url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | linarith | case hx
n : β
hn : 0 < n
β’ 0 < 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | linarith | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 β€ 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | linarith | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 β€ 20 * (2 * n) ^ (2 / 3) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | norm_num | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 < 3 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | norm_num | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 β€ 20 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | linarith | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 β€ (2 * n) ^ (2 / 3) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | norm_num | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 3 = 1 + 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | linarith | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 < 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | norm_num | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 < 20 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | apply sq_pos_of_pos | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 < (2 * n) ^ 2 | case ha
n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 < 2 * n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | linarith | case ha
n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 < 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | lt4kIff | [143, 1] | [160, 11] | norm_num | n : β
hn : 0 < n
h_nonneg : 0 < (2 * n) ^ (2 / 3)
β’ 0 < 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | intro hn | n : β
β’ 0 < n β β p, p β Set.Ioc n (2 * n) β§ Nat.Prime p | n : β
hn : 0 < n
β’ β p, p β Set.Ioc n (2 * n) β§ Nat.Prime p |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | cases lt_or_le n 4000 with
| inl hn' => exact landauTrick (by linarith) (by linarith)
| inr hn' =>
by_contra h
simp at h
replace h : β p in primes (Finset.Ioc n (2*n)), p = 1
. apply Finset.prod_eq_one
intro i hi
specialize h i
simp [primes] at *
specialize h hi.left.left hi.left.right hi.right
contradiction
have h' := fourPowLeMulProdPrimes (by linarith : 2 < n)
simp [h] at h'; clear h
replace h' := rpowDivThreeLe (by linarith : 0 < n) h'
have : (81 / 2 : β) < βn
. rw [div_lt_iff (by norm_num)]; norm_cast; linarith
replace h' := fourPowLtOf this h'; clear this
rw [lt4kIff (by norm_cast)] at h'
norm_cast at h'
linarith | n : β
hn : 0 < n
β’ β p, p β Set.Ioc n (2 * n) β§ Nat.Prime p | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | exact landauTrick (by linarith) (by linarith) | case inl
n : β
hn : 0 < n
hn' : n < 4000
β’ β p, p β Set.Ioc n (2 * n) β§ Nat.Prime p | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | linarith | n : β
hn : 0 < n
hn' : n < 4000
β’ 0 < n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | linarith | n : β
hn : 0 < n
hn' : n < 4000
β’ n β€ 4000 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | by_contra h | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
β’ β p, p β Set.Ioc n (2 * n) β§ Nat.Prime p | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : Β¬β p, p β Set.Ioc n (2 * n) β§ Nat.Prime p
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | simp at h | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : Β¬β p, p β Set.Ioc n (2 * n) β§ Nat.Prime p
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β (x : β), n < x β x β€ 2 * n β Β¬Nat.Prime x
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | replace h : β p in primes (Finset.Ioc n (2*n)), p = 1 | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β (x : β), n < x β x β€ 2 * n β Β¬Nat.Prime x
β’ False | case h
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β (x : β), n < x β x β€ 2 * n β Β¬Nat.Prime x
β’ β p in primes (Finset.Ioc n (2 * n)), p = 1
case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β p in primes (Finset.Ioc n (2 * n)), p = 1
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | . apply Finset.prod_eq_one
intro i hi
specialize h i
simp [primes] at *
