n)) * 3) < 2 ^ (20 * (2 * n) ^ (2 / 3)) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 2 ^ (6 * (2 * n) ^ 6β»ΒΉ * ((1 + Real.sqrt (2 * n)) * 3)) < 2 ^ (20 * (2 * n) ^ (2 / 3)) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | rw [Real.rpow_lt_rpow_left_iff (by linarith)] | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 2 ^ (6 * (2 * n) ^ 6β»ΒΉ * ((1 + Real.sqrt (2 * n)) * 3)) < 2 ^ (20 * (2 * n) ^ (2 / 3)) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 6 * (2 * n) ^ 6β»ΒΉ * ((1 + Real.sqrt (2 * n)) * 3) < 20 * (2 * n) ^ (2 / 3) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | calc
_ = (18 * (1 + Real.sqrt (2*n))) * ((2*n)^6β»ΒΉ) := by linarith
_ < (2 + 18) * Real.sqrt (2*n) * (2*n)^6β»ΒΉ := by
rw [mul_lt_mul_right]
. simp [mul_add, add_mul]
apply ltTwoMulSqrtTwoMul
linarith
. apply Real.rpow_pos_of_pos
linarith
_ = 20 * (Real.sqrt (2*n) * (2*n)^6β»ΒΉ) := by linarith
_ = _ := by
simp [Real.sqrt_eq_rpow]
rw [β Real.rpow_add (by linarith)]
norm_num | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 6 * (2 * n) ^ 6β»ΒΉ * ((1 + Real.sqrt (2 * n)) * 3) < 20 * (2 * n) ^ (2 / 3) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 β€ 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 1 < 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 6 * (2 * n) ^ 6β»ΒΉ * ((1 + Real.sqrt (2 * n)) * 3) = 18 * (1 + Real.sqrt (2 * n)) * (2 * n) ^ 6β»ΒΉ | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | rw [mul_lt_mul_right] | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 18 * (1 + Real.sqrt (2 * n)) * (2 * n) ^ 6β»ΒΉ < (2 + 18) * Real.sqrt (2 * n) * (2 * n) ^ 6β»ΒΉ | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 18 * (1 + Real.sqrt (2 * n)) < (2 + 18) * Real.sqrt (2 * n)
n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < (2 * n) ^ 6β»ΒΉ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | . simp [mul_add, add_mul]
apply ltTwoMulSqrtTwoMul
linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 18 * (1 + Real.sqrt (2 * n)) < (2 + 18) * Real.sqrt (2 * n)
n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < (2 * n) ^ 6β»ΒΉ | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < (2 * n) ^ 6β»ΒΉ |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | . apply Real.rpow_pos_of_pos
linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < (2 * n) ^ 6β»ΒΉ | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | simp [mul_add, add_mul] | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 18 * (1 + Real.sqrt (2 * n)) < (2 + 18) * Real.sqrt (2 * n) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 18 < 2 * Real.sqrt (2 * n) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | apply ltTwoMulSqrtTwoMul | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 18 < 2 * Real.sqrt (2 * n) | case h
n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 81 / 2 < n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | case h
n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 81 / 2 < n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | apply Real.rpow_pos_of_pos | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < (2 * n) ^ 6β»ΒΉ | case hx
n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < 2 * n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | case hx
n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ (2 + 18) * Real.sqrt (2 * n) * (2 * n) ^ 6β»ΒΉ = 20 * (Real.sqrt (2 * n) * (2 * n) ^ 6β»ΒΉ) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | simp [Real.sqrt_eq_rpow] | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 20 * (Real.sqrt (2 * n) * (2 * n) ^ 6β»ΒΉ) = 20 * (2 * n) ^ (2 / 3) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ (2 * n) ^ 2β»ΒΉ * (2 * n) ^ 6β»ΒΉ = (2 * n) ^ (2 / 3) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | rw [β Real.rpow_add (by linarith)] | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ (2 * n) ^ 2β»ΒΉ * (2 * n) ^ 6β»ΒΉ = (2 * n) ^ (2 / 3) | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ (2 * n) ^ (2β»ΒΉ + 6β»ΒΉ) = (2 * n) ^ (2 / 3) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | norm_num | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ (2 * n) ^ (2β»ΒΉ + 6β»ΒΉ) = (2 * n) ^ (2 / 3) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | fourPowLtOf | [113, 1] | [141, 15] | linarith | n : β
hn : 81 / 2 < n
h : 4 ^ (n / 3) β€ (2 * n) ^ (1 + Real.sqrt (2 * n))
β’ 0 < 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [(by norm_num : (4 : β) = 2 ^ 2)] | n : β
