sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356414477143519232/H2T46KhD_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ellie 🐰 🤖 AI Bot </div> <div style="font-size: 15px">@bichebuni bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bichebuni's tweets](https://twitter.com/bichebuni). | Data | Quantity | | --- | --- | | Tweets downloaded | 1578 | | Retweets | 559 | | Short tweets | 216 | | Tweets kept | 803 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jluupd2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bichebuni's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2a0ttba9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2a0ttba9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bichebuni') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bichebuni/1614096170963/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bichebuni
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Ellie AI Bot @bichebuni bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @bichebuni's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bichebuni's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/716292569395699712/FxrNVTxe_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bill Cipher 🤖 AI Bot </div> <div style="font-size: 15px">@biiiclpher bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@biiiclpher's tweets](https://twitter.com/biiiclpher). | Data | Quantity | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 0 | | Short tweets | 404 | | Tweets kept | 2836 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/iieebvnq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @biiiclpher's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/280557pf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/280557pf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/biiiclpher') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/biiiclpher/1613324925504/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/biiiclpher
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Bill Cipher AI Bot @biiiclpher bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @biiiclpher's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @biiiclpher's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419807498228273155/aAmpG4n-_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421709337580294148/sjrv_GDf_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & hood barbie & kevin</div> <div style="text-align: center; font-size: 14px;">@biinx_-dril-milkman409</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & hood barbie & kevin. | Data | wint | hood barbie | kevin | | --- | --- | --- | --- | | Tweets downloaded | 3188 | 1176 | 3232 | | Retweets | 456 | 419 | 1026 | | Short tweets | 307 | 205 | 488 | | Tweets kept | 2425 | 552 | 1718 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ztraqgze/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @biinx_-dril-milkman409's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39g1ujvg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39g1ujvg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/biinx_-dril-milkman409') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/biinx_-dril-milkman409/1628066338698/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/biinx_-dril-milkman409
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG wint & hood barbie & kevin @biinx\_-dril-milkman409 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from wint & hood barbie & kevin. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @biinx\_-dril-milkman409's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414439092373254147/JdS8yLGI_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1115644092329758721/AFjOr-K8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bill Gates & jack</div> <div style="text-align: center; font-size: 14px;">@billgates-jack</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bill Gates & jack. | Data | Bill Gates | jack | | --- | --- | --- | | Tweets downloaded | 3250 | 3196 | | Retweets | 198 | 1168 | | Short tweets | 6 | 808 | | Tweets kept | 3046 | 1220 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20z4h7xy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billgates-jack's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wd36v62) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wd36v62/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/billgates-jack') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/billgates-jack/1627986735283/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/billgates-jack
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Bill Gates & jack @billgates-jack I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Bill Gates & jack. Data: Tweets downloaded, Bill Gates: 3250, jack: 3196 Data: Retweets, Bill Gates: 198, jack: 1168 Data: Short tweets, Bill Gates: 6, jack: 808 Data: Tweets kept, Bill Gates: 3046, jack: 1220 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @billgates-jack's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1564398871996174336/M-hffw5a_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bill Gates</div> <div style="text-align: center; font-size: 14px;">@billgates</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bill Gates. | Data | Bill Gates | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 176 | | Short tweets | 10 | | Tweets kept | 3064 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e81cpn8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billgates's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/x3nz24e9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/x3nz24e9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/billgates') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/billgates/1669939035568/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/billgates
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Bill Gates @billgates I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Bill Gates. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @billgates's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371497779772715009/_Fgk6GbC_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Will 🕊️🌷 🤖 AI Bot </div> <div style="font-size: 15px">@billpshort bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@billpshort's tweets](https://twitter.com/billpshort). | Data | Quantity | | --- | --- | | Tweets downloaded | 3224 | | Retweets | 502 | | Short tweets | 646 | | Tweets kept | 2076 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qcn56oc9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billpshort's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/85i3zyjz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/85i3zyjz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/billpshort') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/billpshort/1616611559120/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/billpshort
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Will ️ AI Bot @billpshort bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @billpshort's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @billpshort's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1322690501481533440/gmJWNIzA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">juggalo kokopelli 🤖 AI Bot </div> <div style="font-size: 15px">@billtheponyfan bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@billtheponyfan's tweets](https://twitter.com/billtheponyfan). | Data | Quantity | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 452 | | Short tweets | 397 | | Tweets kept | 2329 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ghn4ya3z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billtheponyfan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31cu6fzd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31cu6fzd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/billtheponyfan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/billtheponyfan
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
juggalo kokopelli AI Bot @billtheponyfan bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @billtheponyfan's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @billtheponyfan's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1016862391823360000/BeQ1lMU7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">bill wurtz</div> <div style="text-align: center; font-size: 14px;">@billwurtz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from bill wurtz. | Data | bill wurtz | | --- | --- | | Tweets downloaded | 3113 | | Retweets | 29 | | Short tweets | 97 | | Tweets kept | 2987 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18dzkuk8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @billwurtz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sqtnvoy5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sqtnvoy5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/billwurtz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/billwurtz/1668310271499/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/billwurtz
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT bill wurtz @billwurtz I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from bill wurtz. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @billwurtz's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1466001345324875784/4RrjsTR__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Binance</div> <div style="text-align: center; font-size: 14px;">@binance</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Binance. | Data | Binance | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 268 | | Short tweets | 353 | | Tweets kept | 2629 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/m31ml960/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @binance's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vx6m0ip) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vx6m0ip/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/binance') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/binance/1638367358099/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/binance
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Binance @binance I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Binance. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @binance's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1398220397049434117/3i7JMNiF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399230370109825024/FypJacJv_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404352885815664642/BEvtg0q4_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">bladee & Nothing person 2 & headaches</div> <div style="text-align: center; font-size: 14px;">@biocrimed-bladeecity-w3bcam</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from bladee & Nothing person 2 & headaches. | Data | bladee | Nothing person 2 | headaches | | --- | --- | --- | --- | | Tweets downloaded | 1599 | 1863 | 3231 | | Retweets | 313 | 117 | 62 | | Short tweets | 486 | 714 | 1451 | | Tweets kept | 800 | 1032 | 1718 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37jgy6z4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @biocrimed-bladeecity-w3bcam's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1xg0n2ib) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1xg0n2ib/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/biocrimed-bladeecity-w3bcam') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/biocrimed-bladeecity-w3bcam/1623834051692/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/biocrimed-bladeecity-w3bcam
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG bladee & Nothing person 2 & headaches @biocrimed-bladeecity-w3bcam I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from bladee & Nothing person 2 & headaches. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @biocrimed-bladeecity-w3bcam's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371598614263386115/7NaqMiOP_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🐱‍🚀 Brikir 🤖 AI Bot </div> <div style="font-size: 15px">@birkirh bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@birkirh's tweets](https://twitter.com/birkirh). | Data | Quantity | | --- | --- | | Tweets downloaded | 1105 | | Retweets | 98 | | Short tweets | 191 | | Tweets kept | 816 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1l7dop1n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @birkirh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zk4c602e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zk4c602e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/birkirh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/birkirh/1616669653013/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/birkirh
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
‍ Brikir AI Bot @birkirh bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @birkirh's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @birkirh's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/421692600446619648/dWAbC2wg_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bitcoin 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@bitcoin bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bitcoin's tweets](https://twitter.com/bitcoin). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3206</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1190</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>390</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1626</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9fss3789/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bitcoin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pqrlo2u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pqrlo2u/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bitcoin'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bitcoin/1612625608055/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bitcoin
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bitcoin AI Bot </div> <div style="font-size: 15px; color: #657786">@bitcoin bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @bitcoin's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3206</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1190</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>390</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1626</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @bitcoin's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bitcoin'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bitcoin's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3206</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1190</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>390</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1626</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bitcoin's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bitcoin'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bitcoin's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3206</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1190</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>390</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1626</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bitcoin's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bitcoin'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 61, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.036957841366529465, 0.028439832851290703, -0.0015510531375184655, 0.0522519014775753, 0.09104208648204803, 0.01613340899348259, 0.11610153317451477, 0.05408855527639389, -0.03943737968802452, -0.009537769481539726, 0.22685234248638153, 0.07105769217014313, 0.019403526559472084, 0.20068788528442383, 0.009344891645014286, -0.27727609872817993, 0.023726457729935646, 0.06600657850503922, -0.08643968403339386, 0.15519586205482483, 0.06697577983140945, -0.06281840056180954, 0.08188221603631973, 0.03542723134160042, -0.1698044091463089, -0.003953896462917328, -0.023645279929041862, -0.04585979878902435, 0.08985969424247742, 0.06402523070573807, 0.07766450196504593, 0.0395268052816391, 0.01743880845606327, -0.056890953332185745, 0.0624532550573349, 0.02220982313156128, -0.030246086418628693, 0.1399676650762558, 0.014696607366204262, 0.0004075262986589223, 0.1859678477048874, 0.07300231605768204, 0.02223629131913185, 0.006817587185651064, -0.1139768734574318, -0.0871712937951088, 0.003943595103919506, 0.0635121762752533, 0.07659979909658432, 0.05465218424797058, 0.006914658937603235, 0.1418951153755188, -0.12392020970582962, 0.08105333894491196, 0.21441547572612762, -0.2727958559989929, -0.016248220577836037, 0.10247130692005157, 0.11276773363351822, 0.027282236143946648, -0.01177078764885664, 0.059729672968387604, 0.061655204743146896, 0.019949430599808693, 0.07470892369747162, -0.05855587124824524, 0.01805218495428562, 0.028208186849951744, -0.1143856793642044, -0.07652922719717026, 0.23844009637832642, -0.05423597991466522, 0.015450969338417053, -0.047529686242341995, -0.09342443943023682, -0.07384383678436279, -0.005623159930109978, -0.05666974559426308, -0.007890385575592518, 0.01864462159574032, 0.018896756693720818, -0.1054244413971901, -0.07819702476263046, -0.10457580536603928, -0.10849349945783615, 0.1803249716758728, -0.040506161749362946, 0.0817822813987732, -0.23291015625, 0.21559202671051025, 0.036376915872097015, -0.12574265897274017, 0.04746782034635544, -0.11639358848333359, 0.07857928425073624, 0.029507432132959366, 0.011693858541548252, 0.07849046587944031, 0.03637336194515228, 0.11586875468492508, 0.026605287566781044, -0.018757855519652367, 0.07722558081150055, 0.07109145820140839, 0.09591487795114517, 0.13827738165855408, -0.09135200083255768, -0.08558996766805649, 0.0640115886926651, -0.025731313973665237, -0.09968787431716919, -0.08043155074119568, -0.15267591178417206, -0.01718568429350853, -0.01639498956501484, 0.055247288197278976, 0.06559104472398758, 0.10374831408262253, -0.007327609695494175, -0.05069895461201668, 0.05578071251511574, -0.07770435512065887, 0.036006782203912735, -0.010715940035879612, -0.05328039079904556, 0.09645502269268036, 0.06152605265378952, -0.018080273643136024, -0.06805066019296646, 0.06528675556182861, -0.12464052438735962, -0.0746353343129158, -0.08489898592233658, -0.08459903299808502, -0.0033850842155516148, -0.11195813864469528, 0.04438334330916405, -0.12513364851474762, -0.1875426024198532, -0.019076721742749214, 0.038941558450460434, -0.019129937514662743, -0.050462350249290466, -0.014754303731024265, -0.030690612271428108, 0.06484408676624298, -0.04192564636468887, 0.06606270372867584, -0.04646285995841026, 