sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
listlengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
listlengths 0
201
| languages
listlengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
listlengths 0
722
| processed_texts
listlengths 1
723
| tokens_length
listlengths 1
723
| input_texts
listlengths 1
61
| embeddings
listlengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
transformers
|
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356414477143519232/H2T46KhD_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ellie 🐰 🤖 AI Bot </div>
<div style="font-size: 15px">@bichebuni bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bichebuni's tweets](https://twitter.com/bichebuni).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1578 |
| Retweets | 559 |
| Short tweets | 216 |
| Tweets kept | 803 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jluupd2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bichebuni's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2a0ttba9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2a0ttba9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bichebuni')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bichebuni/1614096170963/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bichebuni
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Ellie AI Bot
@bichebuni bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @bichebuni's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bichebuni's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bill Cipher 🤖 AI Bot </div>
<div style="font-size: 15px">@biiiclpher bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@biiiclpher's tweets](https://twitter.com/biiiclpher).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3240 |
| Retweets | 0 |
| Short tweets | 404 |
| Tweets kept | 2836 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/iieebvnq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @biiiclpher's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/280557pf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/280557pf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/biiiclpher')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/biiiclpher/1613324925504/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/biiiclpher
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Bill Cipher AI Bot
@biiiclpher bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @biiiclpher's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @biiiclpher's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1419807498228273155/aAmpG4n-_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1421709337580294148/sjrv_GDf_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & hood barbie & kevin</div>
<div style="text-align: center; font-size: 14px;">@biinx_-dril-milkman409</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & hood barbie & kevin.
| Data | wint | hood barbie | kevin |
| --- | --- | --- | --- |
| Tweets downloaded | 3188 | 1176 | 3232 |
| Retweets | 456 | 419 | 1026 |
| Short tweets | 307 | 205 | 488 |
| Tweets kept | 2425 | 552 | 1718 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ztraqgze/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @biinx_-dril-milkman409's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39g1ujvg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39g1ujvg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/biinx_-dril-milkman409')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/biinx_-dril-milkman409/1628066338698/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/biinx_-dril-milkman409
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & hood barbie & kevin
@biinx\_-dril-milkman409
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & hood barbie & kevin.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @biinx\_-dril-milkman409's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1115644092329758721/AFjOr-K8_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bill Gates & jack</div>
<div style="text-align: center; font-size: 14px;">@billgates-jack</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Bill Gates & jack.
| Data | Bill Gates | jack |
| --- | --- | --- |
| Tweets downloaded | 3250 | 3196 |
| Retweets | 198 | 1168 |
| Short tweets | 6 | 808 |
| Tweets kept | 3046 | 1220 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20z4h7xy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billgates-jack's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wd36v62) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wd36v62/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/billgates-jack')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/billgates-jack/1627986735283/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/billgates-jack
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Bill Gates & jack
@billgates-jack
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Bill Gates & jack.
Data: Tweets downloaded, Bill Gates: 3250, jack: 3196
Data: Retweets, Bill Gates: 198, jack: 1168
Data: Short tweets, Bill Gates: 6, jack: 808
Data: Tweets kept, Bill Gates: 3046, jack: 1220
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @billgates-jack's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bill Gates</div>
<div style="text-align: center; font-size: 14px;">@billgates</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Bill Gates.
| Data | Bill Gates |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 176 |
| Short tweets | 10 |
| Tweets kept | 3064 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e81cpn8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billgates's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/x3nz24e9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/x3nz24e9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/billgates')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/billgates/1669939035568/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/billgates
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Bill Gates
@billgates
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Bill Gates.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @billgates's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Will 🕊️🌷 🤖 AI Bot </div>
<div style="font-size: 15px">@billpshort bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@billpshort's tweets](https://twitter.com/billpshort).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3224 |
| Retweets | 502 |
| Short tweets | 646 |
| Tweets kept | 2076 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qcn56oc9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billpshort's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/85i3zyjz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/85i3zyjz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/billpshort')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/billpshort/1616611559120/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/billpshort
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Will ️ AI Bot
@billpshort bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @billpshort's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @billpshort's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">juggalo kokopelli 🤖 AI Bot </div>
<div style="font-size: 15px">@billtheponyfan bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@billtheponyfan's tweets](https://twitter.com/billtheponyfan).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3178 |
| Retweets | 452 |
| Short tweets | 397 |
| Tweets kept | 2329 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ghn4ya3z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billtheponyfan's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31cu6fzd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31cu6fzd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/billtheponyfan')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/billtheponyfan
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
juggalo kokopelli AI Bot
@billtheponyfan bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @billtheponyfan's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @billtheponyfan's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">bill wurtz</div>
<div style="text-align: center; font-size: 14px;">@billwurtz</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from bill wurtz.
| Data | bill wurtz |
| --- | --- |
| Tweets downloaded | 3113 |
| Retweets | 29 |
| Short tweets | 97 |
| Tweets kept | 2987 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18dzkuk8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billwurtz's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sqtnvoy5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sqtnvoy5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/billwurtz')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/billwurtz/1668310271499/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/billwurtz
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
bill wurtz
@billwurtz
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from bill wurtz.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @billwurtz's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Binance</div>
<div style="text-align: center; font-size: 14px;">@binance</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Binance.
| Data | Binance |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 268 |
| Short tweets | 353 |
| Tweets kept | 2629 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/m31ml960/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @binance's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vx6m0ip) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vx6m0ip/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/binance')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/binance/1638367358099/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/binance
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Binance
@binance
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Binance.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @binance's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1399230370109825024/FypJacJv_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1404352885815664642/BEvtg0q4_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">bladee & Nothing person 2 & headaches</div>
<div style="text-align: center; font-size: 14px;">@biocrimed-bladeecity-w3bcam</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from bladee & Nothing person 2 & headaches.
| Data | bladee | Nothing person 2 | headaches |
| --- | --- | --- | --- |
| Tweets downloaded | 1599 | 1863 | 3231 |
| Retweets | 313 | 117 | 62 |
| Short tweets | 486 | 714 | 1451 |
| Tweets kept | 800 | 1032 | 1718 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37jgy6z4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @biocrimed-bladeecity-w3bcam's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1xg0n2ib) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1xg0n2ib/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/biocrimed-bladeecity-w3bcam')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/biocrimed-bladeecity-w3bcam/1623834051692/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/biocrimed-bladeecity-w3bcam
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
bladee & Nothing person 2 & headaches
@biocrimed-bladeecity-w3bcam
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from bladee & Nothing person 2 & headaches.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @biocrimed-bladeecity-w3bcam's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🐱🚀 Brikir 🤖 AI Bot </div>
<div style="font-size: 15px">@birkirh bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@birkirh's tweets](https://twitter.com/birkirh).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1105 |
| Retweets | 98 |
| Short tweets | 191 |
| Tweets kept | 816 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1l7dop1n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @birkirh's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zk4c602e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zk4c602e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/birkirh')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/birkirh/1616669653013/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/birkirh
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Brikir AI Bot
@birkirh bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @birkirh's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @birkirh's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/421692600446619648/dWAbC2wg_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bitcoin 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bitcoin bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bitcoin's tweets](https://twitter.com/bitcoin).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3206</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1190</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>390</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1626</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9fss3789/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bitcoin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pqrlo2u) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pqrlo2u/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bitcoin'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bitcoin/1612625608055/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bitcoin
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bitcoin AI Bot </div>
<div style="font-size: 15px; color: #657786">@bitcoin bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @bitcoin's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3206</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1190</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>390</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1626</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @bitcoin's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bitcoin'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1415442891015610370/1qyYwuHx_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357462788130578434/6ZRnYvCW_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Crypto Bros Taking Ls & Bitfinex’ed 🔥 & Xeni</div>
<div style="text-align: center; font-size: 14px;">@bitfinexed-coinerstakingls-xeni</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Crypto Bros Taking Ls & Bitfinex’ed 🔥 & Xeni.
| Data | Crypto Bros Taking Ls | Bitfinex’ed 🔥 | Xeni |
| --- | --- | --- | --- |
| Tweets downloaded | 566 | 3245 | 3229 |
| Retweets | 94 | 650 | 1834 |
| Short tweets | 222 | 613 | 402 |
| Tweets kept | 250 | 1982 | 993 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3eviqxf1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bitfinexed-coinerstakingls-xeni's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kim6sku) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kim6sku/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bitfinexed-coinerstakingls-xeni')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bitfinexed-coinerstakingls-xeni/1643345731503/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bitfinexed-coinerstakingls-xeni
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Crypto Bros Taking Ls & Bitfinex’ed & Xeni
@bitfinexed-coinerstakingls-xeni
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Crypto Bros Taking Ls & Bitfinex’ed & Xeni.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bitfinexed-coinerstakingls-xeni's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bitfinex'ed 🔥</div>
<div style="text-align: center; font-size: 14px;">@bitfinexed</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Bitfinex'ed 🔥.
| Data | Bitfinex'ed 🔥 |
| --- | --- |
| Tweets downloaded | 3227 |
| Retweets | 863 |
| Short tweets | 628 |
| Tweets kept | 1736 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21r06xwr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bitfinexed's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2juhurh4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2juhurh4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bitfinexed')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bitfinexed/1633818005154/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bitfinexed
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Bitfinex'ed
@bitfinexed
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Bitfinex'ed .
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bitfinexed's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/822229503212666880/L4UutyTM_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Aim & Combat Ballerina</div>
<div style="text-align: center; font-size: 14px;">@bladeecity-robber0540</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Aim & Combat Ballerina.
| Data | Aim | Combat Ballerina |
| --- | --- | --- |
| Tweets downloaded | 1604 | 671 |
| Retweets | 314 | 66 |
| Short tweets | 487 | 303 |
| Tweets kept | 803 | 302 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uvtcfjv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-robber0540's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36qst0l8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36qst0l8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bladeecity-robber0540')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bladeecity-robber0540/1626331680252/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bladeecity-robber0540
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Aim & Combat Ballerina
@bladeecity-robber0540
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Aim & Combat Ballerina.