specialize h hi.left.left hi.left.right hi.right
contradiction | case h
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β (x : β), n < x β x β€ 2 * n β Β¬Nat.Prime x
β’ β p in primes (Finset.Ioc n (2 * n)), p = 1
case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β p in primes (Finset.Ioc n (2 * n)), p = 1
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β p in primes (Finset.Ioc n (2 * n)), p = 1
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | have h' := fourPowLeMulProdPrimes (by linarith : 2 < n) | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β p in primes (Finset.Ioc n (2 * n)), p = 1
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β p in primes (Finset.Ioc n (2 * n)), p = 1
h' : 4 ^ n β€ (2 * n) ^ (1 + Nat.sqrt (2 * n)) * 4 ^ Nat.pred (2 * n / 3) * β p in primes (Finset.Ioc n (2 * n)), p
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | simp [h] at h' | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β p in primes (Finset.Ioc n (2 * n)), p = 1
h' : 4 ^ n β€ (2 * n) ^ (1 + Nat.sqrt (2 * n)) * 4 ^ Nat.pred (2 * n / 3) * β p in primes (Finset.Ioc n (2 * n)), p
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β p in primes (Finset.Ioc n (2 * n)), p = 1
h' : 4 ^ n β€ (2 * n) ^ (1 + Nat.sqrt (2 * n)) * 4 ^ Nat.pred (2 * n / 3)
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | clear h | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β p in primes (Finset.Ioc n (2 * n)), p = 1
h' : 4 ^ n β€ (2 * n) ^ (1 + Nat.sqrt (2 * n)) * 4 ^ Nat.pred (2 * n / 3)
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ n β€ (2 * n) ^ (1 + Nat.sqrt (2 * n)) * 4 ^ Nat.pred (2 * n / 3)
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | replace h' := rpowDivThreeLe (by linarith : 0 < n) h' | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ n β€ (2 * n) ^ (1 + Nat.sqrt (2 * n)) * 4 ^ Nat.pred (2 * n / 3)
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | have : (81 / 2 : β) < βn | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ False | case this
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ 81 / 2 < βn
case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
this : 81 / 2 < βn
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | . rw [div_lt_iff (by norm_num)]; norm_cast; linarith | case this
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ 81 / 2 < βn
case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
this : 81 / 2 < βn
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
this : 81 / 2 < βn
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | replace h' := fourPowLtOf this h' | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
this : 81 / 2 < βn
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
this : 81 / 2 < βn
h' : 4 ^ βn < 2 ^ (20 * (2 * βn) ^ (2 / 3))
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | clear this | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
this : 81 / 2 < βn
h' : 4 ^ βn < 2 ^ (20 * (2 * βn) ^ (2 / 3))
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ βn < 2 ^ (20 * (2 * βn) ^ (2 / 3))
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | rw [lt4kIff (by norm_cast)] at h' | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ βn < 2 ^ (20 * (2 * βn) ^ (2 / 3))
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : βn < 4000
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | norm_cast at h' | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : βn < 4000
β’ False | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : n < 4000
β’ False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | linarith | case inr
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : n < 4000
β’ False | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | apply Finset.prod_eq_one | case h
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β (x : β), n < x β x β€ 2 * n β Β¬Nat.Prime x
β’ β p in primes (Finset.Ioc n (2 * n)), p = 1 | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β (x : β), n < x β x β€ 2 * n β Β¬Nat.Prime x
β’ β (x : β), x β primes (Finset.Ioc n (2 * n)) β x = 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | intro i hi | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β (x : β), n < x β x β€ 2 * n β Β¬Nat.Prime x