0.04317474737763405, -0.1038079485297203, 0.07506512850522995, -0.11335023492574692, 0.045407965779304504, -0.0869331955909729, 0.07672429084777832, -0.01491438876837492, 0.04056472331285477, -0.0027362529654055834, 0.07222571223974228, -0.03136077895760536, -0.05354456603527069, -0.09087004512548447, 0.03779061883687973, 0.028729699552059174, 0.17656385898590088, -0.11670685559511185, -0.07043900340795517, 0.10408778488636017, -0.0606742687523365, -0.12485499680042267, 0.04504797235131264, -0.03302796185016632, 0.1620379239320755, 0.04296383634209633, 0.19674347341060638, 0.11987333744764328, -0.0424516461789608, 0.09511474519968033, 0.15294522047042847, -0.10864574462175369, 0.0074891322292387486, 0.04841103032231331, 0.032674431800842285, -0.16477352380752563, 0.0320109948515892, -0.018611229956150055, 0.04702364653348923, -0.09305625408887863, -0.01918911375105381, -0.01802568882703781, -0.02996664121747017, 0.0323796346783638, -0.04442555829882622, 0.06713172048330307, 0.020938798785209656, -0.04812709614634514, 0.04839034005999565, 0.07213134318590164, -0.02264196239411831, 0.0020180183928459883, -0.039950575679540634, 0.11683191359043121, -0.07588917762041092, 0.05790749564766884, -0.1441957652568817, -0.0168297179043293, -0.021489014849066734, 0.09809985011816025, 0.03530602902173996, 0.14380986988544464, 0.0550042949616909, 0.01915331371128559, 0.06624830514192581, -0.022922443225979805, 0.05827873572707176, 0.02710040844976902, -0.09941620379686356, -0.12717488408088684, -0.012911458499729633, -0.11458394676446915, -0.0052479952573776245, -0.09644946455955505, 0.010615244507789612, -0.09765887260437012, 0.06395462900400162, -0.01994241215288639, 0.05977523326873779, -0.04574739187955856, -0.03655772656202316, -0.05316167324781418, -0.02735132724046707, 0.038675546646118164, -0.036373257637023926, -0.06530866026878357, 0.1834312528371811, -0.17798036336898804, 0.27380433678627014, 0.15230417251586914, -0.07819362729787827, -0.0033755803015083075, -0.04844046011567116, -0.04316511005163193, -0.009485465474426746, 0.06157580390572548, -0.052464161068201065, 0.11778384447097778, -0.05241383612155914, 0.15533551573753357, -0.0994764119386673, -0.03966521844267845, 0.01805325411260128, -0.10048560053110123, 0.035198044031858444, 0.08144278824329376, 0.018619630485773087, -0.1422753930091858, 0.10265272110700607, 0.22713547945022583, 0.033487718552351, 0.20176003873348236, 0.0033360153902322054, -0.050971660763025284, -0.060499727725982666, -0.09742825478315353, -0.06669804453849792, 0.06882613152265549, -0.10576487332582474, -0.023757660761475563, 0.07485733926296234, 0.08084454387426376, 0.10491110384464264, -0.10923711210489273, -0.043254293501377106, 0.06530351936817169, 0.00812764372676611, -0.059952590614557266, 0.09263986349105835, -0.050175268203020096, 0.13090567290782928, 0.02091604471206665, -0.06905695796012878, -0.007114171516150236, 0.0020951752085238695, -0.10671134293079376, 0.19196246564388275, -0.07695271074771881, -0.26963570713996887, -0.13954924046993256, -0.13654430210590363, 0.06409017741680145, 0.034136030822992325, 0.04386100545525551, -0.07468235492706299, -0.013868131674826145, -0.025200005620718002, 0.10035631060600281, -0.08896787464618683, 0.026813555508852005, 0.0004457366303540766, -0.026341909542679787, -0.06160859763622284, -0.09950019419193268, -0.027976373210549355, -0.020906725898385048, 0.017399929463863373, 0.042761459946632385, -0.09056173264980316, 0.07557916641235352, 0.2183644324541092, -0.03138936683535576, 0.06333448737859726, -0.0031115238089114428, 0.2701784074306488, -0.08147978782653809, 0.05111989006400108, 0.12901179492473602, -0.05892426148056984, 0.04886910319328308, 0.08438767492771149, 0.031278014183044434, 0.003100723261013627, 0.012716487981379032, -0.10377652943134308, -0.13362346589565277, -0.1690601259469986, -0.0788203552365303, -0.043638888746500015, 0.11456932872533798, 0.03444493189454079, 0.047549109905958176, 0.0845150500535965, 0.06523510813713074, 0.06864210218191147, 0.0408494733273983, -0.01267802994698286, 0.05803968012332916, 0.04064653441309929, -0.05869462341070175, 0.08591889590024948, -0.05128437280654907, -0.0733334943652153, 0.08579708635807037, -0.010879487730562687, 0.0877949520945549, 0.04373898729681969, -0.008053966797888279, 0.02404404804110527, 0.06194858253002167, 0.15020470321178436, 0.1987341046333313, -0.017453979700803757, -0.03907669335603714, -0.05309029668569565, -0.04876493290066719, 0.0010987201239913702, 0.03522460535168648, -0.03081262670457363, -0.03721199557185173, -0.07683021575212479, -0.040978725999593735, 0.02056337147951126, 0.008295038715004921, 0.09901130199432373, -0.22414755821228027, -0.04680551588535309, 0.05300779640674591, -0.011109844781458378, -0.10235141962766647, 0.0486474335193634, 0.052199169993400574, -0.15679563581943512, -0.0747041329741478, 0.0016573359025642276, 0.1553722769021988, 0.007408075965940952, 0.06414399296045303, -0.01120020542293787, 0.008204149082303047, -0.019298546016216278, 0.10699696093797684, -0.2525569498538971, 0.1983141303062439, -0.003210721304640174, -0.06626024097204208, -0.020479850471019745, -0.044349782168865204, 0.015917111188173294, 0.16194896399974823, 0.07822076976299286, 0.009989120997488499, 0.04167865589261055, -0.06891639530658722, -0.0989905595779419, 0.039567731320858, 0.07234606891870499, -0.07834747433662415, 0.03704670071601868, -0.031392693519592285, 0.026804422959685326, 0.007812879979610443, 0.04238542914390564, 0.0032883163075894117, -0.11566793918609619, 0.04111427813768387, -0.05135736241936684, 0.03766297921538353, 0.011045078746974468, -0.04320872575044632, -0.04401804879307747, 0.1291114240884781, 0.023822486400604248, -0.07421612739562988, -0.09690994769334793, -0.01674535498023033, 0.10766459256410599, -0.05178924649953842, 0.0395711213350296, -0.06764588505029678, -0.025582244619727135, -0.0010348808718845248, -0.16654762625694275, 0.08468036353588104, -0.1034354418516159, -0.10324236005544662, -0.04601160064339638, 0.13795481622219086, -0.008908875286579132, 0.038746971637010574, 0.028638411313295364, -0.015859607607126236, -0.20559397339820862, -0.15751859545707703, -0.005655546206980944, 0.06437796354293823, -0.02907167747616768, 0.030363548547029495, 0.014067093841731548, 0.0779559388756752, 0.029679089784622192, 0.07852451503276825, 0.19250838458538055, 0.1641826033592224, -0.12356504052877426, 0.17432141304016113, 0.11685521900653839, -0.09752824902534485, -0.2909252345561981, -0.0866522565484047, -0.05929427593946457, 0.04940007999539375, 0.050105031579732895, -0.09427661448717117, 0.052398864179849625, -0.02638052962720394, -0.02532520703971386, 0.11167085915803909, -0.2658156454563141, -0.08536534011363983, 0.12958896160125732, -0.03357113525271416, 0.24666248261928558, -0.052993349730968475, -0.06442388892173767, -0.04927130788564682, -0.22444558143615723, 0.15593691170215607, -0.16166003048419952, 0.04048093780875206, -0.057187411934137344, 0.13384146988391876, 0.04865957424044609, -0.04850389435887337, 0.15261295437812805, -0.08712619543075562, 0.035534005612134933, -0.12524162232875824, -0.04269077256321907, 0.0793987438082695, -0.03533810377120972, 0.10734768211841583, -0.0786362737417221, 0.10640233755111694, -0.14121070504188538, -0.03871979936957359, -0.0656876340508461, 0.025150349363684654, -0.03452679142355919, -0.058067090809345245, -0.06064565107226372, -0.04524264112114906, 0.014690292067825794, -0.027296962216496468, 0.008272450417280197, -0.03081299550831318, 0.09801467508077621, 0.14333607256412506, 0.11364130675792694, -0.049809038639068604, -0.030170602723956108, -0.001688650925643742, -0.0459875725209713, 0.08619595319032669, -0.20814381539821625, -0.02099686861038208, 0.13885565102100372, 0.00377092813141644, 0.06916354596614838, 0.08313405513763428, -0.039256539195775986, -0.03956247866153717, 0.09855013340711594, -0.23020075261592865, -0.04467693343758583, -0.06456494331359863, -0.03082679584622383, 0.02778276801109314, 0.05963136628270149, 0.11900734901428223, -0.06863359361886978, -0.017440522089600563, 0.03473749756813049, -0.010185993276536465, -0.10746412724256516, 0.11216779798269272, 0.09360326826572418, 0.06425464153289795, -0.11813671141862869, 0.005651185754686594, 0.0021856764797121286, -0.02147592417895794, -0.002775238361209631, 0.09173188358545303, -0.12994156777858734, -0.0770140290260315, -0.007433260325342417, 0.12573257088661194, -0.0722465068101883, -0.04175035282969475, 0.004039712715893984, -0.08672652393579483, 0.060403972864151, 0.06655753403902054, 0.05720295011997223, 0.09675479680299759, -0.0737636610865593, -0.00798660609871149, -0.02613585628569126, 0.04246285557746887, 0.04351476579904556, -0.0024849874898791313, -0.12743400037288666, 0.07187922298908234, 0.004561395850032568, 0.21746870875358582, -0.12654003500938416, -0.059433069080114365, -0.14724664390087128, 0.014335853978991508, -0.13943880796432495, -0.040762774646282196, -0.08377740532159805, -0.051959484815597534, -0.025316625833511353, -0.04126511141657829, -0.061832524836063385, -0.027948632836341858, -0.07008510082960129, 0.04136950522661209, -0.02915726974606514, -0.02692449279129505, -0.030877625569701195, 0.039195794612169266, 0.09952878206968307, -0.004012581892311573, 0.11594391614198685, 0.08488654345273972, -0.06341566890478134, 0.04963025078177452, -0.06886816024780273, 0.03628375753760338, 0.0054685203358531, -0.026229701936244965, 0.08765017986297607, 0.02271025814116001, 0.003203571541234851, -0.030359575524926186, -0.03200216591358185, 0.016795139759778976, 0.034612156450748444, -0.07783948630094528, 0.04478999972343445, 0.013998626731336117, -0.0659075677394867, -0.05816163867712021, -0.017757484689354897, -0.04581690952181816, 0.11110852658748627, 0.08613187819719315, 0.023186462000012398, 0.09581328928470612, -0.11784116178750992, -0.00346497748978436, 0.006481196731328964, -0.09052783995866776, -0.01036484632641077, -0.0933149978518486, -0.0012798047391697764, -0.029477760195732117, 0.26975929737091064, 0.14490845799446106, -0.05445392057299614, -0.023649320006370544, 0.07632522284984589, 0.08578091114759445, -0.018054457381367683, 0.15094119310379028, 0.023839840665459633, -0.0006715565104968846, -0.12871749699115753, 0.1016273945569992, -0.044977594166994095, 0.012650759890675545, 0.08702562004327774, -0.06118067353963852, 0.0599173977971077, 0.08605147898197174, -0.015055065974593163, 0.03623451665043831, -0.14137905836105347, -0.24918900430202484, 0.013319292105734348, 0.03459711745381355, -0.07577105611562729, 0.04806678369641304, 0.15595917403697968, -0.014164948835968971, 0.0584358349442482, 0.0458112396299839, -0.04676305875182152, -0.16674941778182983, -0.18524399399757385, -0.045937683433294296, -0.1246238499879837, -0.044006045907735825, -0.10537362098693848, 0.04728402569890022, 0.0007369602681137621, 0.048351433128118515, -0.07136411219835281, 0.13207633793354034, 0.04646368697285652, -0.09289506822824478, 0.052815474569797516, -0.008510089479386806, 0.0549050010740757, -0.07187408953905106, 0.08335799723863602, -0.09422473609447479, -0.019208038225769997, -0.016898462548851967, 0.029134847223758698, -0.056743279099464417, -0.0013946788385510445, -0.09724609553813934, -0.07101311534643173, -0.06404244899749756, 0.07874966412782669, -0.015338793396949768, 0.04803508147597313, -0.010247399099171162, -0.06088217347860336, -0.031941007822752, 0.2557208240032196, -0.04110946133732796, -0.046044256538152695, -0.06486409902572632, 0.2586919367313385, -0.06140739098191261, 0.0644557774066925, -0.04180695489048958, -0.018922440707683563, -0.08466950803995132, 0.26929792761802673, 0.3908248245716095, -0.1412404626607895, 0.03459572419524193, -0.008453168906271458, 0.0327092669904232, 0.06803425401449203, 0.1611192673444748, 0.07707126438617706, 0.3019386827945709, -0.04411938786506653, -0.010617653839290142, -0.10272300243377686, -0.03540131449699402, 0.003131316741928458, 0.03330685943365097, 0.07963640987873077, -0.07180926948785782, -0.06305108219385147, 0.07862940430641174, -0.22696681320667267, -0.030442098155617714, -0.13761518895626068, -0.10450012236833572, -0.049185674637556076, 0.014802253805100918, 0.08966728299856186, 0.01865907572209835, 0.06020749732851982, -0.0458066426217556, -0.03824217990040779, 0.0455019548535347, -0.02444612793624401, -0.10540956258773804, 0.01534019410610199, 0.15365947782993317, -0.07392602413892746, 0.0023237173445522785, -0.005027651786804199, 0.05340380594134331, 0.06089328974485397, 0.03722664341330528, -0.10180973261594772, 0.030325181782245636, 0.01782776601612568, -0.038751162588596344, -0.029181774705648422, 0.010681736283004284, 0.06497117877006531, -0.2025282084941864, 0.01624528504908085, -0.16063238680362701, 0.009704667143523693, -0.07226309925317764, 0.002642549341544509, -0.08123132586479187, 0.015312325209379196, 0.00311310775578022, 0.11700636148452759, 0.11913763731718063, -0.042414646595716476, -0.013723719865083694, -0.05080230161547661, 0.04731446132063866, -0.0633389949798584, -0.019774004817008972, -0.03287029266357422, -0.08418891578912735, -0.07459089905023575, 0.08354661613702774, -0.018628183752298355, -0.15050029754638672, -0.0062072426080703735, -0.08585483580827713, -0.03757300600409508, -0.010560750961303711, 0.10042957216501236, 0.12131665647029877, 0.07051606476306915, -0.015230938792228699, 0.031906336545944214, 0.02460375241935253, 0.07792239636182785, -0.13583441078662872, -0.09363964200019836 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394891459900231689/xXdX3yWP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1415442891015610370/1qyYwuHx_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1357462788130578434/6ZRnYvCW_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Crypto Bros Taking Ls & Bitfinex’ed 🔥 & Xeni</div> <div style="text-align: center; font-size: 14px;">@bitfinexed-coinerstakingls-xeni</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Crypto Bros Taking Ls & Bitfinex’ed 🔥 & Xeni. | Data | Crypto Bros Taking Ls | Bitfinex’ed 🔥 | Xeni | | --- | --- | --- | --- | | Tweets downloaded | 566 | 3245 | 3229 | | Retweets | 94 | 650 | 1834 | | Short tweets | 222 | 613 | 402 | | Tweets kept | 250 | 1982 | 993 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3eviqxf1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bitfinexed-coinerstakingls-xeni's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kim6sku) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kim6sku/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bitfinexed-coinerstakingls-xeni') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bitfinexed-coinerstakingls-xeni/1643345731503/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bitfinexed-coinerstakingls-xeni
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Crypto Bros Taking Ls & Bitfinex’ed & Xeni @bitfinexed-coinerstakingls-xeni I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Crypto Bros Taking Ls & Bitfinex’ed & Xeni. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bitfinexed-coinerstakingls-xeni's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1415442891015610370/1qyYwuHx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bitfinex'ed 🔥</div> <div style="text-align: center; font-size: 14px;">@bitfinexed</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bitfinex'ed 🔥. | Data | Bitfinex'ed 🔥 | | --- | --- | | Tweets downloaded | 3227 | | Retweets | 863 | | Short tweets | 628 | | Tweets kept | 1736 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21r06xwr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bitfinexed's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2juhurh4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2juhurh4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bitfinexed') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bitfinexed/1633818005154/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bitfinexed
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Bitfinex'ed @bitfinexed I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Bitfinex'ed . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bitfinexed's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406669132527976453/Sv0lEtmk_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/822229503212666880/L4UutyTM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aim & Combat Ballerina</div> <div style="text-align: center; font-size: 14px;">@bladeecity-robber0540</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aim & Combat Ballerina. | Data | Aim | Combat Ballerina | | --- | --- | --- | | Tweets downloaded | 1604 | 671 | | Retweets | 314 | 66 | | Short tweets | 487 | 303 | | Tweets kept | 803 | 302 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uvtcfjv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-robber0540's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36qst0l8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36qst0l8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bladeecity-robber0540') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bladeecity-robber0540/1626331680252/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bladeecity-robber0540
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Aim & Combat Ballerina @bladeecity-robber0540 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Aim & Combat Ballerina. Data: Tweets downloaded, Aim: 1604, Combat Ballerina: 671 Data: Retweets, Aim: 314, Combat Ballerina: 66 Data: Short tweets, Aim: 487, Combat Ballerina: 303 Data: Tweets kept, Aim: 803, Combat Ballerina: 302 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity-robber0540's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406669132527976453/Sv0lEtmk_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409559937445990403/9bkJBvX9_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1264902234703265794/lC3YnIYF_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aim & jamar 🇵🇸 & Adrian Wojnarowski</div> <div style="text-align: center; font-size: 14px;">@bladeecity-rxmaybike-wojespn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aim & jamar 🇵🇸 & Adrian Wojnarowski. | Data | Aim | jamar 🇵🇸 | Adrian Wojnarowski | | --- | --- | --- | --- | | Tweets downloaded | 1601 | 3071 | 3250 | | Retweets | 314 | 1694 | 777 | | Short tweets | 486 | 325 | 34 | | Tweets kept | 801 | 1052 | 2439 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2h7w61mh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-rxmaybike-wojespn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mkjmebf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mkjmebf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bladeecity-rxmaybike-wojespn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bladeecity-rxmaybike-wojespn/1624998722915/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bladeecity-rxmaybike-wojespn