hn : 0 < n
β’ 4 ^ n < 2 ^ (20 * (2 * n) ^ (2 / 3)) β n < 4000 | n : β
hn : 0 < n
β’ (2 ^ 2) ^ n < 2 ^ (20 * (2 * n) ^ (2 / 3)) β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [β Real.rpow_mul (by norm_num)] | n : β
hn : 0 < n
β’ (2 ^ 2) ^ n < 2 ^ (20 * (2 * n) ^ (2 / 3)) β n < 4000 | n : β
hn : 0 < n
β’ 2 ^ (2 * n) < 2 ^ (20 * (2 * n) ^ (2 / 3)) β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [Real.rpow_lt_rpow_left_iff (by linarith)] | n : β
hn : 0 < n
β’ 2 ^ (2 * n) < 2 ^ (20 * (2 * n) ^ (2 / 3)) β n < 4000 | n : β
hn : 0 < n
β’ 2 * n < 20 * (2 * n) ^ (2 / 3) β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | have h_nonneg : 0 < (2 * n) ^ (2 / 3) := by apply Real.rpow_pos_of_pos; linarith | n : β
hn : 0 < n
β’ 2 * n < 20 * (2 * n) ^ (2 / 3) β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 2 * n < 20 * (2 * n) ^ (2 / 3) β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [β @Real.rpow_lt_rpow_iff _ _ 3 (by linarith) (by linarith) (by norm_num)] | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 2 * n < 20 * (2 * n) ^ (2 / 3) β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 3 < (20 * (2 * n) ^ (2 / 3)) ^ 3 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [@Real.mul_rpow 20 _ _ (by norm_num) (by linarith)] | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 3 < (20 * (2 * n) ^ (2 / 3)) ^ 3 β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 3 < 20 ^ 3 * ((2 * n) ^ (2 / 3)) ^ 3 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [β Real.rpow_mul (by linarith)] | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 3 < 20 ^ 3 * ((2 * n) ^ (2 / 3)) ^ 3 β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 3 < 20 ^ 3 * (2 * n) ^ (2 / 3 * 3) β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | simp | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 3 < 20 ^ 3 * (2 * n) ^ (2 / 3 * 3) β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 3 < 20 ^ 3 * (2 * n) ^ 2 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [(by norm_num : (3:β) = 1 + 2)] | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 3 < 20 ^ 3 * (2 * n) ^ 2 β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ (1 + 2) < 20 ^ (1 + 2) * (2 * n) ^ 2 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [@Real.rpow_add (2*n) (by linarith)] | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ (1 + 2) < 20 ^ (1 + 2) * (2 * n) ^ 2 β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 1 * (2 * n) ^ 2 < 20 ^ (1 + 2) * (2 * n) ^ 2 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [@Real.rpow_add 20 (by norm_num)] | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 1 * (2 * n) ^ 2 < 20 ^ (1 + 2) * (2 * n) ^ 2 β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 1 * (2 * n) ^ 2 < 20 ^ 1 * 20 ^ 2 * (2 * n) ^ 2 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | norm_num | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ (2 * n) ^ 1 * (2 * n) ^ 2 < 20 ^ 1 * 20 ^ 2 * (2 * n) ^ 2 β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 2 * n * (2 * n) ^ 2 < 8000 * (2 * n) ^ 2 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [mul_lt_mul_right (by apply sq_pos_of_pos; linarith)] | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 2 * n * (2 * n) ^ 2 < 8000 * (2 * n) ^ 2 β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 2 * n < 8000 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [mul_comm] | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 2 * n < 8000 β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ n * 2 < 8000 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | rw [β lt_div_iff (by norm_num)] | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ n * 2 < 8000 β n < 4000 | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ n < 8000 / 2 β n < 4000 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | norm_num | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ n < 8000 / 2 β n < 4000 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | norm_num | n : β
hn : 0 < n
β’ 4 = 2 ^ 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | norm_num | n : β
hn : 0 < n
β’ 0 β€ 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | linarith | n : β
hn : 0 < n
β’ 1 < 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | apply Real.rpow_pos_of_pos | n : β
hn : 0 < n
β’ 0 < (2 * n) ^ (2 / 3) | case hx
n : β
hn : 0 < n
β’ 0 < 2 * n |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.