Data: Tweets downloaded, Aim: 1604, Combat Ballerina: 671
Data: Retweets, Aim: 314, Combat Ballerina: 66
Data: Short tweets, Aim: 487, Combat Ballerina: 303
Data: Tweets kept, Aim: 803, Combat Ballerina: 302
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity-robber0540's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1409559937445990403/9bkJBvX9_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1264902234703265794/lC3YnIYF_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Aim & jamar 🇵🇸 & Adrian Wojnarowski</div>
<div style="text-align: center; font-size: 14px;">@bladeecity-rxmaybike-wojespn</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Aim & jamar 🇵🇸 & Adrian Wojnarowski.
| Data | Aim | jamar 🇵🇸 | Adrian Wojnarowski |
| --- | --- | --- | --- |
| Tweets downloaded | 1601 | 3071 | 3250 |
| Retweets | 314 | 1694 | 777 |
| Short tweets | 486 | 325 | 34 |
| Tweets kept | 801 | 1052 | 2439 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2h7w61mh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-rxmaybike-wojespn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mkjmebf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mkjmebf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bladeecity-rxmaybike-wojespn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bladeecity-rxmaybike-wojespn/1624998722915/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bladeecity-rxmaybike-wojespn
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Aim & jamar 🇵🇸 & Adrian Wojnarowski
@bladeecity-rxmaybike-wojespn
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Aim & jamar 🇵🇸 & Adrian Wojnarowski.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity-rxmaybike-wojespn's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1454672063319392260/iwO_Ll7D_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Aim Nothyng & jamar " The Fool ” majima 🇵🇸</div>
<div style="text-align: center; font-size: 14px;">@bladeecity-rxmaybike</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Aim Nothyng & jamar " The Fool ” majima 🇵🇸.
| Data | Aim Nothyng | jamar " The Fool ” majima 🇵🇸 |
| --- | --- | --- |
| Tweets downloaded | 1620 | 3058 |
| Retweets | 322 | 1792 |
| Short tweets | 492 | 331 |
| Tweets kept | 806 | 935 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ujud5vr2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-rxmaybike's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2am1uizy) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2am1uizy/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bladeecity-rxmaybike')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bladeecity-rxmaybike/1653254735804/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bladeecity-rxmaybike
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Aim Nothyng & jamar " The Fool ” majima 🇵🇸
@bladeecity-rxmaybike
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Aim Nothyng & jamar " The Fool ” majima 🇵🇸.
Data: Tweets downloaded, Aim Nothyng: 1620, jamar " The Fool ” majima 🇵🇸: 3058
Data: Retweets, Aim Nothyng: 322, jamar " The Fool ” majima 🇵🇸: 1792
Data: Short tweets, Aim Nothyng: 492, jamar " The Fool ” majima 🇵🇸: 331
Data: Tweets kept, Aim Nothyng: 806, jamar " The Fool ” majima 🇵🇸: 935
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity-rxmaybike's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1193884102023237632/d21-RRy2_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Aim & SGCHIEFCOMMANDA</div>
<div style="text-align: center; font-size: 14px;">@bladeecity-thaiboygoon</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Aim & SGCHIEFCOMMANDA.
| Data | Aim | SGCHIEFCOMMANDA |
| --- | --- | --- |
| Tweets downloaded | 1601 | 3176 |
| Retweets | 314 | 460 |
| Short tweets | 486 | 463 |
| Tweets kept | 801 | 2253 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mwc0s6y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-thaiboygoon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2uwsmmzd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2uwsmmzd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bladeecity-thaiboygoon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bladeecity-thaiboygoon/1625039802520/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bladeecity-thaiboygoon
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Aim & SGCHIEFCOMMANDA
@bladeecity-thaiboygoon
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Aim & SGCHIEFCOMMANDA.
Data: Tweets downloaded, Aim: 1601, SGCHIEFCOMMANDA: 3176
Data: Retweets, Aim: 314, SGCHIEFCOMMANDA: 460
Data: Short tweets, Aim: 486, SGCHIEFCOMMANDA: 463
Data: Tweets kept, Aim: 801, SGCHIEFCOMMANDA: 2253
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity-thaiboygoon's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Aim Nothyng</div>
<div style="text-align: center; font-size: 14px;">@bladeecity</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Aim Nothyng.
| Data | Aim Nothyng |
| --- | --- |
| Tweets downloaded | 1620 |
| Retweets | 322 |
| Short tweets | 492 |
| Tweets kept | 806 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/195wt1qo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/239lpzqe) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/239lpzqe/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bladeecity')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bladeecity/1653403106456/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bladeecity
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Aim Nothyng
@bladeecity
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Aim Nothyng.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">sweetie p1e</div>
<div style="text-align: center; font-size: 14px;">@bladeefan91</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from sweetie p1e.
| Data | sweetie p1e |
| --- | --- |
| Tweets downloaded | 2249 |
| Retweets | 351 |
| Short tweets | 547 |
| Tweets kept | 1351 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/cacbnxbr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeefan91's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kupw7ab) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kupw7ab/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bladeefan91')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bladeefan91/1639726754777/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bladeefan91
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
sweetie p1e
@bladeefan91
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from sweetie p1e.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeefan91's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ghislaine Maxwell's Fat Tiddies Apologist 🤖 AI Bot </div>
<div style="font-size: 15px">@bleaksigilkeep bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bleaksigilkeep's tweets](https://twitter.com/bleaksigilkeep).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3206 |
| Retweets | 1132 |
| Short tweets | 387 |
| Tweets kept | 1687 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/200hepvo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bleaksigilkeep's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ugdbbm9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ugdbbm9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bleaksigilkeep')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bleaksigilkeep/1614100737277/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bleaksigilkeep
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Ghislaine Maxwell's Fat Tiddies Apologist AI Bot
@bleaksigilkeep bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @bleaksigilkeep's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bleaksigilkeep's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bloodwarriorguru</div>
<div style="text-align: center; font-size: 14px;">@bloodwarrioroc1</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Bloodwarriorguru.
| Data | Bloodwarriorguru |
| --- | --- |
| Tweets downloaded | 1206 |
| Retweets | 67 |
| Short tweets | 266 |
| Tweets kept | 873 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2x3rus6s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bloodwarrioroc1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s1u2k3b) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s1u2k3b/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bloodwarrioroc1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bloodwarrioroc1/1624210855980/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bloodwarrioroc1
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Bloodwarriorguru
@bloodwarrioroc1
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Bloodwarriorguru.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bloodwarrioroc1's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ᵍᵐBlueEyedGirl.ᴺᶠᵀ😎🔻🦴</div>
<div style="text-align: center; font-size: 14px;">@blueeyedgirlnft</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ᵍᵐBlueEyedGirl.ᴺᶠᵀ😎🔻🦴.
| Data | ᵍᵐBlueEyedGirl.ᴺᶠᵀ😎🔻🦴 |
| --- | --- |
| Tweets downloaded | 588 |
| Retweets | 349 |
| Short tweets | 154 |
| Tweets kept | 85 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9tllree8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @blueeyedgirlnft's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q6w52hj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q6w52hj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/blueeyedgirlnft')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/blueeyedgirlnft/1642199309839/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/blueeyedgirlnft
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
ᵍᵐBlueEyedGirl.ᴺᶠᵀ
@blueeyedgirlnft
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from ᵍᵐBlueEyedGirl.ᴺᶠᵀ.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @blueeyedgirlnft's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1306249141018910726/o3bCj_sP_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Barnes & Noble 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bnbuzz bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bnbuzz's tweets](https://twitter.com/bnbuzz).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3156</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>821</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>124</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2211</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tso130j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bnbuzz's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b6k9q0j) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b6k9q0j/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bnbuzz'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bnbuzz
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Barnes & Noble AI Bot </div>
<div style="font-size: 15px; color: #657786">@bnbuzz bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @bnbuzz's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3156</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>821</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>124</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2211</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @bnbuzz's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bnbuzz'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">bobuk</div>
<div style="text-align: center; font-size: 14px;">@bobuk</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from bobuk.
| Data | bobuk |
| --- | --- |
| Tweets downloaded | 3206 |
| Retweets | 12 |
| Short tweets | 268 |
| Tweets kept | 2926 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dvjqdl0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bobuk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/227ixa7i) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/227ixa7i/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bobuk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bobuk/1633096176390/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bobuk
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
bobuk
@bobuk
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from bobuk.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bobuk's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">bogna 🤖 AI Bot </div>
<div style="font-size: 15px">@bognamk bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bognamk's tweets](https://twitter.com/bognamk).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 273 |
| Retweets | 26 |
| Short tweets | 22 |
| Tweets kept | 225 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/yelcjqqa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bognamk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/asd5yjvu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/asd5yjvu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bognamk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bognamk/1616663275652/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bognamk
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
bogna AI Bot
@bognamk bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @bognamk's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bognamk's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">boogie2988 😭🤡</div>
<div style="text-align: center; font-size: 14px;">@boogie2988</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from boogie2988 😭🤡.
| Data | boogie2988 😭🤡 |
| --- | --- |
| Tweets downloaded | 3242 |
| Retweets | 216 |
| Short tweets | 392 |
| Tweets kept | 2634 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30jummgi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boogie2988's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38yren3o) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38yren3o/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/boogie2988')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/boogie2988/1622323494391/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/boogie2988
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
boogie2988
@boogie2988
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from boogie2988 .