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Aim & jamar 🇵🇸 & Adrian Wojnarowski @bladeecity-rxmaybike-wojespn I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Aim & jamar 🇵🇸 & Adrian Wojnarowski. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity-rxmaybike-wojespn's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1501634135378391044/6FiRJ7RP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1454672063319392260/iwO_Ll7D_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aim Nothyng & jamar " The Fool ” majima 🇵🇸</div> <div style="text-align: center; font-size: 14px;">@bladeecity-rxmaybike</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aim Nothyng & jamar " The Fool ” majima 🇵🇸. | Data | Aim Nothyng | jamar " The Fool ” majima 🇵🇸 | | --- | --- | --- | | Tweets downloaded | 1620 | 3058 | | Retweets | 322 | 1792 | | Short tweets | 492 | 331 | | Tweets kept | 806 | 935 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ujud5vr2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-rxmaybike's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2am1uizy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2am1uizy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bladeecity-rxmaybike') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bladeecity-rxmaybike/1653254735804/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bladeecity-rxmaybike
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Aim Nothyng & jamar " The Fool ” majima 🇵🇸 @bladeecity-rxmaybike I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Aim Nothyng & jamar " The Fool ” majima 🇵🇸. Data: Tweets downloaded, Aim Nothyng: 1620, jamar " The Fool ” majima 🇵🇸: 3058 Data: Retweets, Aim Nothyng: 322, jamar " The Fool ” majima 🇵🇸: 1792 Data: Short tweets, Aim Nothyng: 492, jamar " The Fool ” majima 🇵🇸: 331 Data: Tweets kept, Aim Nothyng: 806, jamar " The Fool ” majima 🇵🇸: 935 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity-rxmaybike's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406669132527976453/Sv0lEtmk_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1193884102023237632/d21-RRy2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aim & SGCHIEFCOMMANDA</div> <div style="text-align: center; font-size: 14px;">@bladeecity-thaiboygoon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aim & SGCHIEFCOMMANDA. | Data | Aim | SGCHIEFCOMMANDA | | --- | --- | --- | | Tweets downloaded | 1601 | 3176 | | Retweets | 314 | 460 | | Short tweets | 486 | 463 | | Tweets kept | 801 | 2253 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mwc0s6y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-thaiboygoon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2uwsmmzd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2uwsmmzd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bladeecity-thaiboygoon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bladeecity-thaiboygoon/1625039802520/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bladeecity-thaiboygoon
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Aim & SGCHIEFCOMMANDA @bladeecity-thaiboygoon I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Aim & SGCHIEFCOMMANDA. Data: Tweets downloaded, Aim: 1601, SGCHIEFCOMMANDA: 3176 Data: Retweets, Aim: 314, SGCHIEFCOMMANDA: 460 Data: Short tweets, Aim: 486, SGCHIEFCOMMANDA: 463 Data: Tweets kept, Aim: 801, SGCHIEFCOMMANDA: 2253 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity-thaiboygoon's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1501634135378391044/6FiRJ7RP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aim Nothyng</div> <div style="text-align: center; font-size: 14px;">@bladeecity</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aim Nothyng. | Data | Aim Nothyng | | --- | --- | | Tweets downloaded | 1620 | | Retweets | 322 | | Short tweets | 492 | | Tweets kept | 806 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/195wt1qo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/239lpzqe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/239lpzqe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bladeecity') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bladeecity/1653403106456/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bladeecity
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Aim Nothyng @bladeecity I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Aim Nothyng. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeecity's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1470642032851009537/LWrcZk48_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sweetie p1e</div> <div style="text-align: center; font-size: 14px;">@bladeefan91</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sweetie p1e. | Data | sweetie p1e | | --- | --- | | Tweets downloaded | 2249 | | Retweets | 351 | | Short tweets | 547 | | Tweets kept | 1351 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/cacbnxbr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeefan91's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kupw7ab) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kupw7ab/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bladeefan91') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bladeefan91/1639726754777/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bladeefan91
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT sweetie p1e @bladeefan91 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from sweetie p1e. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bladeefan91's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357543393757433856/lBrNiipb_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ghislaine Maxwell's Fat Tiddies Apologist 🤖 AI Bot </div> <div style="font-size: 15px">@bleaksigilkeep bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bleaksigilkeep's tweets](https://twitter.com/bleaksigilkeep). | Data | Quantity | | --- | --- | | Tweets downloaded | 3206 | | Retweets | 1132 | | Short tweets | 387 | | Tweets kept | 1687 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/200hepvo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bleaksigilkeep's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ugdbbm9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ugdbbm9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bleaksigilkeep') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bleaksigilkeep/1614100737277/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bleaksigilkeep
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Ghislaine Maxwell's Fat Tiddies Apologist AI Bot @bleaksigilkeep bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @bleaksigilkeep's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bleaksigilkeep's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1253341078637273089/PO6bqj0P_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bloodwarriorguru</div> <div style="text-align: center; font-size: 14px;">@bloodwarrioroc1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bloodwarriorguru. | Data | Bloodwarriorguru | | --- | --- | | Tweets downloaded | 1206 | | Retweets | 67 | | Short tweets | 266 | | Tweets kept | 873 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2x3rus6s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bloodwarrioroc1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s1u2k3b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s1u2k3b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bloodwarrioroc1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bloodwarrioroc1/1624210855980/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bloodwarrioroc1
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Bloodwarriorguru @bloodwarrioroc1 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Bloodwarriorguru. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bloodwarrioroc1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1478488866730524675/y4KIjwym_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ᵍᵐBlueEyedGirl.ᴺᶠᵀ😎🔻🦴</div> <div style="text-align: center; font-size: 14px;">@blueeyedgirlnft</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ᵍᵐBlueEyedGirl.ᴺᶠᵀ😎🔻🦴. | Data | ᵍᵐBlueEyedGirl.ᴺᶠᵀ😎🔻🦴 | | --- | --- | | Tweets downloaded | 588 | | Retweets | 349 | | Short tweets | 154 | | Tweets kept | 85 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9tllree8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @blueeyedgirlnft's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q6w52hj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q6w52hj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/blueeyedgirlnft') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/blueeyedgirlnft/1642199309839/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/blueeyedgirlnft
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ᵍᵐBlueEyedGirl.ᴺᶠᵀ @blueeyedgirlnft I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ᵍᵐBlueEyedGirl.ᴺᶠᵀ. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @blueeyedgirlnft's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1306249141018910726/o3bCj_sP_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Barnes & Noble 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@bnbuzz bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bnbuzz's tweets](https://twitter.com/bnbuzz). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3156</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>821</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>124</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2211</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tso130j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bnbuzz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b6k9q0j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b6k9q0j/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bnbuzz'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bnbuzz
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Barnes & Noble AI Bot </div> <div style="font-size: 15px; color: #657786">@bnbuzz bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @bnbuzz's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3156</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>821</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>124</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2211</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @bnbuzz's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bnbuzz'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bnbuzz's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3156</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>821</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>124</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2211</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bnbuzz's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bnbuzz'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bnbuzz's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3156</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>821</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>124</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2211</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bnbuzz's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bnbuzz'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2315549670/b4ekpxtfpd1p5ip0t95g_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">bobuk</div> <div style="text-align: center; font-size: 14px;">@bobuk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from bobuk. | Data | bobuk | | --- | --- | | Tweets downloaded | 3206 | | Retweets | 12 | | Short tweets | 268 | | Tweets kept | 2926 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dvjqdl0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bobuk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/227ixa7i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/227ixa7i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bobuk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bobuk/1633096176390/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bobuk
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT bobuk @bobuk I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from bobuk. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bobuk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1311301456805281793/wiVELS8Y_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">bogna 🤖 AI Bot </div> <div style="font-size: 15px">@bognamk bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bognamk's tweets](https://twitter.com/bognamk). | Data | Quantity | | --- | --- | | Tweets downloaded | 273 | | Retweets | 26 | | Short tweets | 22 | | Tweets kept | 225 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/yelcjqqa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bognamk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/asd5yjvu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/asd5yjvu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bognamk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bognamk/1616663275652/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bognamk
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
bogna AI Bot @bognamk bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @bognamk's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bognamk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1366991202000777216/E5Qeu37S_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">boogie2988 😭🤡</div> <div style="text-align: center; font-size: 14px;">@boogie2988</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from boogie2988 😭🤡. | Data | boogie2988 😭🤡 | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 216 | | Short tweets | 392 | | Tweets kept | 2634 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30jummgi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boogie2988's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38yren3o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38yren3o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/boogie2988') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/boogie2988/1622323494391/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/boogie2988
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT boogie2988 @boogie2988 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from boogie2988 . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @boogie2988's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('USER_PROFILE')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Elon Musk & Boris Dayma 🤖 AI Bot </div> <div style="font-size: 15px">@borisdayma-elonmusk bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@borisdayma-elonmusk's tweets](https://twitter.com/borisdayma-elonmusk). | Data | Quantity | | --- | --- | | Tweets downloaded | 1 | | Retweets | 1 | | Short tweets | 1 | | Tweets kept | 1 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/s2e28lq5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisdayma-elonmusk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r549ulu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r549ulu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/borisdayma-elonmusk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/borisdayma-elonmusk/1620367858137/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/borisdayma-elonmusk
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Elon Musk & Boris Dayma AI Bot @borisdayma-elonmusk bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @borisdayma-elonmusk's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @borisdayma-elonmusk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1152601773330370560/UhVRDMyp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Boris Dayma 🖍️</div> <div style="text-align: center; font-size: 14px;">@borisdayma</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Boris Dayma 🖍️. | Data | Boris Dayma 🖍️ | | --- | --- | | Tweets downloaded | 1371 | | Retweets | 146 | | Short tweets | 42 | | Tweets kept | 1183 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tlbliehz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisdayma's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qs9dfef) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qs9dfef/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/borisdayma') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/borisdayma/1656366383066/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/borisdayma
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Boris Dayma ️ @borisdayma I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Boris Dayma ️. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @borisdayma's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1331215386633756675/NodbPVQv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Boris Johnson</div> <div style="text-align: center; font-size: 14px;">@borisjohnson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Boris Johnson. | Data | Boris Johnson | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 901 | | Short tweets | 15 | | Tweets kept | 2333 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1n972ain/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @borisjohnson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2cvhfjnr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2cvhfjnr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/borisjohnson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/borisjohnson
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Boris Johnson @borisjohnson I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Boris Johnson. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @borisjohnson's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364744801531293699/qA0KAZC5_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">SHADE 🤖 AI Bot </div> <div style="font-size: 15px">@born_2be_loved bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@born_2be_loved's tweets](https://twitter.com/born_2be_loved). | Data | Quantity | | --- | --- | | Tweets downloaded | 3202 | | Retweets | 431 | | Short tweets | 401 | | Tweets kept | 2370 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3626bowi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @born_2be_loved's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/62hd185a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/62hd185a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/born_2be_loved') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/born_2be_loved/1616671254023/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/born_2be_loved