β’ β (x : β), x β primes (Finset.Ioc n (2 * n)) β x = 1 | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β (x : β), n < x β x β€ 2 * n β Β¬Nat.Prime x
i : β
hi : i β primes (Finset.Ioc n (2 * n))
β’ i = 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | specialize h i | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
h : β (x : β), n < x β x β€ 2 * n β Β¬Nat.Prime x
i : β
hi : i β primes (Finset.Ioc n (2 * n))
β’ i = 1 | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
i : β
hi : i β primes (Finset.Ioc n (2 * n))
h : n < i β i β€ 2 * n β Β¬Nat.Prime i
β’ i = 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | simp [primes] at * | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
i : β
hi : i β primes (Finset.Ioc n (2 * n))
h : n < i β i β€ 2 * n β Β¬Nat.Prime i
β’ i = 1 | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
i : β
h : n < i β i β€ 2 * n β Β¬Nat.Prime i
hi : (n < i β§ i β€ 2 * n) β§ Nat.Prime i
β’ i = 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | specialize h hi.left.left hi.left.right hi.right | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
i : β
h : n < i β i β€ 2 * n β Β¬Nat.Prime i
hi : (n < i β§ i β€ 2 * n) β§ Nat.Prime i
β’ i = 1 | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
i : β
hi : (n < i β§ i β€ 2 * n) β§ Nat.Prime i
h : False
β’ i = 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | contradiction | case h.h
n : β
hn : 0 < n
hn' : 4000 β€ n
i : β
hi : (n < i β§ i β€ 2 * n) β§ Nat.Prime i
h : False
β’ i = 1 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | linarith | n : β
hn : 0 < n
hn' : 4000 β€ n
h : β p in primes (Finset.Ioc n (2 * n)), p = 1
β’ 2 < n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | linarith | n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ n β€ (2 * n) ^ (1 + Nat.sqrt (2 * n)) * 4 ^ Nat.pred (2 * n / 3)
β’ 0 < n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | rw [div_lt_iff (by norm_num)] | case this
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ 81 / 2 < βn | case this
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ 81 < βn * 2 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | norm_cast | case this
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ 81 < βn * 2 | case this
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ 81 < n * 2 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | linarith | case this
n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ 81 < n * 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | norm_num | n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ (βn / 3) β€ (2 * βn) ^ (1 + Real.sqrt (2 * βn))
β’ 0 < 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/Bertrand.lean | bertrand | [162, 1] | [184, 13] | norm_cast | n : β
hn : 0 < n
hn' : 4000 β€ n
h' : 4 ^ βn < 2 ^ (20 * (2 * βn) ^ (2 / 3))
β’ 0 < βn | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | chooseHalfLePowFour | [21, 1] | [28, 46] | rw [Nat.Ico_succ_singleton] | m : β
β’ β k in {m}, Nat.choose (2 * m + 1) k = β k in Finset.Ico m (m + 1), Nat.choose (2 * m + 1) k | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | chooseHalfLePowFour | [21, 1] | [28, 46] | rw [Finset.range_eq_Ico] | m : β
β’ β k in Finset.Ico 0 (m + 1), Nat.choose (2 * m + 1) k = β k in Finset.range (m + 1), Nat.choose (2 * m + 1) k | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesIocLeChoose | [30, 1] | [39, 49] | rw [primes] | m : β
β’ β p in primes (Finset.Ioc (m + 1) (2 * m + 1)), p β€ Nat.choose (2 * m + 1) m | m : β
β’ β p in Finset.filter Nat.Prime (Finset.Ioc (m + 1) (2 * m + 1)), p β€ Nat.choose (2 * m + 1) m |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesIocLeChoose | [30, 1] | [39, 49] | apply Nat.le_of_dvd | m : β
β’ β p in Finset.filter Nat.Prime (Finset.Ioc (m + 1) (2 * m + 1)), p β€ Nat.choose (2 * m + 1) m | case h
m : β
β’ 0 < Nat.choose (2 * m + 1) m
case a
m : β
β’ β p in Finset.filter Nat.Prime (Finset.Ioc (m + 1) (2 * m + 1)), p β£ Nat.choose (2 * m + 1) m |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesIocLeChoose | [30, 1] | [39, 49] | . apply Nat.choose_pos; linarith | case h