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @boogie2988's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Elon Musk & Boris Dayma 🤖 AI Bot </div>
<div style="font-size: 15px">@borisdayma-elonmusk bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@borisdayma-elonmusk's tweets](https://twitter.com/borisdayma-elonmusk).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1 |
| Retweets | 1 |
| Short tweets | 1 |
| Tweets kept | 1 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/s2e28lq5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisdayma-elonmusk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r549ulu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r549ulu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/borisdayma-elonmusk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/borisdayma-elonmusk/1620367858137/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/borisdayma-elonmusk
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Elon Musk & Boris Dayma AI Bot
@borisdayma-elonmusk bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @borisdayma-elonmusk's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @borisdayma-elonmusk's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Boris Dayma 🖍️</div>
<div style="text-align: center; font-size: 14px;">@borisdayma</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Boris Dayma 🖍️.
| Data | Boris Dayma 🖍️ |
| --- | --- |
| Tweets downloaded | 1371 |
| Retweets | 146 |
| Short tweets | 42 |
| Tweets kept | 1183 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tlbliehz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisdayma's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qs9dfef) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qs9dfef/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/borisdayma')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/borisdayma/1656366383066/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/borisdayma
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Boris Dayma ️
@borisdayma
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Boris Dayma ️.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @borisdayma's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Boris Johnson</div>
<div style="text-align: center; font-size: 14px;">@borisjohnson</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Boris Johnson.
| Data | Boris Johnson |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 901 |
| Short tweets | 15 |
| Tweets kept | 2333 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1n972ain/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisjohnson's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2cvhfjnr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2cvhfjnr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/borisjohnson')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/borisjohnson
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Boris Johnson
@borisjohnson
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Boris Johnson.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @borisjohnson's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">SHADE 🤖 AI Bot </div>
<div style="font-size: 15px">@born_2be_loved bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@born_2be_loved's tweets](https://twitter.com/born_2be_loved).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3202 |
| Retweets | 431 |
| Short tweets | 401 |
| Tweets kept | 2370 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3626bowi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @born_2be_loved's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/62hd185a) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/62hd185a/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/born_2be_loved')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/born_2be_loved/1616671254023/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/born_2be_loved
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
SHADE AI Bot
@born\_2be\_loved bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @born\_2be\_loved's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @born\_2be\_loved's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1432371607977275395/j60VC-cp_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">✨Boss Lady Fenja✨ 9.6% 🦋 & Boss_Lady_Fenja_promo</div>
<div style="text-align: center; font-size: 14px;">@boss_lady_fenja-ladyfenja_promo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ✨Boss Lady Fenja✨ 9.6% 🦋 & Boss_Lady_Fenja_promo.
| Data | ✨Boss Lady Fenja✨ 9.6% 🦋 | Boss_Lady_Fenja_promo |
| --- | --- | --- |
| Tweets downloaded | 3153 | 654 |
| Retweets | 380 | 240 |
| Short tweets | 646 | 160 |
| Tweets kept | 2127 | 254 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jpqrjjb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boss_lady_fenja-ladyfenja_promo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10coew7p) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10coew7p/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/boss_lady_fenja-ladyfenja_promo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/boss_lady_fenja-ladyfenja_promo/1632241140819/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/boss_lady_fenja-ladyfenja_promo
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Boss Lady Fenja 9.6% & Boss\_Lady\_Fenja\_promo
@boss\_lady\_fenja-ladyfenja\_promo
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Boss Lady Fenja 9.6% & Boss\_Lady\_Fenja\_promo.
Data: Tweets downloaded, Boss Lady Fenja 9.6%: 3153, Boss\_Lady\_Fenja\_promo: 654
Data: Retweets, Boss Lady Fenja 9.6%: 380, Boss\_Lady\_Fenja\_promo: 240
Data: Short tweets, Boss Lady Fenja 9.6%: 646, Boss\_Lady\_Fenja\_promo: 160
Data: Tweets kept, Boss Lady Fenja 9.6%: 2127, Boss\_Lady\_Fenja\_promo: 254
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @boss\_lady\_fenja-ladyfenja\_promo's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">autumn wants to hold ty’s hand</div>
<div style="text-align: center; font-size: 14px;">@bouncemanautumn</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from autumn wants to hold ty’s hand.
| Data | autumn wants to hold ty’s hand |
| --- | --- |
| Tweets downloaded | 3245 |
| Retweets | 195 |
| Short tweets | 434 |
| Tweets kept | 2616 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16mq5may/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bouncemanautumn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vlqrfex) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vlqrfex/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bouncemanautumn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bouncemanautumn/1644093304436/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bouncemanautumn
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
autumn wants to hold ty’s hand
@bouncemanautumn
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from autumn wants to hold ty’s hand.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bouncemanautumn's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Beau Wood</div>
<div style="text-align: center; font-size: 14px;">@bovice18</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Beau Wood.
| Data | Beau Wood |
| --- | --- |
| Tweets downloaded | 1516 |
| Retweets | 789 |
| Short tweets | 127 |
| Tweets kept | 600 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22h7nhvi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bovice18's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3iuogy19) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3iuogy19/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bovice18')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bovice18/1621524734301/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bovice18
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Beau Wood
@bovice18
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Beau Wood.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bovice18's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">bowserbot 🤖 AI Bot </div>
<div style="font-size: 15px">@bowserbot2 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bowserbot2's tweets](https://twitter.com/bowserbot2).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2651 |
| Retweets | 2 |
| Short tweets | 20 |
| Tweets kept | 2629 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/151rlno6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bowserbot2's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15w12pqd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15w12pqd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bowserbot2')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bowserbot2/1617402800811/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bowserbot2
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
bowserbot AI Bot
@bowserbot2 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @bowserbot2's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bowserbot2's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">bbuchsbaum</div>
<div style="text-align: center; font-size: 14px;">@brad_buchsbaum</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from bbuchsbaum.
| Data | bbuchsbaum |
| --- | --- |
| Tweets downloaded | 1346 |
| Retweets | 125 |
| Short tweets | 53 |
| Tweets kept | 1168 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uivlvhob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brad_buchsbaum's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34xkida2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34xkida2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brad_buchsbaum')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brad_buchsbaum
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
bbuchsbaum
@brad\_buchsbaum
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from bbuchsbaum.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @brad\_buchsbaum's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">extinction of mass 🤖 AI Bot </div>
<div style="font-size: 15px">@braintree0173 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@braintree0173's tweets](https://twitter.com/braintree0173).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1237 |
| Retweets | 44 |
| Short tweets | 77 |
| Tweets kept | 1116 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28laggk0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @braintree0173's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fbmoqja) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fbmoqja/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/braintree0173')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/braintree0173/1616858958371/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/braintree0173
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
extinction of mass AI Bot
@braintree0173 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @braintree0173's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @braintree0173's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🅱randon Martin 🤖 AI Bot </div>
<div style="font-size: 15px">@brandoncm1519 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brandoncm1519's tweets](https://twitter.com/brandoncm1519).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 233 |
| Retweets | 26 |
| Short tweets | 40 |
| Tweets kept | 167 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rb3uwyon/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brandoncm1519's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a5chnaj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a5chnaj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brandoncm1519')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brandoncm1519/1616700027820/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brandoncm1519
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
🅱randon Martin AI Bot
@brandoncm1519 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @brandoncm1519's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @brandoncm1519's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/890322736626647041/9PcQFxnJ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brandon Reeves 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brandonreeves08 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brandonreeves08's tweets](https://twitter.com/brandonreeves08).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2233</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>813</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>87</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1333</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/25xf6z75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brandonreeves08's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3cboi872) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3cboi872/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brandonreeves08'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brandonreeves08
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brandon Reeves AI Bot </div>
<div style="font-size: 15px; color: #657786">@brandonreeves08 bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @brandonreeves08's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2233</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>813</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>87</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1333</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @brandonreeves08's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brandonreeves08'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1259796666149986304/lCNvP-IU_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">@brayleino 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brayleino bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brayleino's tweets](https://twitter.com/brayleino).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3224</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>896</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>63</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2265</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/kmh7d8rk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brayleino's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1etq1kzi) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1etq1kzi/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brayleino'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brayleino/1602233828988/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brayleino
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">@brayleino AI Bot </div>
<div style="font-size: 15px; color: #657786">@brayleino bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @brayleino's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3224</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>896</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>63</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2265</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @brayleino's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brayleino'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">The Jackie Weaver of EdTech 🤖 AI Bot </div>
<div style="font-size: 15px">@brennacgray bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brennacgray's tweets](https://twitter.com/brennacgray).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3229 |
| Retweets | 500 |
| Short tweets | 301 |
| Tweets kept | 2428 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5gxea3am/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brennacgray's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ox5zibg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ox5zibg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brennacgray')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brennacgray/1616792121755/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brennacgray
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
The Jackie Weaver of EdTech AI Bot
@brennacgray bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @brennacgray's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @brennacgray's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1314457768733011968/dEHivGiS_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bretman Rock Paper Scissors 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bretmanrock bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bretmanrock's tweets](https://twitter.com/bretmanrock).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2037</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>728</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>121</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1188</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2gwxllzg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bretmanrock's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1vehek6r) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1vehek6r/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bretmanrock'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bretmanrock/1602246838817/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bretmanrock
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bretman Rock Paper Scissors AI Bot </div>
<div style="font-size: 15px; color: #657786">@bretmanrock bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @bretmanrock's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2037</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>728</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>121</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1188</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @bretmanrock's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bretmanrock'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian Leiter 🤖 AI Bot </div>
<div style="font-size: 15px">@brianleiter bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brianleiter's tweets](https://twitter.com/brianleiter).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 980 |
| Retweets | 231 |
| Short tweets | 41 |
| Tweets kept | 708 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1try6015/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brianleiter's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2l46qz24) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2l46qz24/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brianleiter')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brianleiter/1616729814445/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brianleiter
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Brian Leiter AI Bot
@brianleiter bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @brianleiter's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @brianleiter's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian Stelter 🤖 AI Bot </div>
<div style="font-size: 15px">@brianstelter bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brianstelter's tweets](https://twitter.com/brianstelter).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 1997 |
| Short tweets | 110 |
| Tweets kept | 1141 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ldst3wj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brianstelter's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/shk6mhyu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/shk6mhyu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brianstelter')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brianstelter/1617675900278/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brianstelter
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Brian Stelter AI Bot
@brianstelter bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @brianstelter's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @brianstelter's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Piss Chugger, Chugger of Piss 🤖 AI Bot </div>
<div style="font-size: 15px">@brielikessoda bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brielikessoda's tweets](https://twitter.com/brielikessoda).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3201 |
| Retweets | 58 |
| Short tweets | 405 |
| Tweets kept | 2738 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f3gm9t9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brielikessoda's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25fi4n75) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25fi4n75/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brielikessoda')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brielikessoda/1614130240109/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brielikessoda
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Piss Chugger, Chugger of Piss AI Bot
@brielikessoda bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @brielikessoda's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @brielikessoda's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318494037981032449/uoutJxSH_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">brittany 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brittany_broski bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brittany_broski's tweets](https://twitter.com/brittany_broski).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1838</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>451</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>392</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>995</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hz6b9b8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brittany_broski's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35sgntcf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35sgntcf/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brittany_broski'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brittany_broski/1605761309372/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brittany_broski
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">brittany AI Bot </div>
<div style="font-size: 15px; color: #657786">@brittany_broski bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @brittany_broski's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1838</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>451</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>392</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>995</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @brittany_broski's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brittany_broski'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian Lamb 🤖 AI Bot </div>
<div style="font-size: 15px">@brlamb bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brlamb's tweets](https://twitter.com/brlamb).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 241 |
| Short tweets | 298 |
| Tweets kept | 2709 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fb4wmpbl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brlamb's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gq4ok2e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gq4ok2e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brlamb')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brlamb/1617221536533/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brlamb
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Brian Lamb AI Bot
@brlamb bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @brlamb's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @brlamb's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Rockhardo Black 🏴🇯🇲</div>
<div style="text-align: center; font-size: 14px;">@brockhardo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Rockhardo Black 🏴🇯🇲.