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
SHADE AI Bot @born\_2be\_loved bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @born\_2be\_loved's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @born\_2be\_loved's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424482960749776907/NL5l0P9Q_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1432371607977275395/j60VC-cp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨Boss Lady Fenja✨ 9.6% 🦋 & Boss_Lady_Fenja_promo</div> <div style="text-align: center; font-size: 14px;">@boss_lady_fenja-ladyfenja_promo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨Boss Lady Fenja✨ 9.6% 🦋 & Boss_Lady_Fenja_promo. | Data | ✨Boss Lady Fenja✨ 9.6% 🦋 | Boss_Lady_Fenja_promo | | --- | --- | --- | | Tweets downloaded | 3153 | 654 | | Retweets | 380 | 240 | | Short tweets | 646 | 160 | | Tweets kept | 2127 | 254 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jpqrjjb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boss_lady_fenja-ladyfenja_promo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10coew7p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10coew7p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/boss_lady_fenja-ladyfenja_promo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/boss_lady_fenja-ladyfenja_promo/1632241140819/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/boss_lady_fenja-ladyfenja_promo
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Boss Lady Fenja 9.6% & Boss\_Lady\_Fenja\_promo @boss\_lady\_fenja-ladyfenja\_promo I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Boss Lady Fenja 9.6% & Boss\_Lady\_Fenja\_promo. Data: Tweets downloaded, Boss Lady Fenja 9.6%: 3153, Boss\_Lady\_Fenja\_promo: 654 Data: Retweets, Boss Lady Fenja 9.6%: 380, Boss\_Lady\_Fenja\_promo: 240 Data: Short tweets, Boss Lady Fenja 9.6%: 646, Boss\_Lady\_Fenja\_promo: 160 Data: Tweets kept, Boss Lady Fenja 9.6%: 2127, Boss\_Lady\_Fenja\_promo: 254 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @boss\_lady\_fenja-ladyfenja\_promo's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1466500150759763979/_SP07dAh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">autumn wants to hold ty’s hand</div> <div style="text-align: center; font-size: 14px;">@bouncemanautumn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from autumn wants to hold ty’s hand. | Data | autumn wants to hold ty’s hand | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 195 | | Short tweets | 434 | | Tweets kept | 2616 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16mq5may/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bouncemanautumn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vlqrfex) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vlqrfex/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bouncemanautumn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/bouncemanautumn/1644093304436/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bouncemanautumn
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT autumn wants to hold ty’s hand @bouncemanautumn I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from autumn wants to hold ty’s hand. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bouncemanautumn's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1194748903402483713/1EnUm3dW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Beau Wood</div> <div style="text-align: center; font-size: 14px;">@bovice18</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Beau Wood. | Data | Beau Wood | | --- | --- | | Tweets downloaded | 1516 | | Retweets | 789 | | Short tweets | 127 | | Tweets kept | 600 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22h7nhvi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bovice18's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3iuogy19) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3iuogy19/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bovice18') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bovice18/1621524734301/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bovice18
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Beau Wood @bovice18 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Beau Wood. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bovice18's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345789137035649025/l4ReFavz_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">bowserbot 🤖 AI Bot </div> <div style="font-size: 15px">@bowserbot2 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bowserbot2's tweets](https://twitter.com/bowserbot2). | Data | Quantity | | --- | --- | | Tweets downloaded | 2651 | | Retweets | 2 | | Short tweets | 20 | | Tweets kept | 2629 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/151rlno6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bowserbot2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15w12pqd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15w12pqd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bowserbot2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bowserbot2/1617402800811/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bowserbot2
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
bowserbot AI Bot @bowserbot2 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @bowserbot2's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bowserbot2's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393736501838721031/DCd35uGN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">bbuchsbaum</div> <div style="text-align: center; font-size: 14px;">@brad_buchsbaum</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from bbuchsbaum. | Data | bbuchsbaum | | --- | --- | | Tweets downloaded | 1346 | | Retweets | 125 | | Short tweets | 53 | | Tweets kept | 1168 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uivlvhob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brad_buchsbaum's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34xkida2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34xkida2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brad_buchsbaum') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brad_buchsbaum
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT bbuchsbaum @brad\_buchsbaum I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from bbuchsbaum. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @brad\_buchsbaum's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374497821097820160/JRPTl8gN_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">extinction of mass 🤖 AI Bot </div> <div style="font-size: 15px">@braintree0173 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@braintree0173's tweets](https://twitter.com/braintree0173). | Data | Quantity | | --- | --- | | Tweets downloaded | 1237 | | Retweets | 44 | | Short tweets | 77 | | Tweets kept | 1116 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28laggk0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @braintree0173's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fbmoqja) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fbmoqja/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/braintree0173') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/braintree0173/1616858958371/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/braintree0173
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
extinction of mass AI Bot @braintree0173 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @braintree0173's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @braintree0173's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1317578086356078597/xGuzgaGz_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🅱randon Martin 🤖 AI Bot </div> <div style="font-size: 15px">@brandoncm1519 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brandoncm1519's tweets](https://twitter.com/brandoncm1519). | Data | Quantity | | --- | --- | | Tweets downloaded | 233 | | Retweets | 26 | | Short tweets | 40 | | Tweets kept | 167 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rb3uwyon/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brandoncm1519's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a5chnaj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a5chnaj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brandoncm1519') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brandoncm1519/1616700027820/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brandoncm1519
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
🅱randon Martin AI Bot @brandoncm1519 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @brandoncm1519's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @brandoncm1519's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/890322736626647041/9PcQFxnJ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brandon Reeves 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@brandonreeves08 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brandonreeves08's tweets](https://twitter.com/brandonreeves08). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2233</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>813</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>87</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1333</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/25xf6z75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brandonreeves08's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3cboi872) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3cboi872/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brandonreeves08'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brandonreeves08
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brandon Reeves AI Bot </div> <div style="font-size: 15px; color: #657786">@brandonreeves08 bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @brandonreeves08's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2233</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>813</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>87</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1333</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @brandonreeves08's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brandonreeves08'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brandonreeves08's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2233</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>813</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>87</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1333</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brandonreeves08's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brandonreeves08'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brandonreeves08's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2233</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>813</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>87</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1333</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brandonreeves08's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brandonreeves08'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 433, 78, 9, 170, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1259796666149986304/lCNvP-IU_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">@brayleino 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@brayleino bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brayleino's tweets](https://twitter.com/brayleino). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3224</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>896</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>63</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2265</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/kmh7d8rk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brayleino's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1etq1kzi) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1etq1kzi/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brayleino'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brayleino/1602233828988/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brayleino
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">@brayleino AI Bot </div> <div style="font-size: 15px; color: #657786">@brayleino bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @brayleino's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3224</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>896</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>63</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2265</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @brayleino's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brayleino'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brayleino's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3224</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>896</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>63</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2265</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brayleino's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brayleino'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brayleino's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3224</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>896</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>63</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2265</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brayleino's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brayleino'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1097321857110294528/xiPS2QUn_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">The Jackie Weaver of EdTech 🤖 AI Bot </div> <div style="font-size: 15px">@brennacgray bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brennacgray's tweets](https://twitter.com/brennacgray). | Data | Quantity | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 500 | | Short tweets | 301 | | Tweets kept | 2428 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5gxea3am/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brennacgray's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ox5zibg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ox5zibg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brennacgray') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brennacgray/1616792121755/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brennacgray
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
The Jackie Weaver of EdTech AI Bot @brennacgray bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @brennacgray's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @brennacgray's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1314457768733011968/dEHivGiS_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bretman Rock Paper Scissors 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@bretmanrock bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bretmanrock's tweets](https://twitter.com/bretmanrock). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2037</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>728</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>121</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1188</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2gwxllzg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bretmanrock's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1vehek6r) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1vehek6r/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bretmanrock'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bretmanrock/1602246838817/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bretmanrock
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bretman Rock Paper Scissors AI Bot </div> <div style="font-size: 15px; color: #657786">@bretmanrock bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @bretmanrock's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2037</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>728</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>121</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1188</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @bretmanrock's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bretmanrock'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bretmanrock's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2037</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>728</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>121</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1188</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bretmanrock's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bretmanrock'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bretmanrock's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2037</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>728</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>121</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1188</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bretmanrock's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bretmanrock'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/437307042764578816/TM_iRmaF_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian Leiter 🤖 AI Bot </div> <div style="font-size: 15px">@brianleiter bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brianleiter's tweets](https://twitter.com/brianleiter). | Data | Quantity | | --- | --- | | Tweets downloaded | 980 | | Retweets | 231 | | Short tweets | 41 | | Tweets kept | 708 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1try6015/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brianleiter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2l46qz24) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2l46qz24/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brianleiter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brianleiter/1616729814445/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brianleiter