m : β
β’ 0 < Nat.choose (2 * m + 1) m
case a
m : β
β’ β p in Finset.filter Nat.Prime (Finset.Ioc (m + 1) (2 * m + 1)), p β£ Nat.choose (2 * m + 1) m | case a
m : β
β’ β p in Finset.filter Nat.Prime (Finset.Ioc (m + 1) (2 * m + 1)), p β£ Nat.choose (2 * m + 1) m |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesIocLeChoose | [30, 1] | [39, 49] | apply Finset.prod_primes_dvd <;> simp [β Nat.prime_iff] | case a
m : β
β’ β p in Finset.filter Nat.Prime (Finset.Ioc (m + 1) (2 * m + 1)), p β£ Nat.choose (2 * m + 1) m | case a.div
m : β
β’ β (a : β), m + 1 < a β a β€ 2 * m + 1 β Nat.Prime a β a β£ Nat.choose (2 * m + 1) m |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesIocLeChoose | [30, 1] | [39, 49] | intro p ha hb hp | case a.div
m : β
β’ β (a : β), m + 1 < a β a β€ 2 * m + 1 β Nat.Prime a β a β£ Nat.choose (2 * m + 1) m | case a.div
m p : β
ha : m + 1 < p
hb : p β€ 2 * m + 1
hp : Nat.Prime p
β’ p β£ Nat.choose (2 * m + 1) m |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesIocLeChoose | [30, 1] | [39, 49] | rw [two_mul, add_assoc] | case a.div
m p : β
ha : m + 1 < p
hb : p β€ 2 * m + 1
hp : Nat.Prime p
β’ p β£ Nat.choose (2 * m + 1) m | case a.div
m p : β
ha : m + 1 < p
hb : p β€ 2 * m + 1
hp : Nat.Prime p
β’ p β£ Nat.choose (m + (m + 1)) m |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesIocLeChoose | [30, 1] | [39, 49] | apply Nat.Prime.dvd_choose_add hp <;> linarith | case a.div
m p : β
ha : m + 1 < p
hb : p β€ 2 * m + 1
hp : Nat.Prime p
β’ p β£ Nat.choose (m + (m + 1)) m | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesIocLeChoose | [30, 1] | [39, 49] | apply Nat.choose_pos | case h
m : β
β’ 0 < Nat.choose (2 * m + 1) m | case h.a
m : β
β’ m β€ 2 * m + 1 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesIocLeChoose | [30, 1] | [39, 49] | linarith | case h.a
m : β
β’ m β€ 2 * m + 1 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | primesSuccEqPrimesSelf | [41, 1] | [46, 13] | simp [primes] | n : β
hn : Β¬Nat.Prime (Nat.succ n)
β’ primes (Finset.range (Nat.succ (Nat.succ n))) = primes (Finset.range (Nat.succ n)) | n : β
hn : Β¬Nat.Prime (Nat.succ n)
β’ Finset.filter Nat.Prime (Finset.range (Nat.succ (Nat.succ n))) = Finset.filter Nat.Prime (Finset.range (Nat.succ n)) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | primesSuccEqPrimesSelf | [41, 1] | [46, 13] | rw [Finset.range_succ] | n : β
hn : Β¬Nat.Prime (Nat.succ n)
β’ Finset.filter Nat.Prime (Finset.range (Nat.succ (Nat.succ n))) = Finset.filter Nat.Prime (Finset.range (Nat.succ n)) | n : β
hn : Β¬Nat.Prime (Nat.succ n)
β’ Finset.filter Nat.Prime (insert (n + 1) (Finset.range (n + 1))) = Finset.filter Nat.Prime (Finset.range (Nat.succ n)) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | primesSuccEqPrimesSelf | [41, 1] | [46, 13] | simp [Finset.filter_insert] | n : β
hn : Β¬Nat.Prime (Nat.succ n)
β’ Finset.filter Nat.Prime (insert (n + 1) (Finset.range (n + 1))) = Finset.filter Nat.Prime (Finset.range (Nat.succ n)) | n : β
hn : Β¬Nat.Prime (Nat.succ n)
β’ Nat.Prime (n + 1) β False |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | primesSuccEqPrimesSelf | [41, 1] | [46, 13] | assumption | n : β
hn : Β¬Nat.Prime (Nat.succ n)
β’ Nat.Prime (n + 1) β False | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | intro n | p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
β’ β (n : β), p n | p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
n : β
β’ p n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | induction n using Nat.caseStrongInductionOn with
| zero => exact zero
| ind k h_ind =>
cases dec_em (Nat.Prime k.succ) with
| inr hk_prime =>
apply not_prime _ hk_prime
exact h_ind
| inl hk_prime =>
cases Nat.Prime.eq_two_or_odd' hk_prime with
| inl hk_two => rw [hk_two]; exact two
| inr hk_two =>
cases hk_two with
| intro m hm =>
simp [Nat.add_one] at hm
simp [hm] at *
apply odd_prime _ hk_prime h_ind | p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
n : β
β’ p n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | exact zero | case zero