| Data | Rockhardo Black 🏴🇯🇲 |
| --- | --- |
| Tweets downloaded | 3185 |
| Retweets | 2402 |
| Short tweets | 295 |
| Tweets kept | 488 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20lnbaxt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brockhardo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2og9glbw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2og9glbw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/brockhardo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brockhardo/1629231094423/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brockhardo
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Rockhardo Black 🇯🇲
@brockhardo
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Rockhardo Black 🇯🇲.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @brockhardo's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Conrad Golden</div>
<div style="text-align: center; font-size: 14px;">@bronzeswords</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Conrad Golden.
| Data | Conrad Golden |
| --- | --- |
| Tweets downloaded | 3190 |
| Retweets | 602 |
| Short tweets | 171 |
| Tweets kept | 2417 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/10m933b8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bronzeswords's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1yj6hliq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1yj6hliq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bronzeswords')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bronzeswords/1635817760027/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bronzeswords
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Conrad Golden
@bronzeswords
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Conrad Golden.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bronzeswords's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">dessicant gourmand 🤖 AI Bot </div>
<div style="font-size: 15px">@broschistocks bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@broschistocks's tweets](https://twitter.com/broschistocks).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 664 |
| Retweets | 331 |
| Short tweets | 66 |
| Tweets kept | 267 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8qbbqieq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @broschistocks's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pnoc5bl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pnoc5bl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/broschistocks')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/broschistocks/1614095969958/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/broschistocks
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
dessicant gourmand AI Bot
@broschistocks bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @broschistocks's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @broschistocks's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1309902055960645640/bVY_UYkL_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">BrotUndSaft 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brotundsaft bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brotundsaft's tweets](https://twitter.com/brotundsaft).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2970</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>526</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>374</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2070</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3lmky9vn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brotundsaft's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/30e4dz6f) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/30e4dz6f/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brotundsaft'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brotundsaft/1601630145453/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brotundsaft
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">BrotUndSaft AI Bot </div>
<div style="font-size: 15px; color: #657786">@brotundsaft bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @brotundsaft's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2970</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>526</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>374</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2070</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @brotundsaft's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brotundsaft'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/807277326539046912/EZR6qL-S_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bruce Lawson, Antifa. Black Lives Matter. 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@brucel bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@brucel's tweets](https://twitter.com/brucel).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3227</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>406</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>257</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2564</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1cha3dnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brucel's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2qrl7tqt) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2qrl7tqt/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brucel'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/brucel
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bruce Lawson, Antifa. Black Lives Matter. AI Bot </div>
<div style="font-size: 15px; color: #657786">@brucel bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @brucel's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3227</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>406</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>257</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2564</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @brucel's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/brucel'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">BTS_official 🤖 AI Bot </div>
<div style="font-size: 15px">@bts_bighit bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bts_bighit's tweets](https://twitter.com/bts_bighit).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 807 |
| Short tweets | 17 |
| Tweets kept | 2424 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/346cr95o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bts_bighit's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qrtx438c) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qrtx438c/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bts_bighit')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bts_bighit
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
BTS\_official AI Bot
@bts\_bighit bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @bts\_bighit's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bts\_bighit's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1309782271281430529/mb2fNc86_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">ᴮᴱ Sara ⁷ ♡ ☁️ 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@btsisoreo bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@btsisoreo's tweets](https://twitter.com/btsisoreo).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3238</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>276</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>1471</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1491</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/5cw9eogo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btsisoreo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1qmz2ncd) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1qmz2ncd/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/btsisoreo'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/btsisoreo/1601273601954/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/btsisoreo
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">ᴮᴱ Sara ⁷ ️ AI Bot </div>
<div style="font-size: 15px; color: #657786">@btsisoreo bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @btsisoreo's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3238</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>276</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>1471</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1491</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @btsisoreo's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/btsisoreo'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1304743968832356358/82FPDpEH_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">かずみnina⁷ヅ ⟭⟬ 𖧵 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bubblefairyjin bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bubblefairyjin's tweets](https://twitter.com/bubblefairyjin).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3234</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>683</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>919</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1632</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2r11ket4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bubblefairyjin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1nw974ct) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1nw974ct/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bubblefairyjin'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bubblefairyjin/1601266953127/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bubblefairyjin
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">かずみnina⁷ヅ ⟭⟬ 𖧵 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bubblefairyjin bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @bubblefairyjin's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3234</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>683</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>919</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1632</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @bubblefairyjin's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bubblefairyjin'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ru 🌈🌱🎙️ 🤖 AI Bot </div>
<div style="font-size: 15px">@bubbleteaphd bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bubbleteaphd's tweets](https://twitter.com/bubbleteaphd).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3233 |
| Retweets | 324 |
| Short tweets | 321 |
| Tweets kept | 2588 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e2ljtiy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bubbleteaphd's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2k5imxb0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2k5imxb0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bubbleteaphd')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bubbleteaphd/1616932743352/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bubbleteaphd
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Ru ️ AI Bot
@bubbleteaphd bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @bubbleteaphd's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bubbleteaphd's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1014709181662810112/xaI-XoAg_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bucksball 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bucksballl bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bucksballl's tweets](https://twitter.com/bucksballl).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1877</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1688</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>34</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>155</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wuewh23/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bucksballl's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2iqbod86) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2iqbod86/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bucksballl'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bucksballl/1607571899995/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bucksballl
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bucksball AI Bot </div>
<div style="font-size: 15px; color: #657786">@bucksballl bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @bucksballl's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1877</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1688</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>34</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>155</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @bucksballl's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bucksballl'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1214363231038263296/6kWmdpPD_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Dr. Bucky Isotope, Dice Rolling Expert</div>
<div style="text-align: center; font-size: 14px;">@buckyisotope-dril</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Dr. Bucky Isotope, Dice Rolling Expert.
| Data | wint | Dr. Bucky Isotope, Dice Rolling Expert |
| --- | --- | --- |
| Tweets downloaded | 3229 | 3231 |
| Retweets | 477 | 652 |
| Short tweets | 300 | 361 |
| Tweets kept | 2452 | 2218 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/31a3ij74/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buckyisotope-dril's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bnoz7zgh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bnoz7zgh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/buckyisotope-dril')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/buckyisotope-dril/1645347820169/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/buckyisotope-dril
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Dr. Bucky Isotope, Dice Rolling Expert
@buckyisotope-dril
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Dr. Bucky Isotope, Dice Rolling Expert.
Data: Tweets downloaded, wint: 3229, Dr. Bucky Isotope, Dice Rolling Expert: 3231
Data: Retweets, wint: 477, Dr. Bucky Isotope, Dice Rolling Expert: 652
Data: Short tweets, wint: 300, Dr. Bucky Isotope, Dice Rolling Expert: 361
Data: Tweets kept, wint: 2452, Dr. Bucky Isotope, Dice Rolling Expert: 2218
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @buckyisotope-dril's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1271522987812872193/zjuyQq9V_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cynthia Habonimana 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@buildwithcycy bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@buildwithcycy's tweets](https://twitter.com/buildwithcycy).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>680</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>181</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>80</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>419</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/woos7f0i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buildwithcycy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/39i5bi0o) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/39i5bi0o/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/buildwithcycy'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/buildwithcycy/1603391285588/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/buildwithcycy
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cynthia Habonimana AI Bot </div>
<div style="font-size: 15px; color: #657786">@buildwithcycy bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @buildwithcycy's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>680</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>181</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>80</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>419</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @buildwithcycy's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/buildwithcycy'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ashe ʕ •ᴥ•ʔ 🤖 AI Bot </div>
<div style="font-size: 15px">@bungeebingleton bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bungeebingleton's tweets](https://twitter.com/bungeebingleton).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3227 |
| Retweets | 154 |
| Short tweets | 659 |
| Tweets kept | 2414 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ssrmafr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bungeebingleton's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/omho87n6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/omho87n6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/bungeebingleton')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bungeebingleton/1614116708433/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bungeebingleton
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Ashe ʕ •ᴥ•ʔ AI Bot
@bungeebingleton bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @bungeebingleton's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @bungeebingleton's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthew 🤖 AI Bot </div>
<div style="font-size: 15px">@butfurniture bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@butfurniture's tweets](https://twitter.com/butfurniture).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1787 |
| Retweets | 524 |
| Short tweets | 121 |
| Tweets kept | 1142 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18eo7tos/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @butfurniture's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jx81czr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jx81czr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/butfurniture')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/butfurniture/1616690321353/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/butfurniture
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Matthew AI Bot
@butfurniture bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @butfurniture's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @butfurniture's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">sunk cock fallacy🔞 🤖 AI Bot </div>
<div style="font-size: 15px">@buttruts bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@buttruts's tweets](https://twitter.com/buttruts).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 727 |
| Retweets | 127 |
| Short tweets | 189 |
| Tweets kept | 411 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4ggl7jjh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buttruts's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3o27rfwn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3o27rfwn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/buttruts')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/buttruts/1617770614427/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/buttruts
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
sunk cock fallacy AI Bot
@buttruts bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @buttruts's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @buttruts's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bailey 🤖 AI Bot </div>
<div style="font-size: 15px">@byabailey bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@byabailey's tweets](https://twitter.com/byabailey).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 581 |
| Retweets | 36 |
| Short tweets | 250 |
| Tweets kept | 295 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oqa41kc6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @byabailey's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2j8cjogh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2j8cjogh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/byabailey')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/byabailey/1614156784734/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/byabailey
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Bailey AI Bot
@byabailey bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @byabailey's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @byabailey's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1116620292372045824/-um4nYB5_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Benoit Zante 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@bzante bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@bzante's tweets](https://twitter.com/bzante).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3236</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1973</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>46</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1217</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3nkw4qab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bzante's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9x73lgcb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9x73lgcb/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bzante'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bzante/1605624629004/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/bzante
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Benoit Zante AI Bot </div>
<div style="font-size: 15px; color: #657786">@bzante bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @bzante's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3236</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1973</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>46</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1217</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @bzante's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/bzante'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Abhilash</div>
<div style="text-align: center; font-size: 14px;">@c0up</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Abhilash.