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Brian Leiter AI Bot @brianleiter bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @brianleiter's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @brianleiter's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1367176133574348806/lZclwq85_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian Stelter 🤖 AI Bot </div> <div style="font-size: 15px">@brianstelter bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brianstelter's tweets](https://twitter.com/brianstelter). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 1997 | | Short tweets | 110 | | Tweets kept | 1141 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ldst3wj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brianstelter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/shk6mhyu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/shk6mhyu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brianstelter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brianstelter/1617675900278/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brianstelter
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Brian Stelter AI Bot @brianstelter bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @brianstelter's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @brianstelter's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339091417776451585/fpJY7SEh_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Piss Chugger, Chugger of Piss 🤖 AI Bot </div> <div style="font-size: 15px">@brielikessoda bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brielikessoda's tweets](https://twitter.com/brielikessoda). | Data | Quantity | | --- | --- | | Tweets downloaded | 3201 | | Retweets | 58 | | Short tweets | 405 | | Tweets kept | 2738 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f3gm9t9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brielikessoda's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25fi4n75) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25fi4n75/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brielikessoda') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brielikessoda/1614130240109/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brielikessoda
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Piss Chugger, Chugger of Piss AI Bot @brielikessoda bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @brielikessoda's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @brielikessoda's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318494037981032449/uoutJxSH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">brittany 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@brittany_broski bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brittany_broski's tweets](https://twitter.com/brittany_broski). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1838</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>451</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>392</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>995</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hz6b9b8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brittany_broski's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35sgntcf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35sgntcf/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brittany_broski'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brittany_broski/1605761309372/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brittany_broski
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">brittany AI Bot </div> <div style="font-size: 15px; color: #657786">@brittany_broski bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @brittany_broski's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1838</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>451</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>392</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>995</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @brittany_broski's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brittany_broski'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brittany_broski's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1838</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>451</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>392</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>995</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brittany_broski's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brittany_broski'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brittany_broski's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1838</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>451</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>392</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>995</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brittany_broski's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brittany_broski'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1366529149678940163/6IEMZ_tv_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brian Lamb 🤖 AI Bot </div> <div style="font-size: 15px">@brlamb bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brlamb's tweets](https://twitter.com/brlamb). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 241 | | Short tweets | 298 | | Tweets kept | 2709 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fb4wmpbl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brlamb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gq4ok2e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gq4ok2e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brlamb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brlamb/1617221536533/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brlamb
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Brian Lamb AI Bot @brlamb bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @brlamb's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @brlamb's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424691934862495746/L6cpCNSY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rockhardo Black 🏴󠁧󠁢󠁥󠁮󠁧󠁿🇯🇲</div> <div style="text-align: center; font-size: 14px;">@brockhardo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rockhardo Black 🏴󠁧󠁢󠁥󠁮󠁧󠁿🇯🇲. | Data | Rockhardo Black 🏴󠁧󠁢󠁥󠁮󠁧󠁿🇯🇲 | | --- | --- | | Tweets downloaded | 3185 | | Retweets | 2402 | | Short tweets | 295 | | Tweets kept | 488 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20lnbaxt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brockhardo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2og9glbw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2og9glbw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brockhardo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brockhardo/1629231094423/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brockhardo
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Rockhardo Black 󠁧󠁢󠁥󠁮󠁧󠁿🇯🇲 @brockhardo I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Rockhardo Black 󠁧󠁢󠁥󠁮󠁧󠁿🇯🇲. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @brockhardo's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1243738424118358017/AQdB0Ze0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Conrad Golden</div> <div style="text-align: center; font-size: 14px;">@bronzeswords</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Conrad Golden. | Data | Conrad Golden | | --- | --- | | Tweets downloaded | 3190 | | Retweets | 602 | | Short tweets | 171 | | Tweets kept | 2417 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/10m933b8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bronzeswords's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1yj6hliq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1yj6hliq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bronzeswords') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bronzeswords/1635817760027/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bronzeswords
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Conrad Golden @bronzeswords I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Conrad Golden. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bronzeswords's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1159519240757624838/LEJGJWNz_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">dessicant gourmand 🤖 AI Bot </div> <div style="font-size: 15px">@broschistocks bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@broschistocks's tweets](https://twitter.com/broschistocks). | Data | Quantity | | --- | --- | | Tweets downloaded | 664 | | Retweets | 331 | | Short tweets | 66 | | Tweets kept | 267 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8qbbqieq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @broschistocks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pnoc5bl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pnoc5bl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/broschistocks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/broschistocks/1614095969958/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/broschistocks
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
dessicant gourmand AI Bot @broschistocks bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @broschistocks's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @broschistocks's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1309902055960645640/bVY_UYkL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">BrotUndSaft 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@brotundsaft bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brotundsaft's tweets](https://twitter.com/brotundsaft). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2970</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>526</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>374</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2070</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3lmky9vn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brotundsaft's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/30e4dz6f) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/30e4dz6f/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brotundsaft'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/brotundsaft/1601630145453/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brotundsaft
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">BrotUndSaft AI Bot </div> <div style="font-size: 15px; color: #657786">@brotundsaft bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @brotundsaft's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2970</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>526</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>374</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2070</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @brotundsaft's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brotundsaft'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brotundsaft's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2970</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>526</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>374</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2070</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brotundsaft's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brotundsaft'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brotundsaft's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2970</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>526</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>374</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2070</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brotundsaft's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brotundsaft'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/807277326539046912/EZR6qL-S_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bruce Lawson, Antifa. Black Lives Matter. 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@brucel bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@brucel's tweets](https://twitter.com/brucel). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3227</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>406</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>257</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2564</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1cha3dnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brucel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2qrl7tqt) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2qrl7tqt/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brucel'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/brucel
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bruce Lawson, Antifa. Black Lives Matter. AI Bot </div> <div style="font-size: 15px; color: #657786">@brucel bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @brucel's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3227</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>406</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>257</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2564</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @brucel's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/brucel'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brucel's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3227</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>406</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>257</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2564</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brucel's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brucel'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @brucel's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3227</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>406</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>257</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2564</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @brucel's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/brucel'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 74, 9, 166, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318205976110010371/hvlZiocy_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">BTS_official 🤖 AI Bot </div> <div style="font-size: 15px">@bts_bighit bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bts_bighit's tweets](https://twitter.com/bts_bighit). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 807 | | Short tweets | 17 | | Tweets kept | 2424 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/346cr95o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bts_bighit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qrtx438c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qrtx438c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bts_bighit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bts_bighit
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
BTS\_official AI Bot @bts\_bighit bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @bts\_bighit's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bts\_bighit's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1309782271281430529/mb2fNc86_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ᴮᴱ Sara ⁷ ♡ ☁️ 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@btsisoreo bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@btsisoreo's tweets](https://twitter.com/btsisoreo). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3238</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>276</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1471</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1491</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/5cw9eogo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btsisoreo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1qmz2ncd) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1qmz2ncd/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/btsisoreo'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/btsisoreo/1601273601954/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/btsisoreo
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ᴮᴱ Sara ⁷ ️ AI Bot </div> <div style="font-size: 15px; color: #657786">@btsisoreo bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @btsisoreo's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3238</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>276</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1471</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1491</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @btsisoreo's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/btsisoreo'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @btsisoreo's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3238</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>276</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1471</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1491</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @btsisoreo's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/btsisoreo'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @btsisoreo's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3238</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>276</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1471</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1491</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @btsisoreo's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/btsisoreo'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1304743968832356358/82FPDpEH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">かずみnina⁷ヅ ⟭⟬ 𖧵 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@bubblefairyjin bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bubblefairyjin's tweets](https://twitter.com/bubblefairyjin). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3234</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>683</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>919</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1632</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2r11ket4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bubblefairyjin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1nw974ct) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1nw974ct/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bubblefairyjin'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bubblefairyjin/1601266953127/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bubblefairyjin