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
β’ p 0 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | cases dec_em (Nat.Prime k.succ) with
| inr hk_prime =>
apply not_prime _ hk_prime
exact h_ind
| inl hk_prime =>
cases Nat.Prime.eq_two_or_odd' hk_prime with
| inl hk_two => rw [hk_two]; exact two
| inr hk_two =>
cases hk_two with
| intro m hm =>
simp [Nat.add_one] at hm
simp [hm] at *
apply odd_prime _ hk_prime h_ind | case ind
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
β’ p (Nat.succ k) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | apply not_prime _ hk_prime | case ind.inr
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Β¬Nat.Prime (Nat.succ k)
β’ p (Nat.succ k) | case ind.inr
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Β¬Nat.Prime (Nat.succ k)
β’ β (x : β), x β€ k β p x |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | exact h_ind | case ind.inr
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Β¬Nat.Prime (Nat.succ k)
β’ β (x : β), x β€ k β p x | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | cases Nat.Prime.eq_two_or_odd' hk_prime with
| inl hk_two => rw [hk_two]; exact two
| inr hk_two =>
cases hk_two with
| intro m hm =>
simp [Nat.add_one] at hm
simp [hm] at *
apply odd_prime _ hk_prime h_ind | case ind.inl
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Nat.Prime (Nat.succ k)
β’ p (Nat.succ k) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | rw [hk_two] | case ind.inl.inl
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Nat.Prime (Nat.succ k)
hk_two : Nat.succ k = 2
β’ p (Nat.succ k) | case ind.inl.inl
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Nat.Prime (Nat.succ k)
hk_two : Nat.succ k = 2
β’ p 2 |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | exact two | case ind.inl.inl
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Nat.Prime (Nat.succ k)
hk_two : Nat.succ k = 2
β’ p 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | cases hk_two with
| intro m hm =>
simp [Nat.add_one] at hm
simp [hm] at *
apply odd_prime _ hk_prime h_ind | case ind.inl.inr
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Nat.Prime (Nat.succ k)
hk_two : Odd (Nat.succ k)
β’ p (Nat.succ k) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | simp [Nat.add_one] at hm | case ind.inl.inr.intro
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Nat.Prime (Nat.succ k)
m : β
hm : Nat.succ k = 2 * m + 1
β’ p (Nat.succ k) | case ind.inl.inr.intro
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Nat.Prime (Nat.succ k)
m : β
hm : k = 2 * m
β’ p (Nat.succ k) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | simp [hm] at * | case ind.inl.inr.intro
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k : β
h_ind : β (m : β), m β€ k β p m
hk_prime : Nat.Prime (Nat.succ k)
m : β
hm : k = 2 * m
β’ p (Nat.succ k) | case ind.inl.inr.intro
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k m : β
h_ind : β (m_1 : β), m_1 β€ 2 * m β p m_1
hk_prime : Nat.Prime (Nat.succ (2 * m))
hm : True
β’ p (Nat.succ (2 * m)) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | caseStrongRecOnOddPrimes | [48, 1] | [70, 43] | apply odd_prime _ hk_prime h_ind | case ind.inl.inr.intro
p : β β Prop
zero : p 0
two : p 2
not_prime : β (n : β), Β¬Nat.Prime (Nat.succ n) β (β (x : β), x β€ n β p x) β p (Nat.succ n)
odd_prime : β (n : β), Nat.Prime (Nat.succ (2 * n)) β (β (x : β), x β€ 2 * n β p x) β p (Nat.succ (2 * n))
k m : β
h_ind : β (m_1 : β), m_1 β€ 2 * m β p m_1
hk_prime : Nat.Prime (Nat.succ (2 * m))
hm : True
β’ p (Nat.succ (2 * m)) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | induction n using caseStrongRecOnOddPrimes with
| zero => simp
| two => simp
| not_prime n hp hi =>
specialize hi n
simp at hi
cases n with
| zero => simp
| succ n =>
simp only [Nat.pred_succ] at *
simp [prodPrimes]
rw [primesSuccEqPrimesSelf hp, Nat.add_one]
rw [β prodPrimes, Nat.add_one]
apply le_trans hi
simp [pow_succ]
| odd_prime n hp hi =>
simp
conv => rhs; rw [two_mul, pow_add]
specialize hi n.succ _
. cases n with
| zero => contradiction | succ n => linarith