| Data | Abhilash |
| --- | --- |
| Tweets downloaded | 3203 |
| Retweets | 1476 |
| Short tweets | 384 |
| Tweets kept | 1343 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1le73jjg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c0up's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tebog4r) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tebog4r/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/c0up')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c0up/1627089976491/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/c0up
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Abhilash
@c0up
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Abhilash.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @c0up's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">GIRLBOSS RUN 🤖 AI Bot </div>
<div style="font-size: 15px">@c4ndl3w4x bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@c4ndl3w4x's tweets](https://twitter.com/c4ndl3w4x).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3161 |
| Retweets | 2040 |
| Short tweets | 351 |
| Tweets kept | 770 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dujcwyo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c4ndl3w4x's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/174m72fj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/174m72fj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/c4ndl3w4x')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c4ndl3w4x/1614133241891/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/c4ndl3w4x
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
GIRLBOSS RUN AI Bot
@c4ndl3w4x bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @c4ndl3w4x's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @c4ndl3w4x's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1360714045599358978/oh2wRcYm_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & Joseph Marquez</div>
<div style="text-align: center; font-size: 14px;">@c9mang0-deepleffen</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Deep Leffen Bot & Joseph Marquez.
| Data | Deep Leffen Bot | Joseph Marquez |
| --- | --- | --- |
| Tweets downloaded | 459 | 3248 |
| Retweets | 12 | 292 |
| Short tweets | 25 | 482 |
| Tweets kept | 422 | 2474 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/866oe5ny/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c9mang0-deepleffen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bnerj7i) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bnerj7i/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/c9mang0-deepleffen')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c9mang0-deepleffen/1621509742616/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/c9mang0-deepleffen
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Deep Leffen Bot & Joseph Marquez
@c9mang0-deepleffen
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Deep Leffen Bot & Joseph Marquez.
Data: Tweets downloaded, Deep Leffen Bot: 459, Joseph Marquez: 3248
Data: Retweets, Deep Leffen Bot: 12, Joseph Marquez: 292
Data: Short tweets, Deep Leffen Bot: 25, Joseph Marquez: 482
Data: Tweets kept, Deep Leffen Bot: 422, Joseph Marquez: 2474
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @c9mang0-deepleffen's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cameron Harwick 🏛 🤖 AI Bot </div>
<div style="font-size: 15px">@c_harwick bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@c_harwick's tweets](https://twitter.com/c_harwick).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3239 |
| Retweets | 321 |
| Short tweets | 117 |
| Tweets kept | 2801 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qldo0bu4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c_harwick's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/217j7nfd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/217j7nfd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/c_harwick')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c_harwick/1617771463823/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/c_harwick
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Cameron Harwick AI Bot
@c\_harwick bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @c\_harwick's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @c\_harwick's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">normal girl : ) 🤖 AI Bot </div>
<div style="font-size: 15px">@c_hoffmanni bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@c_hoffmanni's tweets](https://twitter.com/c_hoffmanni).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3226 |
| Retweets | 382 |
| Short tweets | 635 |
| Tweets kept | 2209 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ikod8eq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c_hoffmanni's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2km5k3qc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2km5k3qc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/c_hoffmanni')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c_hoffmanni/1617903388766/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/c_hoffmanni
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
normal girl : ) AI Bot
@c\_hoffmanni bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @c\_hoffmanni's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @c\_hoffmanni's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Cabelob</div>
<div style="text-align: center; font-size: 14px;">@cabelobssb</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Cabelob.
| Data | Cabelob |
| --- | --- |
| Tweets downloaded | 3158 |
| Retweets | 303 |
| Short tweets | 300 |
| Tweets kept | 2555 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2u8zt14c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cabelobssb's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r13iux3) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r13iux3/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cabelobssb')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cabelobssb/1639535335803/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cabelobssb
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Cabelob
@cabelobssb
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Cabelob.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cabelobssb's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Caelan Hudson</div>
<div style="text-align: center; font-size: 14px;">@caelan_hudson</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Caelan Hudson.
| Data | Caelan Hudson |
| --- | --- |
| Tweets downloaded | 1768 |
| Retweets | 696 |
| Short tweets | 139 |
| Tweets kept | 933 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vrzri0az/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caelan_hudson's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u9374qr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u9374qr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caelan_hudson')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/caelan_hudson
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Caelan Hudson
@caelan\_hudson
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Caelan Hudson.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @caelan\_hudson's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">✨たち Tommy’s an Orbit 🌙 たち✨</div>
<div style="text-align: center; font-size: 14px;">@cafe_orbitinnit</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ✨たち Tommy’s an Orbit 🌙 たち✨.
| Data | ✨たち Tommy’s an Orbit 🌙 たち✨ |
| --- | --- |
| Tweets downloaded | 2242 |
| Retweets | 1336 |
| Short tweets | 323 |
| Tweets kept | 583 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qhrvba17/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cafe_orbitinnit's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qnyhuxd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qnyhuxd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cafe_orbitinnit')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cafe_orbitinnit/1630943541910/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cafe_orbitinnit
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
たち Tommy’s an Orbit たち
@cafe\_orbitinnit
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from たち Tommy’s an Orbit たち.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cafe\_orbitinnit's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1321740911450198016/JVR19aQa_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">😃 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@caitlin_higgs bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@caitlin_higgs's tweets](https://twitter.com/caitlin_higgs).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2062</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>288</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>341</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1433</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3o8apxfw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caitlin_higgs's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fxm0h1p) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fxm0h1p/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/caitlin_higgs'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caitlin_higgs/1608309607305/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/caitlin_higgs
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800"> AI Bot </div>
<div style="font-size: 15px; color: #657786">@caitlin_higgs bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @caitlin_higgs's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2062</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>288</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>341</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1433</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @caitlin_higgs's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/caitlin_higgs'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Green, alas....she is 2 busy tweeting 🤖 AI Bot </div>
<div style="font-size: 15px">@caitlinmoriah bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@caitlinmoriah's tweets](https://twitter.com/caitlinmoriah).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3246 |
| Retweets | 304 |
| Short tweets | 140 |
| Tweets kept | 2802 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vueoynh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caitlinmoriah's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14otv2ch) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14otv2ch/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caitlinmoriah')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caitlinmoriah/1616725886381/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/caitlinmoriah
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Dr. Green, alas....she is 2 busy tweeting AI Bot
@caitlinmoriah bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @caitlinmoriah's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @caitlinmoriah's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">(Suspiciously unoutra)Ged 🤖 AI Bot </div>
<div style="font-size: 15px">@cakesniffe1 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cakesniffe1's tweets](https://twitter.com/cakesniffe1).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3235 |
| Retweets | 414 |
| Short tweets | 201 |
| Tweets kept | 2620 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kqahg35h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cakesniffe1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b48lj3s) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b48lj3s/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cakesniffe1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cakesniffe1/1616776928773/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cakesniffe1
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
(Suspiciously unoutra)Ged AI Bot
@cakesniffe1 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cakesniffe1's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cakesniffe1's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Caleb Barron 🤖 AI Bot </div>
<div style="font-size: 15px">@caleblebster bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@caleblebster's tweets](https://twitter.com/caleblebster).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1109 |
| Retweets | 197 |
| Short tweets | 77 |
| Tweets kept | 835 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1u2f3qvk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caleblebster's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22tramg6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22tramg6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caleblebster')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caleblebster/1616712100600/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/caleblebster
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Caleb Barron AI Bot
@caleblebster bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @caleblebster's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @caleblebster's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1003639488445218817/wOEiVIB6_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Luca Foschini 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@calimagna bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@calimagna's tweets](https://twitter.com/calimagna).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1086</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>495</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>27</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>564</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2thj3yee/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @calimagna's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/326t7ks5) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/326t7ks5/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/calimagna'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/calimagna
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Luca Foschini AI Bot </div>
<div style="font-size: 15px; color: #657786">@calimagna bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @calimagna's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1086</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>495</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>27</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>564</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @calimagna's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/calimagna'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1238103767205261315/Tp4M9dVg_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Diputadas y Diputados de Chile 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@camara_cl bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@camara_cl's tweets](https://twitter.com/camara_cl).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3213</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>617</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>2</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2594</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/lnp5dtno/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @camara_cl's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2wpxf9h1) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2wpxf9h1/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/camara_cl'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/camara_cl
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Diputadas y Diputados de Chile AI Bot </div>
<div style="font-size: 15px; color: #657786">@camara_cl bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @camara_cl's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3213</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>617</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>2</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2594</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @camara_cl's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/camara_cl'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">👾🌻 cameron 🌻👾 🤖 AI Bot </div>
<div style="font-size: 15px">@cameronconcarne bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cameronconcarne's tweets](https://twitter.com/cameronconcarne).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 77 |
| Short tweets | 581 |
| Tweets kept | 2583 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w4b9g99/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cameronconcarne's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3utd2pbm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3utd2pbm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cameronconcarne')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cameronconcarne/1616619963482/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cameronconcarne
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
cameron AI Bot
@cameronconcarne bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cameronconcarne's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cameronconcarne's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">rin 🤖 AI Bot </div>
<div style="font-size: 15px">@camrin_blaze bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@camrin_blaze's tweets](https://twitter.com/camrin_blaze).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 258 |
| Retweets | 27 |
| Short tweets | 22 |
| Tweets kept | 209 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34155lyy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @camrin_blaze's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/291c9e66) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/291c9e66/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/camrin_blaze')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/camrin_blaze/1619573161434/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/camrin_blaze
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
rin AI Bot
@camrin\_blaze bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @camrin\_blaze's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @camrin\_blaze's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1368077075127603200/Z08slO2P_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Canary Mission & keyvan</div>
<div style="text-align: center; font-size: 14px;">@canarymission-islamphobiacow</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Canary Mission & keyvan.
| Data | Canary Mission | keyvan |
| --- | --- | --- |
| Tweets downloaded | 3250 | 3240 |
| Retweets | 148 | 178 |
| Short tweets | 9 | 223 |
| Tweets kept | 3093 | 2839 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fjcqkd7a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @canarymission-islamphobiacow's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3j1l0c2c) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3j1l0c2c/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/canarymission-islamphobiacow')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/canarymission-islamphobiacow
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Canary Mission & keyvan
@canarymission-islamphobiacow
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Canary Mission & keyvan.