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">かずみnina⁷ヅ ⟭⟬ 𖧵 AI Bot </div> <div style="font-size: 15px; color: #657786">@bubblefairyjin bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @bubblefairyjin's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3234</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>683</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>919</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1632</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @bubblefairyjin's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bubblefairyjin'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bubblefairyjin's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3234</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>683</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>919</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1632</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bubblefairyjin's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bubblefairyjin'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bubblefairyjin's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3234</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>683</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>919</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1632</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bubblefairyjin's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bubblefairyjin'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1330795919323910145/pjXnxFQ1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ru 🌈🌱🎙️ 🤖 AI Bot </div> <div style="font-size: 15px">@bubbleteaphd bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bubbleteaphd's tweets](https://twitter.com/bubbleteaphd). | Data | Quantity | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 324 | | Short tweets | 321 | | Tweets kept | 2588 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e2ljtiy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bubbleteaphd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2k5imxb0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2k5imxb0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bubbleteaphd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bubbleteaphd/1616932743352/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bubbleteaphd
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Ru ️ AI Bot @bubbleteaphd bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @bubbleteaphd's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bubbleteaphd's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1014709181662810112/xaI-XoAg_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bucksball 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@bucksballl bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bucksballl's tweets](https://twitter.com/bucksballl). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1877</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1688</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>34</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>155</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wuewh23/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bucksballl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2iqbod86) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2iqbod86/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bucksballl'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bucksballl/1607571899995/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bucksballl
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bucksball AI Bot </div> <div style="font-size: 15px; color: #657786">@bucksballl bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @bucksballl's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1877</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1688</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>34</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>155</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @bucksballl's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bucksballl'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bucksballl's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1877</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1688</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>34</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>155</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bucksballl's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bucksballl'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bucksballl's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1877</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1688</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>34</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>155</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bucksballl's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bucksballl'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1214363231038263296/6kWmdpPD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Dr. Bucky Isotope, Dice Rolling Expert</div> <div style="text-align: center; font-size: 14px;">@buckyisotope-dril</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Dr. Bucky Isotope, Dice Rolling Expert. | Data | wint | Dr. Bucky Isotope, Dice Rolling Expert | | --- | --- | --- | | Tweets downloaded | 3229 | 3231 | | Retweets | 477 | 652 | | Short tweets | 300 | 361 | | Tweets kept | 2452 | 2218 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/31a3ij74/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buckyisotope-dril's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bnoz7zgh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bnoz7zgh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/buckyisotope-dril') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/buckyisotope-dril/1645347820169/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/buckyisotope-dril
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG wint & Dr. Bucky Isotope, Dice Rolling Expert @buckyisotope-dril I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from wint & Dr. Bucky Isotope, Dice Rolling Expert. Data: Tweets downloaded, wint: 3229, Dr. Bucky Isotope, Dice Rolling Expert: 3231 Data: Retweets, wint: 477, Dr. Bucky Isotope, Dice Rolling Expert: 652 Data: Short tweets, wint: 300, Dr. Bucky Isotope, Dice Rolling Expert: 361 Data: Tweets kept, wint: 2452, Dr. Bucky Isotope, Dice Rolling Expert: 2218 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @buckyisotope-dril's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1271522987812872193/zjuyQq9V_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cynthia Habonimana 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@buildwithcycy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@buildwithcycy's tweets](https://twitter.com/buildwithcycy). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>680</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>181</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>80</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>419</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/woos7f0i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buildwithcycy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/39i5bi0o) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/39i5bi0o/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/buildwithcycy'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/buildwithcycy/1603391285588/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/buildwithcycy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cynthia Habonimana AI Bot </div> <div style="font-size: 15px; color: #657786">@buildwithcycy bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @buildwithcycy's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>680</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>181</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>80</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>419</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @buildwithcycy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/buildwithcycy'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @buildwithcycy's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>680</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>181</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>80</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>419</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @buildwithcycy's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/buildwithcycy'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @buildwithcycy's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>680</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>181</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>80</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>419</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @buildwithcycy's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/buildwithcycy'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1327852785371582464/VcyBdGsr_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ashe ʕ •ᴥ•ʔ 🤖 AI Bot </div> <div style="font-size: 15px">@bungeebingleton bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bungeebingleton's tweets](https://twitter.com/bungeebingleton). | Data | Quantity | | --- | --- | | Tweets downloaded | 3227 | | Retweets | 154 | | Short tweets | 659 | | Tweets kept | 2414 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ssrmafr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bungeebingleton's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/omho87n6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/omho87n6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bungeebingleton') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bungeebingleton/1614116708433/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bungeebingleton
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Ashe ʕ •ᴥ•ʔ AI Bot @bungeebingleton bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @bungeebingleton's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @bungeebingleton's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/727827522436521984/ABgwelzi_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthew 🤖 AI Bot </div> <div style="font-size: 15px">@butfurniture bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@butfurniture's tweets](https://twitter.com/butfurniture). | Data | Quantity | | --- | --- | | Tweets downloaded | 1787 | | Retweets | 524 | | Short tweets | 121 | | Tweets kept | 1142 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18eo7tos/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @butfurniture's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jx81czr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jx81czr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/butfurniture') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/butfurniture/1616690321353/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/butfurniture
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Matthew AI Bot @butfurniture bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @butfurniture's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @butfurniture's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1338207979896774656/NsHUE0ZE_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">sunk cock fallacy🔞 🤖 AI Bot </div> <div style="font-size: 15px">@buttruts bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@buttruts's tweets](https://twitter.com/buttruts). | Data | Quantity | | --- | --- | | Tweets downloaded | 727 | | Retweets | 127 | | Short tweets | 189 | | Tweets kept | 411 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4ggl7jjh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buttruts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3o27rfwn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3o27rfwn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/buttruts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/buttruts/1617770614427/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/buttruts
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
sunk cock fallacy AI Bot @buttruts bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @buttruts's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @buttruts's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1229128559224115201/k-Yd8LPQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bailey 🤖 AI Bot </div> <div style="font-size: 15px">@byabailey bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@byabailey's tweets](https://twitter.com/byabailey). | Data | Quantity | | --- | --- | | Tweets downloaded | 581 | | Retweets | 36 | | Short tweets | 250 | | Tweets kept | 295 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oqa41kc6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @byabailey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2j8cjogh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2j8cjogh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/byabailey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/byabailey/1614156784734/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/byabailey
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Bailey AI Bot @byabailey bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @byabailey's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @byabailey's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1116620292372045824/-um4nYB5_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Benoit Zante 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@bzante bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bzante's tweets](https://twitter.com/bzante). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3236</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1973</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>46</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1217</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3nkw4qab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bzante's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9x73lgcb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9x73lgcb/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bzante'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/bzante/1605624629004/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/bzante
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Benoit Zante AI Bot </div> <div style="font-size: 15px; color: #657786">@bzante bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @bzante's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3236</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1973</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>46</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1217</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @bzante's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/bzante'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bzante's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3236</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1973</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>46</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1217</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bzante's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bzante'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @bzante's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3236</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1973</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>46</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1217</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @bzante's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/bzante'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1209626102/c0up_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Abhilash</div> <div style="text-align: center; font-size: 14px;">@c0up</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Abhilash. | Data | Abhilash | | --- | --- | | Tweets downloaded | 3203 | | Retweets | 1476 | | Short tweets | 384 | | Tweets kept | 1343 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1le73jjg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c0up's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tebog4r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tebog4r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/c0up') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c0up/1627089976491/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/c0up
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Abhilash @c0up I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Abhilash. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @c0up's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349837378530193416/WbUsnJ26_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">GIRLBOSS RUN 🤖 AI Bot </div> <div style="font-size: 15px">@c4ndl3w4x bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@c4ndl3w4x's tweets](https://twitter.com/c4ndl3w4x). | Data | Quantity | | --- | --- | | Tweets downloaded | 3161 | | Retweets | 2040 | | Short tweets | 351 | | Tweets kept | 770 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dujcwyo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c4ndl3w4x's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/174m72fj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/174m72fj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/c4ndl3w4x') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c4ndl3w4x/1614133241891/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/c4ndl3w4x
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
GIRLBOSS RUN AI Bot @c4ndl3w4x bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @c4ndl3w4x's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @c4ndl3w4x's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1360714045599358978/oh2wRcYm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & Joseph Marquez</div> <div style="text-align: center; font-size: 14px;">@c9mang0-deepleffen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Deep Leffen Bot & Joseph Marquez. | Data | Deep Leffen Bot | Joseph Marquez | | --- | --- | --- | | Tweets downloaded | 459 | 3248 | | Retweets | 12 | 292 | | Short tweets | 25 | 482 | | Tweets kept | 422 | 2474 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/866oe5ny/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c9mang0-deepleffen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bnerj7i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bnerj7i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/c9mang0-deepleffen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c9mang0-deepleffen/1621509742616/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/c9mang0-deepleffen