simp at hi
rw [prodPrimesSplit (by linarith : n.succ β€ (2*n).succ)]
apply Nat.mul_le_mul hi
apply le_trans _ chooseHalfLePowFour
exact prodPrimesIocLeChoose | n : β
β’ prodPrimes n β€ 4 ^ Nat.pred n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | simp | case zero
β’ prodPrimes 0 β€ 4 ^ Nat.pred 0 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | simp | case two
β’ prodPrimes 2 β€ 4 ^ Nat.pred 2 | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | specialize hi n | case not_prime
n : β
hp : Β¬Nat.Prime (Nat.succ n)
hi : β (x : β), x β€ n β prodPrimes x β€ 4 ^ Nat.pred x
β’ prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n) | case not_prime
n : β
hp : Β¬Nat.Prime (Nat.succ n)
hi : n β€ n β prodPrimes n β€ 4 ^ Nat.pred n
β’ prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | simp at hi | case not_prime
n : β
hp : Β¬Nat.Prime (Nat.succ n)
hi : n β€ n β prodPrimes n β€ 4 ^ Nat.pred n
β’ prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n) | case not_prime
n : β
hp : Β¬Nat.Prime (Nat.succ n)
hi : prodPrimes n β€ 4 ^ Nat.pred n
β’ prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | cases n with
| zero => simp
| succ n =>
simp only [Nat.pred_succ] at *
simp [prodPrimes]
rw [primesSuccEqPrimesSelf hp, Nat.add_one]
rw [β prodPrimes, Nat.add_one]
apply le_trans hi
simp [pow_succ] | case not_prime
n : β
hp : Β¬Nat.Prime (Nat.succ n)
hi : prodPrimes n β€ 4 ^ Nat.pred n
β’ prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | simp | case not_prime.zero
hp : Β¬Nat.Prime (Nat.succ Nat.zero)
hi : prodPrimes Nat.zero β€ 4 ^ Nat.pred Nat.zero
β’ prodPrimes (Nat.succ Nat.zero) β€ 4 ^ Nat.pred (Nat.succ Nat.zero) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | simp only [Nat.pred_succ] at * | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n)
β’ prodPrimes (Nat.succ (Nat.succ n)) β€ 4 ^ Nat.pred (Nat.succ (Nat.succ n)) | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ prodPrimes (Nat.succ (Nat.succ n)) β€ 4 ^ (n + 1) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | simp [prodPrimes] | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ prodPrimes (Nat.succ (Nat.succ n)) β€ 4 ^ (n + 1) | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ β p in primes (Finset.range (Nat.succ (Nat.succ (Nat.succ n)))), p β€ 4 ^ (n + 1) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | rw [primesSuccEqPrimesSelf hp, Nat.add_one] | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ β p in primes (Finset.range (Nat.succ (Nat.succ (Nat.succ n)))), p β€ 4 ^ (n + 1) | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ β p in primes (Finset.range (Nat.succ (Nat.succ n))), p β€ 4 ^ Nat.succ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | rw [β prodPrimes, Nat.add_one] | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ β p in primes (Finset.range (Nat.succ (Nat.succ n))), p β€ 4 ^ Nat.succ n | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ prodPrimes (Nat.succ n) β€ 4 ^ Nat.succ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | apply le_trans hi | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ prodPrimes (Nat.succ n) β€ 4 ^ Nat.succ n | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ 4 ^ n β€ 4 ^ Nat.succ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | simp [pow_succ] | case not_prime.succ
n : β
hp : Β¬Nat.Prime (Nat.succ (Nat.succ n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ 4 ^ n β€ 4 ^ Nat.succ n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | simp | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : β (x : β), x β€ 2 * n β prodPrimes x β€ 4 ^ Nat.pred x
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ Nat.pred (Nat.succ (2 * n)) | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : β (x : β), x β€ 2 * n β prodPrimes x β€ 4 ^ Nat.pred x
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ (2 * n) |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | conv => rhs; rw [two_mul, pow_add] | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : β (x : β), x β€ 2 * n β prodPrimes x β€ 4 ^ Nat.pred x