Data: Tweets downloaded, Canary Mission: 3250, keyvan: 3240
Data: Retweets, Canary Mission: 148, keyvan: 178
Data: Short tweets, Canary Mission: 9, keyvan: 223
Data: Tweets kept, Canary Mission: 3093, keyvan: 2839
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @canarymission-islamphobiacow's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Canary Mission</div>
<div style="text-align: center; font-size: 14px;">@canarymission</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Canary Mission.
| Data | Canary Mission |
| --- | --- |
| Tweets downloaded | 3239 |
| Retweets | 145 |
| Short tweets | 9 |
| Tweets kept | 3085 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mek45cld/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @canarymission's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vb36zgw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vb36zgw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/canarymission')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/canarymission/1628918283153/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/canarymission
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Canary Mission
@canarymission
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Canary Mission.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @canarymission's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cat of Scarf 🧣 🤖 AI Bot </div>
<div style="font-size: 15px">@captain_mrs bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@captain_mrs's tweets](https://twitter.com/captain_mrs).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 66 |
| Short tweets | 189 |
| Tweets kept | 2995 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rxzjik7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @captain_mrs's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22ca7fy3) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22ca7fy3/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/captain_mrs')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/captain_mrs/1616935516055/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/captain_mrs
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Cat of Scarf AI Bot
@captain\_mrs bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @captain\_mrs's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @captain\_mrs's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">마테오 카일 🤖 AI Bot </div>
<div style="font-size: 15px">@captainoats bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@captainoats's tweets](https://twitter.com/captainoats).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 302 |
| Retweets | 56 |
| Short tweets | 27 |
| Tweets kept | 219 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3icr2qoy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @captainoats's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12da21ng) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12da21ng/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/captainoats')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/captainoats/1616644916897/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/captainoats
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
마테오 카일 AI Bot
@captainoats bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @captainoats's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @captainoats's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">charl 🤖 AI Bot </div>
<div style="font-size: 15px">@carlotta_emma bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@carlotta_emma's tweets](https://twitter.com/carlotta_emma).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3173 |
| Retweets | 933 |
| Short tweets | 304 |
| Tweets kept | 1936 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wuc7oeh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @carlotta_emma's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mdi8v0tb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mdi8v0tb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/carlotta_emma')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/carlotta_emma/1617911942085/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/carlotta_emma
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
charl AI Bot
@carlotta\_emma bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @carlotta\_emma's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @carlotta\_emma's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dr. Caroline Bartman</div>
<div style="text-align: center; font-size: 14px;">@caroline_bartma</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Dr. Caroline Bartman.
| Data | Dr. Caroline Bartman |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 135 |
| Short tweets | 735 |
| Tweets kept | 2379 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1h19w9p3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caroline_bartma's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hf1f0f2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hf1f0f2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caroline_bartma')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caroline_bartma/1622086240133/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/caroline_bartma
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Dr. Caroline Bartman
@caroline\_bartma
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Dr. Caroline Bartman.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @caroline\_bartma's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">casey 🖤 🤖 AI Bot </div>
<div style="font-size: 15px">@caseygripps bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@caseygripps's tweets](https://twitter.com/caseygripps).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3228 |
| Retweets | 347 |
| Short tweets | 375 |
| Tweets kept | 2506 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2a8u37lc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caseygripps's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22x53mg6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22x53mg6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caseygripps')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caseygripps/1616642646137/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/caseygripps
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
casey AI Bot
@caseygripps bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @caseygripps's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @caseygripps's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Cassandra Autumn</div>
<div style="text-align: center; font-size: 14px;">@cassandraautumn</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Cassandra Autumn.
| Data | Cassandra Autumn |
| --- | --- |
| Tweets downloaded | 583 |
| Retweets | 283 |
| Short tweets | 76 |
| Tweets kept | 224 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1d6zyhom/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cassandraautumn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2c2uc7mv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2c2uc7mv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cassandraautumn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cassandraautumn/1625889209816/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cassandraautumn
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Cassandra Autumn
@cassandraautumn
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Cassandra Autumn.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cassandraautumn's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1257879573632516097/4hxvX0wW_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cassandra Fairbanks 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@cassandrarules bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cassandrarules's tweets](https://twitter.com/cassandrarules).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3149</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1416</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>192</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1541</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1dphxgyi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cassandrarules's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/7vgc6wj7) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/7vgc6wj7/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cassandrarules'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cassandrarules/1601268616315/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cassandrarules
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cassandra Fairbanks AI Bot </div>
<div style="font-size: 15px; color: #657786">@cassandrarules bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @cassandrarules's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3149</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1416</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>192</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1541</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @cassandrarules's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cassandrarules'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1292888896938729473/tDmJ1K6m_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cassidy 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@cassidoo bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cassidoo's tweets](https://twitter.com/cassidoo).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3194</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>943</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>394</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1857</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1929jr24/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cassidoo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/26vue73c) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/26vue73c/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cassidoo'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cassidoo/1602270809680/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cassidoo
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cassidy AI Bot </div>
<div style="font-size: 15px; color: #657786">@cassidoo bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @cassidoo's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3194</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>943</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>394</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1857</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @cassidoo's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cassidoo'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">catboy ranch 🤖 AI Bot </div>
<div style="font-size: 15px">@catboyranch bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@catboyranch's tweets](https://twitter.com/catboyranch).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3217 |
| Retweets | 411 |
| Short tweets | 943 |
| Tweets kept | 1863 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/173d8lxl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @catboyranch's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fu7bpa2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fu7bpa2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/catboyranch')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/catboyranch/1614176811297/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/catboyranch
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
catboy ranch AI Bot
@catboyranch bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @catboyranch's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @catboyranch's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cael 🤖 AI Bot </div>
<div style="font-size: 15px">@catofthestorm bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@catofthestorm's tweets](https://twitter.com/catofthestorm).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 165 |
| Retweets | 36 |
| Short tweets | 20 |
| Tweets kept | 109 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gj0d9hm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @catofthestorm's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ji5acl6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ji5acl6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/catofthestorm')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/catofthestorm/1617771314076/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/catofthestorm
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Cael AI Bot
@catofthestorm bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @catofthestorm's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @catofthestorm's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Gustavo Oliva 🤖 AI Bot </div>
<div style="font-size: 15px">@caubyyy bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@caubyyy's tweets](https://twitter.com/caubyyy).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3198 |
| Retweets | 302 |
| Short tweets | 375 |
| Tweets kept | 2521 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2o0zao4x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caubyyy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3okc2lvl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3okc2lvl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caubyyy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caubyyy/1616815681832/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/caubyyy
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Gustavo Oliva AI Bot
@caubyyy bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @caubyyy's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @caubyyy's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/933947605104685056/mumGVsyS_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1420078509230223363/u7XR7esE_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">haley o'shaughnessy & James & Kat Dennings</div>
<div style="text-align: center; font-size: 14px;">@caucasianjames-haleyosomething-officialkat</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from haley o'shaughnessy & James & Kat Dennings.
| Data | haley o'shaughnessy | James | Kat Dennings |
| --- | --- | --- | --- |
| Tweets downloaded | 3242 | 3242 | 3228 |
| Retweets | 431 | 89 | 689 |
| Short tweets | 460 | 602 | 424 |
| Tweets kept | 2351 | 2551 | 2115 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ctao3i2l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caucasianjames-haleyosomething-officialkat's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vge9p265) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vge9p265/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caucasianjames-haleyosomething-officialkat')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caucasianjames-haleyosomething-officialkat/1632622460306/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/caucasianjames-haleyosomething-officialkat
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
haley o'shaughnessy & James & Kat Dennings
@caucasianjames-haleyosomething-officialkat
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from haley o'shaughnessy & James & Kat Dennings.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @caucasianjames-haleyosomething-officialkat's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">CaVe Yt</div>
<div style="text-align: center; font-size: 14px;">@caveyt3</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from CaVe Yt.
| Data | CaVe Yt |
| --- | --- |
| Tweets downloaded | 777 |
| Retweets | 49 |
| Short tweets | 349 |
| Tweets kept | 379 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/380nkug5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caveyt3's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ee4maq0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ee4maq0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/caveyt3')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caveyt3/1623457616455/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/caveyt3
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
CaVe Yt
@caveyt3
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from CaVe Yt.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @caveyt3's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1420013003483852810/Rsl-fb7i_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Cavid Ağa</div>
<div style="text-align: center; font-size: 14px;">@cavidaga-elonmusk</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Elon Musk & Cavid Ağa.
| Data | Elon Musk | Cavid Ağa |
| --- | --- | --- |
| Tweets downloaded | 830 | 3221 |
| Retweets | 48 | 483 |
| Short tweets | 237 | 263 |
| Tweets kept | 545 | 2475 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ydwi0ay/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cavidaga-elonmusk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mxx9rsu8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mxx9rsu8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cavidaga-elonmusk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cavidaga-elonmusk
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Elon Musk & Cavid Ağa
@cavidaga-elonmusk
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Elon Musk & Cavid Ağa.
Data: Tweets downloaded, Elon Musk: 830, Cavid Ağa: 3221
Data: Retweets, Elon Musk: 48, Cavid Ağa: 483
Data: Short tweets, Elon Musk: 237, Cavid Ağa: 263
Data: Tweets kept, Elon Musk: 545, Cavid Ağa: 2475
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cavidaga-elonmusk's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1337495809684869120/t8G2xlTV_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cazum8 🍮 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@cazum8videos bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cazum8videos's tweets](https://twitter.com/cazum8videos).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3188</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>501</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>657</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2030</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lqzjziv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cazum8videos's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29q66rf9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29q66rf9/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cazum8videos'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cazum8videos/1607736154080/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cazum8videos
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cazum8 AI Bot </div>
<div style="font-size: 15px; color: #657786">@cazum8videos bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @cazum8videos's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3188</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>501</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>657</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2030</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @cazum8videos's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cazum8videos'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Robbie Wakefield 🤖 AI Bot </div>
<div style="font-size: 15px">@ccwaterboy bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@ccwaterboy's tweets](https://twitter.com/ccwaterboy).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1680 |
| Retweets | 143 |
| Short tweets | 98 |
| Tweets kept | 1439 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dz0al5jb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ccwaterboy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lhihgx6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lhihgx6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ccwaterboy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/ccwaterboy
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Robbie Wakefield AI Bot
@ccwaterboy bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @ccwaterboy's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @ccwaterboy's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">CDC 🤖 AI Bot </div>
<div style="font-size: 15px">@cdcgov bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cdcgov's tweets](https://twitter.com/cdcgov).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 1036 |
| Short tweets | 1 |
| Tweets kept | 2213 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2salp8gg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cdcgov's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tncuzay) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tncuzay/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cdcgov')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cdcgov/1619462636252/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cdcgov
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
CDC AI Bot
@cdcgov bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cdcgov's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cdcgov's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Celosia2 🌻 Kristi 💚</div>
<div style="text-align: center; font-size: 14px;">@celosia2</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Celosia2 🌻 Kristi 💚.
| Data | Celosia2 🌻 Kristi 💚 |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 613 |
| Short tweets | 494 |
| Tweets kept | 2140 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ohtfdalm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @celosia2's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xzr0nuzp) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xzr0nuzp/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/celosia2')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/celosia2/1627149452177/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/celosia2
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Celosia2 Kristi
@celosia2
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Celosia2 Kristi .