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Deep Leffen Bot & Joseph Marquez @c9mang0-deepleffen I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Deep Leffen Bot & Joseph Marquez. Data: Tweets downloaded, Deep Leffen Bot: 459, Joseph Marquez: 3248 Data: Retweets, Deep Leffen Bot: 12, Joseph Marquez: 292 Data: Short tweets, Deep Leffen Bot: 25, Joseph Marquez: 482 Data: Tweets kept, Deep Leffen Bot: 422, Joseph Marquez: 2474 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @c9mang0-deepleffen's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/928310545245237249/Q4OHc06u_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cameron Harwick 🏛 🤖 AI Bot </div> <div style="font-size: 15px">@c_harwick bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@c_harwick's tweets](https://twitter.com/c_harwick). | Data | Quantity | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 321 | | Short tweets | 117 | | Tweets kept | 2801 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qldo0bu4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c_harwick's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/217j7nfd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/217j7nfd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/c_harwick') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c_harwick/1617771463823/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/c_harwick
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cameron Harwick AI Bot @c\_harwick bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @c\_harwick's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @c\_harwick's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374402371556536326/sNFpq1vb_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">normal girl : ) 🤖 AI Bot </div> <div style="font-size: 15px">@c_hoffmanni bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@c_hoffmanni's tweets](https://twitter.com/c_hoffmanni). | Data | Quantity | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 382 | | Short tweets | 635 | | Tweets kept | 2209 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ikod8eq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @c_hoffmanni's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2km5k3qc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2km5k3qc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/c_hoffmanni') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/c_hoffmanni/1617903388766/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/c_hoffmanni
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
normal girl : ) AI Bot @c\_hoffmanni bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @c\_hoffmanni's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @c\_hoffmanni's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1221820584570519552/G_6GC8Em_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cabelob</div> <div style="text-align: center; font-size: 14px;">@cabelobssb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cabelob. | Data | Cabelob | | --- | --- | | Tweets downloaded | 3158 | | Retweets | 303 | | Short tweets | 300 | | Tweets kept | 2555 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2u8zt14c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cabelobssb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r13iux3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r13iux3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cabelobssb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cabelobssb/1639535335803/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cabelobssb
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Cabelob @cabelobssb I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Cabelob. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cabelobssb's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1400205166763122689/Zjyw9G_i_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Caelan Hudson</div> <div style="text-align: center; font-size: 14px;">@caelan_hudson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Caelan Hudson. | Data | Caelan Hudson | | --- | --- | | Tweets downloaded | 1768 | | Retweets | 696 | | Short tweets | 139 | | Tweets kept | 933 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vrzri0az/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caelan_hudson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u9374qr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u9374qr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caelan_hudson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/caelan_hudson
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Caelan Hudson @caelan\_hudson I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Caelan Hudson. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @caelan\_hudson's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429115399975497731/JZdA725e_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨たち Tommy’s an Orbit 🌙 たち✨</div> <div style="text-align: center; font-size: 14px;">@cafe_orbitinnit</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨たち Tommy’s an Orbit 🌙 たち✨. | Data | ✨たち Tommy’s an Orbit 🌙 たち✨ | | --- | --- | | Tweets downloaded | 2242 | | Retweets | 1336 | | Short tweets | 323 | | Tweets kept | 583 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qhrvba17/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cafe_orbitinnit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qnyhuxd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qnyhuxd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cafe_orbitinnit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cafe_orbitinnit/1630943541910/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cafe_orbitinnit
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT たち Tommy’s an Orbit たち @cafe\_orbitinnit I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from たち Tommy’s an Orbit たち. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cafe\_orbitinnit's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1321740911450198016/JVR19aQa_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">😃 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@caitlin_higgs bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@caitlin_higgs's tweets](https://twitter.com/caitlin_higgs). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2062</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>288</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>341</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1433</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3o8apxfw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caitlin_higgs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fxm0h1p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fxm0h1p/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/caitlin_higgs'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caitlin_higgs/1608309607305/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/caitlin_higgs
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800"> AI Bot </div> <div style="font-size: 15px; color: #657786">@caitlin_higgs bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @caitlin_higgs's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2062</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>288</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>341</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1433</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @caitlin_higgs's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/caitlin_higgs'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @caitlin_higgs's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2062</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>288</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>341</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1433</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @caitlin_higgs's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/caitlin_higgs'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @caitlin_higgs's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2062</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>288</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>341</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1433</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @caitlin_higgs's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/caitlin_higgs'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 434, 79, 9, 171, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1353494193360891904/SE2DmqTH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Green, alas....she is 2 busy tweeting 🤖 AI Bot </div> <div style="font-size: 15px">@caitlinmoriah bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@caitlinmoriah's tweets](https://twitter.com/caitlinmoriah). | Data | Quantity | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 304 | | Short tweets | 140 | | Tweets kept | 2802 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vueoynh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caitlinmoriah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14otv2ch) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14otv2ch/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caitlinmoriah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caitlinmoriah/1616725886381/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/caitlinmoriah
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Dr. Green, alas....she is 2 busy tweeting AI Bot @caitlinmoriah bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @caitlinmoriah's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @caitlinmoriah's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342343651675037697/ANa7awLJ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">(Suspiciously unoutra)Ged 🤖 AI Bot </div> <div style="font-size: 15px">@cakesniffe1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cakesniffe1's tweets](https://twitter.com/cakesniffe1). | Data | Quantity | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 414 | | Short tweets | 201 | | Tweets kept | 2620 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kqahg35h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cakesniffe1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b48lj3s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b48lj3s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cakesniffe1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cakesniffe1/1616776928773/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cakesniffe1
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
(Suspiciously unoutra)Ged AI Bot @cakesniffe1 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cakesniffe1's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cakesniffe1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1175713241055580160/14sXGl5z_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Caleb Barron 🤖 AI Bot </div> <div style="font-size: 15px">@caleblebster bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@caleblebster's tweets](https://twitter.com/caleblebster). | Data | Quantity | | --- | --- | | Tweets downloaded | 1109 | | Retweets | 197 | | Short tweets | 77 | | Tweets kept | 835 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1u2f3qvk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caleblebster's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22tramg6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22tramg6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caleblebster') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caleblebster/1616712100600/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/caleblebster
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Caleb Barron AI Bot @caleblebster bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @caleblebster's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @caleblebster's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1003639488445218817/wOEiVIB6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Luca Foschini 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@calimagna bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@calimagna's tweets](https://twitter.com/calimagna). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1086</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>495</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>27</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>564</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2thj3yee/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @calimagna's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/326t7ks5) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/326t7ks5/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/calimagna'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/calimagna
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Luca Foschini AI Bot </div> <div style="font-size: 15px; color: #657786">@calimagna bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @calimagna's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1086</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>495</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>27</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>564</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @calimagna's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/calimagna'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @calimagna's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1086</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>495</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>27</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>564</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @calimagna's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/calimagna'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @calimagna's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1086</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>495</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>27</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>564</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @calimagna's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/calimagna'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 428, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1238103767205261315/Tp4M9dVg_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Diputadas y Diputados de Chile 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@camara_cl bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@camara_cl's tweets](https://twitter.com/camara_cl). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3213</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>617</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>2</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2594</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/lnp5dtno/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @camara_cl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2wpxf9h1) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2wpxf9h1/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/camara_cl'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/camara_cl
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Diputadas y Diputados de Chile AI Bot </div> <div style="font-size: 15px; color: #657786">@camara_cl bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @camara_cl's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3213</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>617</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>2</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2594</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @camara_cl's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/camara_cl'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @camara_cl's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3213</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>617</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>2</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2594</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @camara_cl's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/camara_cl'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @camara_cl's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3213</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>617</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>2</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2594</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @camara_cl's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/camara_cl'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1347857161150373896/g4kGxPzO_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">👾🌻 cameron 🌻👾 🤖 AI Bot </div> <div style="font-size: 15px">@cameronconcarne bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cameronconcarne's tweets](https://twitter.com/cameronconcarne). | Data | Quantity | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 77 | | Short tweets | 581 | | Tweets kept | 2583 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w4b9g99/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cameronconcarne's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3utd2pbm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3utd2pbm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cameronconcarne') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cameronconcarne/1616619963482/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cameronconcarne
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
cameron AI Bot @cameronconcarne bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cameronconcarne's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cameronconcarne's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370168262915280897/kEGsp2ze_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">rin 🤖 AI Bot </div> <div style="font-size: 15px">@camrin_blaze bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@camrin_blaze's tweets](https://twitter.com/camrin_blaze). | Data | Quantity | | --- | --- | | Tweets downloaded | 258 | | Retweets | 27 | | Short tweets | 22 | | Tweets kept | 209 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34155lyy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @camrin_blaze's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/291c9e66) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/291c9e66/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/camrin_blaze') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/camrin_blaze/1619573161434/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/camrin_blaze