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ (2 * n) | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : β (x : β), x β€ 2 * n β prodPrimes x β€ 4 ^ Nat.pred x
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ n * 4 ^ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | specialize hi n.succ _ | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : β (x : β), x β€ 2 * n β prodPrimes x β€ 4 ^ Nat.pred x
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ n * 4 ^ n | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : β (x : β), x β€ 2 * n β prodPrimes x β€ 4 ^ Nat.pred x
β’ Nat.succ n β€ 2 * n
case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n)
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ n * 4 ^ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | . cases n with
| zero => contradiction | succ n => linarith | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : β (x : β), x β€ 2 * n β prodPrimes x β€ 4 ^ Nat.pred x
β’ Nat.succ n β€ 2 * n
case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n)
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ n * 4 ^ n | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n)
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ n * 4 ^ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | simp at hi | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ Nat.pred (Nat.succ n)
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ n * 4 ^ n | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ n * 4 ^ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | rw [prodPrimesSplit (by linarith : n.succ β€ (2*n).succ)] | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ prodPrimes (Nat.succ (2 * n)) β€ 4 ^ n * 4 ^ n | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ prodPrimes (Nat.succ n) * β p in primes (Finset.Ioc (Nat.succ n) (Nat.succ (2 * n))), p β€ 4 ^ n * 4 ^ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | apply Nat.mul_le_mul hi | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ prodPrimes (Nat.succ n) * β p in primes (Finset.Ioc (Nat.succ n) (Nat.succ (2 * n))), p β€ 4 ^ n * 4 ^ n | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ β p in primes (Finset.Ioc (Nat.succ n) (Nat.succ (2 * n))), p β€ 4 ^ n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | apply le_trans _ chooseHalfLePowFour | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ β p in primes (Finset.Ioc (Nat.succ n) (Nat.succ (2 * n))), p β€ 4 ^ n | n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ β p in primes (Finset.Ioc (Nat.succ n) (Nat.succ (2 * n))), p β€ Nat.choose (2 * n + 1) n |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | exact prodPrimesIocLeChoose | n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ β p in primes (Finset.Ioc (Nat.succ n) (Nat.succ (2 * n))), p β€ Nat.choose (2 * n + 1) n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | cases n with
| zero => contradiction | succ n => linarith | case odd_prime
n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : β (x : β), x β€ 2 * n β prodPrimes x β€ 4 ^ Nat.pred x
β’ Nat.succ n β€ 2 * n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | contradiction | case odd_prime.zero
hp : Nat.Prime (Nat.succ (2 * Nat.zero))
hi : β (x : β), x β€ 2 * Nat.zero β prodPrimes x β€ 4 ^ Nat.pred x
β’ Nat.succ Nat.zero β€ 2 * Nat.zero | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | linarith | case odd_prime.succ
n : β
hp : Nat.Prime (Nat.succ (2 * Nat.succ n))
hi : β (x : β), x β€ 2 * Nat.succ n β prodPrimes x β€ 4 ^ Nat.pred x
β’ Nat.succ (Nat.succ n) β€ 2 * Nat.succ n | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesLePowFour | [77, 1] | [104, 32] | linarith | n : β
hp : Nat.Prime (Nat.succ (2 * n))
hi : prodPrimes (Nat.succ n) β€ 4 ^ n
β’ Nat.succ n β€ Nat.succ (2 * n) | no goals |
https://github.com/jvlmdr/from_the_book.git | 9fb6080539a2f32bb24719600a9e7531abf2328d | FromTheBook/Ch02/Bertrand/ProdPrimes.lean | prodPrimesRealLePowFour | [106, 1] | [116, 15] | norm_cast | x : β
hx : 1 β€ x
β’ β(prodPrimes βxββ) β€ β(4 ^ (βxββ - 1)) | x : β
hx : 1 β€ x
β’ prodPrimes βxββ β€ 4 ^ (βxββ - 1) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.