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @celosia2's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
![Follow](URL
For more details, visit the project repository.
![GitHub stars](URL
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
54
] |
[
"passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
-0.0001764487533364445,
-0.01891571842133999,
-0.0068881697952747345,
0.01242890115827322,
0.16224369406700134,
0.04406825825572014,
0.08452208340167999,
0.14250440895557404,
-0.026455026119947433,
-0.016114573925733566,
0.17334569990634918,
0.17106501758098602,
-0.014037161134183407,
0.08718273043632507,
-0.05552244931459427,
-0.2646014094352722,
0.044212065637111664,
0.058431971818208694,
-0.020032864063978195,
0.14111687242984772,
0.0714879110455513,
-0.01828647032380104,
0.10845158249139786,
-0.02953636273741722,
-0.18877948820590973,
0.03499612212181091,
0.05605728179216385,
-0.09992336481809616,
0.11936124414205551,
0.04713086411356926,
0.08659981191158295,
0.015409729443490505,
-0.07482189685106277,
-0.12249794602394104,
0.03866785019636154,
0.041891295462846756,
-0.0629689022898674,
0.05911329388618469,
0.08818957209587097,
-0.11120674759149551,
0.1456013321876526,
0.07799911499023438,
-0.01863223686814308,
0.07941857725381851,
-0.17164963483810425,
-0.019008882343769073,
-0.036983806639909744,
0.005464354529976845,
0.057414017617702484,
0.07476010918617249,
-0.01932354085147381,
0.1732589453458786,
-0.0767555758357048,
0.09587065875530243,
0.16117197275161743,
-0.2913956344127655,
-0.005072304047644138,
0.0498935841023922,
0.06722559779882431,
0.03902119770646095,
-0.015738610178232193,
0.08706029504537582,
0.06277379393577576,
0.02536560781300068,
-0.0014978112885728478,
-0.06339331716299057,
-0.0928240567445755,
0.04014677554368973,
-0.0745372325181961,
-0.06578013300895691,
0.20811960101127625,
-0.039430033415555954,
0.050536420196294785,
-0.03807967156171799,
-0.10491003096103668,
-0.02197154052555561,
-0.015753688290715218,
0.00720712635666132,
-0.06031509116292,
0.08949250727891922,
-0.014659170061349869,
-0.07363511621952057,
-0.15025688707828522,
-0.016003666445612907,
-0.18369624018669128,
0.1574522852897644,
0.003967532888054848,
0.04864242300391197,
-0.2093716263771057,
0.11408322304487228,
0.020872395485639572,
-0.08021171391010284,
0.047296058386564255,
-0.09546594321727753,
0.07179957628250122,
0.002116252202540636,
-0.05267130210995674,
-0.02264278009533882,
0.08682441711425781,
0.15258505940437317,
-0.026140356436371803,
0.0017382961232215166,
-0.027155736461281776,
0.07059825956821442,
0.05281682312488556,
0.040018972009420395,
-0.017763059586286545,
-0.04289618879556656,
0.045782025903463364,
-0.15945611894130707,
-0.007582054473459721,
-0.06918198615312576,
-0.1068587526679039,
-0.05112413689494133,
0.022331949323415756,
0.06442617624998093,
0.031878020614385605,
0.11345649510622025,
-0.04609488695859909,
-0.014168480411171913,
0.06350603699684143,
-0.042460083961486816,
-0.0172110628336668,
-0.016047241166234016,
0.015319211408495903,
0.14095398783683777,
-0.018181998282670975,
0.030711950734257698,
-0.11251416057348251,
0.0645761713385582,
-0.09946728497743607,
-0.01914660818874836,
-0.0071241967380046844,
-0.04078202322125435,
0.029947424307465553,
-0.13505136966705322,
0.010975461453199387,
-0.1711256355047226,
-0.14874492585659027,
0.009897243231534958,
-0.02876151353120804,
-0.018498392775654793,
-0.059200938791036606,
-0.03973992541432381,
-0.01719699800014496,
0.06084148958325386,
-0.04528016224503517,
0.0009662628290243447,
-0.05951235070824623,
0.11524756252765656,
-0.05245914310216904,
0.06888316571712494,
-0.13250301778316498,
0.05976588651537895,
-0.15375985205173492,
-0.00870948750525713,
-0.04503806680440903,
0.08287355303764343,
0.017666861414909363,
0.16653785109519958,
-0.006960130762308836,
-0.012972959317266941,
-0.09847598522901535,
0.06441020965576172,
-0.023426895961165428,
0.24133971333503723,
-0.06349262595176697,
-0.143473818898201,
0.22233937680721283,
-0.06944137066602707,
-0.1420930027961731,
0.12657590210437775,
0.020838137716054916,
0.07354387640953064,
0.10204131156206131,
0.19502143561840057,
0.014321080408990383,
0.006638950202614069,
0.054760824888944626,
0.0820525735616684,
-0.17468082904815674,
-0.03090454451739788,
-0.00916894432157278,
-0.01691337674856186,
-0.1358218789100647,
0.043003637343645096,
0.11889315396547318,
0.10293904691934586,
-0.07099705934524536,
-0.013554582372307777,
-0.03317642584443092,
-0.004439891315996647,
0.06940841674804688,
-0.007896981202065945,
0.09806080162525177,
-0.09929461032152176,
-0.040301576256752014,
-0.058301206678152084,
-0.006890235934406519,
0.0024084753822535276,
0.04120192304253578,
-0.040066637098789215,
0.10096675902605057,
-0.0006905568297952414,
0.05225489288568497,
-0.14046427607536316,
-0.07798092812299728,
-0.020940499380230904,
0.1575685739517212,
0.04120592027902603,
0.04776391014456749,
0.057414863258600235,
-0.0481991246342659,
-0.0158701092004776,
-0.009968787431716919,
0.16312187910079956,
-0.0394844189286232,
-0.06968989968299866,
-0.056453973054885864,
0.10656707733869553,
-0.058365050703287125,
0.03222460299730301,
-0.04202231392264366,
0.022449776530265808,
0.060929615050554276,
0.12114907056093216,
-0.0026538248639553785,
0.029062092304229736,
-0.01023187953978777,
-0.0038288652431219816,
-0.07459788024425507,
-0.020947640761733055,
0.10031349956989288,
-0.004600553773343563,
-0.08327498286962509,
0.23685328662395477,
-0.17454755306243896,
0.19663569331169128,
0.2115958034992218,
-0.2628093659877777,
-0.024321777746081352,
-0.06840608268976212,
-0.05017746612429619,
0.003011465771123767,
0.05876095965504646,
-0.04692309722304344,
0.09809201210737228,
-0.02521132305264473,
0.16497591137886047,
-0.04652651026844978,
-0.07362692058086395,
0.016456644982099533,
-0.05898859724402428,
-0.0463954322040081,
0.0659271627664566,
0.08106416463851929,
-0.15480613708496094,
0.18694530427455902,
0.20838376879692078,
0.07612863928079605,
0.19334357976913452,
0.004058185499161482,
-0.014812501147389412,
0.08005014806985855,
-0.03805047646164894,
-0.04202093929052353,
-0.07553261518478394,
-0.16944189369678497,
-0.01902174763381481,
0.07485251128673553,
0.03750864416360855,
0.11274250596761703,
-0.10172852873802185,
-0.07372885197401047,
-0.016179129481315613,
-0.005032413639128208,
0.005167648661881685,
0.1174640879034996,
0.045775800943374634,
0.14043675363063812,
-0.019972821697592735,
0.03493902459740639,
0.08747350424528122,
0.02448674477636814,
-0.10759711265563965,
0.16407065093517303,
-0.14081640541553497,
-0.38538745045661926,
-0.16212545335292816,
-0.13394121825695038,
-0.029274288564920425,
0.04825805127620697,
0.11038947850465775,
-0.13598975539207458,
0.0011978530092164874,
-0.003706524148583412,
0.12342415004968643,
-0.0806080624461174,
0.03755999356508255,
-0.07838296890258789,
0.026997538283467293,
-0.06349453330039978,
-0.07917723804712296,
-0.036463622003793716,
-0.03232228383421898,
-0.10000553727149963,
0.1757805496454239,
-0.11054177582263947,
0.057571277022361755,
0.1741490364074707,
0.022440658882260323,
0.034390855580568314,
-0.0513761006295681,
0.17275545001029968,
-0.11779367178678513,
0.02093288116157055,
0.16278521716594696,
-0.01799617148935795,
0.08678310364484787,
0.08059167861938477,
-0.015366556122899055,
-0.10777527838945389,
0.05196633189916611,
0.0019955262541770935,
-0.1096891239285469,
-0.20052047073841095,
-0.12150565534830093,
-0.0784008651971817,
0.14483654499053955,
0.05303339660167694,
0.05915789678692818,
0.17167222499847412,
0.08591149002313614,
-0.04288473725318909,
-0.004711467772722244,
-0.012867298908531666,
0.07781979441642761,
0.1684085726737976,
-0.017248503863811493,
0.11789125204086304,
-0.05446818470954895,
-0.11601924896240234,
0.13826869428157806,
0.02504623495042324,
0.050291191786527634,
0.04182872176170349,
0.008374262601137161,
-0.009610554203391075,
0.09969738125801086,
0.12988939881324768,
0.118865467607975,
-0.008107239380478859,
-0.0232877004891634,
-0.03601100295782089,
-0.00860752072185278,
-0.03570752218365669,
0.034572016447782516,
0.011757065542042255,
-0.16013272106647491,
-0.05726486071944237,
-0.12173470109701157,
0.0964120477437973,
0.09787409752607346,
0.08039643615484238,
-0.2033146470785141,
-0.004589703865349293,
0.07378163933753967,
-0.03603411093354225,
-0.11624246090650558,
0.086527980864048,
0.033109065145254135,
-0.1271866261959076,
0.0817195475101471,
-0.03352120518684387,
0.115711510181427,
-0.017423994839191437,
0.09427224844694138,
-0.04346824064850807,
-0.0329415462911129,
-0.012381686829030514,
0.10430185496807098,
-0.30799204111099243,
0.17485815286636353,
-0.019660785794258118,
-0.07034741342067719,
-0.07672256976366043,
-0.025566134601831436,
0.017929747700691223,
0.07530300319194794,
0.09619415551424026,
0.024311896413564682,
0.04642496258020401,
-0.09243860840797424,
-0.03940937668085098,
0.034113768488168716,
0.13641610741615295,
-0.0638844221830368,
-0.015862328931689262,
-0.04075292870402336,
0.01116214320063591,
-0.019626103341579437,
-0.027355113998055458,
0.018256209790706635,
-0.1504947543144226,
0.05358212813735008,
0.017237937077879906,
0.0753018707036972,
0.03889141231775284,
-0.007973386906087399,
-0.10224062204360962,
0.18268363177776337,
-0.03004412353038788,
-0.08521177619695663,
-0.127006396651268,
-0.04812724515795708,
0.04587927460670471,
-0.051474425941705704,
0.034381575882434845,
-0.06691597402095795,
-0.011345877312123775,
-0.06886660307645798,
-0.21483656764030457,
0.12495172768831253,
-0.0775398537516594,
-0.07874035835266113,
-0.03474915772676468,
0.20981398224830627,
-0.05076101794838905,
-0.00018431349599268287,
0.01172169204801321,
0.014822970144450665,
-0.1086968258023262,
-0.10466268658638,
0.06874550879001617,
-0.034708425402641296,
0.02743770368397236,
0.02760813757777214,
-0.03700246661901474,
0.02073092758655548,
-0.06074898689985275,
-0.01314478274434805,
0.2849438786506653,
0.22848764061927795,
-0.035804633051157,
0.1875685602426529,
0.10711772739887238,
-0.07248730212450027,
-0.30828598141670227,
-0.0999293103814125,
-0.13133330643177032,
-0.033457282930612564,
-0.02052777260541916,
-0.17081500589847565,
0.07089676707983017,
0.04558560997247696,
0.00998434517532587,
0.14900504052639008,
-0.21140912175178528,
-0.08518896996974945,
0.1092359870672226,
-0.03466132655739784,
0.42140644788742065,
-0.1164151057600975,
-0.09652433544397354,
-0.05340435355901718,
-0.15239587426185608,
0.20086675882339478,
-0.01557826716452837,
0.08761543780565262,
-0.031178412958979607,
0.14360429346561432,
0.04995222017168999,
-0.01680157333612442,
0.08329997956752777,
0.0014065488940104842,
0.004026432521641254,
-0.12653036415576935,
-0.022627411410212517,
0.0504734143614769,
0.021120509132742882,
0.0054380460642278194,
-0.07736434042453766,
0.028706049546599388,
-0.14863882958889008,
-0.024921666830778122,
-0.10909338295459747,
0.08278775960206985,
0.03857516124844551,
-0.07422378659248352,
-0.010892878286540508,
-0.05615931376814842,
-0.023589344695210457,
-0.012528443709015846,
0.13453009724617004,
-0.050522636622190475,
0.1720355898141861,
0.036824267357587814,
0.11522943526506424,
-0.13816054165363312,
0.06146138161420822,
-0.07406572997570038,
-0.07532623410224915,
0.06773588061332703,
-0.13577620685100555,
0.05240122601389885,
0.10075365751981735,
-0.03372569754719734,
0.04758675396442413,
0.08927652984857559,
0.000919255951885134,
0.009403540752828121,
0.15953567624092102,
-0.2761637568473816,
0.01791755110025406,
-0.07046908140182495,
-0.07692829519510269,
0.112159863114357,
0.07484955340623856,
0.181244894862175,
0.02791808731853962,
-0.0472177192568779,
0.012221097014844418,
0.019269011914730072,
-0.05120278522372246,
0.0548672117292881,
0.006578541360795498,
-0.011816216632723808,
-0.14148055016994476,
0.08790901303291321,
-0.0015104453777894378,
-0.1429632604122162,
0.02210722118616104,
0.19665491580963135,
-0.13288317620754242,
-0.10024755448102951,
-0.05081937462091446,
0.057288672775030136,
-0.13861924409866333,
0.008680099621415138,
-0.01990172080695629,
-0.09562872350215912,
0.0756591260433197,
0.1573420912027359,
0.05079081282019615,
0.12963363528251648,
-0.02916029281914234,
-0.008411908522248268,
-0.04279141128063202,
-0.051675889641046524,
0.02788730151951313,
0.019720058888196945,
-0.07752392441034317,
0.08735781908035278,
-0.024015765637159348,
0.14329436421394348,
-0.10051412135362625,
-0.06987810134887695,
-0.1344141960144043,
-0.005019306670874357,
-0.09607285261154175,
-0.0959741547703743,
-0.08079583197832108,
-0.061935000121593475,
0.004180733114480972,
-0.039079975336790085,
-0.0417400486767292,
-0.08063078671693802,
-0.10278100520372391,
0.016344387084245682,
-0.02737213484942913,
0.028547246009111404,
-0.07021904736757278,
0.008450011722743511,
0.12212047725915909,
-0.029432062059640884,
0.17478644847869873,
0.15045183897018433,
-0.10443241149187088,
0.10585668683052063,
-0.17528948187828064,
-0.10057486593723297,
0.10386897623538971,
-0.01424362976104021,
0.02509693056344986,
0.12928596138954163,
0.018586233258247375,
0.04242280498147011,
0.03278495371341705,
0.06450606882572174,
0.04438134282827377,
-0.11879310011863708,
0.08265755325555801,
-0.002198860514909029,
-0.15595629811286926,
-0.061124756932258606,
-0.09235648810863495,
0.02707000821828842,
0.02035105973482132,
0.11072126775979996,
-0.04177020862698555,
0.08901136368513107,
-0.06589431315660477,
0.023006385192275047,
0.025188656523823738,
-0.17641755938529968,
-0.03692740947008133,
-0.05073147267103195,
0.03235582634806633,
0.028527792543172836,
0.22216679155826569,
0.015049049630761147,
-0.030550595372915268,
0.0387740358710289,
0.12439186871051788,
0.015807392075657845,
-0.0005460345419123769,
0.1709187924861908,
0.10334094613790512,
-0.07364179939031601,
-0.14011329412460327,
0.0676020160317421,
0.012262817472219467,
-0.05599943920969963,
0.11458845436573029,
-0.01812131516635418,
-0.006866521667689085,
0.0670672059059143,
-0.019556820392608643,
0.03449620306491852,
-0.06607513129711151,
-0.12762659788131714,
-0.02478908933699131,
0.04269528388977051,
0.0029638311825692654,
0.12794137001037598,
0.15664103627204895,
-0.005168106406927109,
0.026651626452803612,
-0.015845872461795807,
-0.023246217519044876,
-0.13421551883220673,
-0.15646639466285706,
-0.06222613900899887,
-0.14998294413089752,
0.022462334483861923,
-0.08663632720708847,
0.047867026180028915,
0.05302877724170685,
0.07266844809055328,
-0.06541765481233597,
0.06867647916078568,
0.049353908747434616,
-0.11939282715320587,
0.08969518542289734,
-0.024748487398028374,
0.04455447196960449,
-0.0018985075876116753,
-0.03077637031674385,
-0.10359742492437363,
0.042003192007541656,
-0.01649407483637333,
0.045346152037382126,
-0.04421991854906082,
0.022579338401556015,
-0.1750071942806244,
-0.10995419323444366,
-0.04818427562713623,
0.06838665902614594,
-0.06683412194252014,
0.04056481271982193,
0.01606888137757778,
0.011690732091665268,
0.030521972104907036,
0.22083373367786407,
-0.041100796312093735,
-0.04384056478738785,
-0.041319385170936584,
0.1635150909423828,
-0.014866671524941921,
0.08733032643795013,
-0.027159888297319412,
-0.008534550666809082,
-0.09159335494041443,
0.3551705777645111,
0.29626867175102234,
-0.08988689631223679,
0.018322573974728584,
-0.023403000086545944,
0.04054094851016998,
0.13749836385250092,
0.13930056989192963,
0.09693139791488647,
0.23870247602462769,
-0.069560706615448,
-0.05235563591122627,
-0.01810343936085701,
-0.013992605730891228,
-0.06698887050151825,
0.09740167111158371,
0.02308662235736847,
-0.05992421507835388,
-0.0399320125579834,
0.09157036244869232,
-0.2363831102848053,
0.1119081899523735,
-0.1049022525548935,
-0.15424089133739471,
-0.03413557633757591,
0.011207441799342632,
0.07758733630180359,
0.01318280678242445,
0.11218693852424622,
0.013466300442814827,
-0.0844072625041008,
0.014990749768912792,
0.034041877835989,
-0.25270384550094604,
0.004782035481184721,
0.053680628538131714,
-0.12391778826713562,
-0.004765757359564304,
-0.025234686210751534,
0.013625700026750565,
0.05700398609042168,
0.04094824194908142,
-0.03069460764527321,
0.016096249222755432,
-0.006652043666690588,
-0.020144162699580193,
-0.008288858458399773,
0.05953062325716019,
0.04713095352053642,
-0.1559005230665207,
0.06380777060985565,
-0.13577982783317566,
0.04075455665588379,
-0.023885579779744148,
-0.012463473714888096,
-0.0012933483812958002,
0.01776987873017788,
-0.0522073432803154,
0.06581555306911469,
0.07255802303552628,
-0.0144086554646492,
0.008549283258616924,
-0.08346639573574066,
-0.034440234303474426,
-0.023841137066483498,
-0.10951124131679535,
-0.08404874801635742,
-0.13158579170703888,
-0.12121031433343887,
0.10822955518960953,
-0.02819518744945526,
-0.18475614488124847,
0.03248962014913559,
-0.12301548570394516,
0.05860345810651779,
-0.17328192293643951,
0.11332228779792786,
0.07014153152704239,
0.018578365445137024,
0.01264720968902111,
-0.007008096668869257,
0.08073210716247559,
0.11507359892129898,
-0.0813264548778534,
-0.08199906349182129
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.