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
rin AI Bot @camrin\_blaze bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @camrin\_blaze's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @camrin\_blaze's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/876730611683086336/6GNIJunB_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1368077075127603200/Z08slO2P_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Canary Mission & keyvan</div> <div style="text-align: center; font-size: 14px;">@canarymission-islamphobiacow</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Canary Mission & keyvan. | Data | Canary Mission | keyvan | | --- | --- | --- | | Tweets downloaded | 3250 | 3240 | | Retweets | 148 | 178 | | Short tweets | 9 | 223 | | Tweets kept | 3093 | 2839 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fjcqkd7a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @canarymission-islamphobiacow's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3j1l0c2c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3j1l0c2c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/canarymission-islamphobiacow') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/canarymission-islamphobiacow
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Canary Mission & keyvan @canarymission-islamphobiacow I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Canary Mission & keyvan. Data: Tweets downloaded, Canary Mission: 3250, keyvan: 3240 Data: Retweets, Canary Mission: 148, keyvan: 178 Data: Short tweets, Canary Mission: 9, keyvan: 223 Data: Tweets kept, Canary Mission: 3093, keyvan: 2839 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @canarymission-islamphobiacow's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/876730611683086336/6GNIJunB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Canary Mission</div> <div style="text-align: center; font-size: 14px;">@canarymission</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Canary Mission. | Data | Canary Mission | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 145 | | Short tweets | 9 | | Tweets kept | 3085 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mek45cld/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @canarymission's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vb36zgw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vb36zgw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/canarymission') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/canarymission/1628918283153/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/canarymission
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Canary Mission @canarymission I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Canary Mission. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @canarymission's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375754460908109824/8QC5yVw6_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cat of Scarf 🧣 🤖 AI Bot </div> <div style="font-size: 15px">@captain_mrs bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@captain_mrs's tweets](https://twitter.com/captain_mrs). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 66 | | Short tweets | 189 | | Tweets kept | 2995 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rxzjik7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @captain_mrs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22ca7fy3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22ca7fy3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/captain_mrs') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/captain_mrs/1616935516055/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/captain_mrs
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cat of Scarf AI Bot @captain\_mrs bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @captain\_mrs's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @captain\_mrs's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1079045102331285505/nCBnW_sF_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">마테오 카일 🤖 AI Bot </div> <div style="font-size: 15px">@captainoats bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@captainoats's tweets](https://twitter.com/captainoats). | Data | Quantity | | --- | --- | | Tweets downloaded | 302 | | Retweets | 56 | | Short tweets | 27 | | Tweets kept | 219 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3icr2qoy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @captainoats's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12da21ng) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12da21ng/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/captainoats') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/captainoats/1616644916897/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/captainoats
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
마테오 카일 AI Bot @captainoats bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @captainoats's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @captainoats's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1135806655420125185/N_7wObE6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">charl 🤖 AI Bot </div> <div style="font-size: 15px">@carlotta_emma bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@carlotta_emma's tweets](https://twitter.com/carlotta_emma). | Data | Quantity | | --- | --- | | Tweets downloaded | 3173 | | Retweets | 933 | | Short tweets | 304 | | Tweets kept | 1936 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wuc7oeh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @carlotta_emma's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mdi8v0tb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mdi8v0tb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/carlotta_emma') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/carlotta_emma/1617911942085/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/carlotta_emma
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
charl AI Bot @carlotta\_emma bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @carlotta\_emma's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @carlotta\_emma's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1137106347504353280/OKGgRAs3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dr. Caroline Bartman</div> <div style="text-align: center; font-size: 14px;">@caroline_bartma</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dr. Caroline Bartman. | Data | Dr. Caroline Bartman | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 135 | | Short tweets | 735 | | Tweets kept | 2379 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1h19w9p3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caroline_bartma's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hf1f0f2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hf1f0f2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caroline_bartma') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caroline_bartma/1622086240133/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/caroline_bartma
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Dr. Caroline Bartman @caroline\_bartma I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Dr. Caroline Bartman. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @caroline\_bartma's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1186032639544877056/fk0lalYa_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">casey 🖤 🤖 AI Bot </div> <div style="font-size: 15px">@caseygripps bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@caseygripps's tweets](https://twitter.com/caseygripps). | Data | Quantity | | --- | --- | | Tweets downloaded | 3228 | | Retweets | 347 | | Short tweets | 375 | | Tweets kept | 2506 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2a8u37lc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caseygripps's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22x53mg6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22x53mg6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caseygripps') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caseygripps/1616642646137/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/caseygripps
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
casey AI Bot @caseygripps bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @caseygripps's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @caseygripps's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1368065495816151041/PHixetcc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cassandra Autumn</div> <div style="text-align: center; font-size: 14px;">@cassandraautumn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cassandra Autumn. | Data | Cassandra Autumn | | --- | --- | | Tweets downloaded | 583 | | Retweets | 283 | | Short tweets | 76 | | Tweets kept | 224 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1d6zyhom/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cassandraautumn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2c2uc7mv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2c2uc7mv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cassandraautumn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cassandraautumn/1625889209816/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cassandraautumn
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Cassandra Autumn @cassandraautumn I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Cassandra Autumn. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cassandraautumn's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1257879573632516097/4hxvX0wW_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cassandra Fairbanks 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@cassandrarules bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cassandrarules's tweets](https://twitter.com/cassandrarules). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3149</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1416</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>192</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1541</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1dphxgyi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cassandrarules's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/7vgc6wj7) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/7vgc6wj7/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cassandrarules'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cassandrarules/1601268616315/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cassandrarules
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cassandra Fairbanks AI Bot </div> <div style="font-size: 15px; color: #657786">@cassandrarules bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @cassandrarules's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3149</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1416</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>192</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1541</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cassandrarules's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cassandrarules'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cassandrarules's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3149</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1416</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>192</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1541</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cassandrarules's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cassandrarules'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cassandrarules's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3149</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1416</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>192</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1541</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cassandrarules's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cassandrarules'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1292888896938729473/tDmJ1K6m_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cassidy 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@cassidoo bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cassidoo's tweets](https://twitter.com/cassidoo). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3194</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>943</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>394</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1857</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1929jr24/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cassidoo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/26vue73c) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/26vue73c/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cassidoo'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cassidoo/1602270809680/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cassidoo
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cassidy AI Bot </div> <div style="font-size: 15px; color: #657786">@cassidoo bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @cassidoo's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3194</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>943</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>394</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1857</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cassidoo's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cassidoo'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cassidoo's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3194</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>943</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>394</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1857</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cassidoo's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cassidoo'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cassidoo's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3194</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>943</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>394</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1857</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cassidoo's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cassidoo'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361189602774704128/FHYgjb9O_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">catboy ranch 🤖 AI Bot </div> <div style="font-size: 15px">@catboyranch bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@catboyranch's tweets](https://twitter.com/catboyranch). | Data | Quantity | | --- | --- | | Tweets downloaded | 3217 | | Retweets | 411 | | Short tweets | 943 | | Tweets kept | 1863 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/173d8lxl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @catboyranch's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fu7bpa2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fu7bpa2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/catboyranch') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/catboyranch/1614176811297/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/catboyranch
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
catboy ranch AI Bot @catboyranch bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @catboyranch's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @catboyranch's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363986318611603456/XmNKZS7x_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cael 🤖 AI Bot </div> <div style="font-size: 15px">@catofthestorm bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@catofthestorm's tweets](https://twitter.com/catofthestorm). | Data | Quantity | | --- | --- | | Tweets downloaded | 165 | | Retweets | 36 | | Short tweets | 20 | | Tweets kept | 109 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gj0d9hm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @catofthestorm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ji5acl6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ji5acl6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/catofthestorm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/catofthestorm/1617771314076/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/catofthestorm
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cael AI Bot @catofthestorm bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @catofthestorm's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @catofthestorm's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1245133455740014592/226OGiPX_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Gustavo Oliva 🤖 AI Bot </div> <div style="font-size: 15px">@caubyyy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@caubyyy's tweets](https://twitter.com/caubyyy). | Data | Quantity | | --- | --- | | Tweets downloaded | 3198 | | Retweets | 302 | | Short tweets | 375 | | Tweets kept | 2521 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2o0zao4x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caubyyy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3okc2lvl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3okc2lvl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caubyyy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caubyyy/1616815681832/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/caubyyy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Gustavo Oliva AI Bot @caubyyy bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @caubyyy's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @caubyyy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416541994952937474/yi5cJxnq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/933947605104685056/mumGVsyS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1420078509230223363/u7XR7esE_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">haley o'shaughnessy & James & Kat Dennings</div> <div style="text-align: center; font-size: 14px;">@caucasianjames-haleyosomething-officialkat</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from haley o'shaughnessy & James & Kat Dennings. | Data | haley o'shaughnessy | James | Kat Dennings | | --- | --- | --- | --- | | Tweets downloaded | 3242 | 3242 | 3228 | | Retweets | 431 | 89 | 689 | | Short tweets | 460 | 602 | 424 | | Tweets kept | 2351 | 2551 | 2115 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ctao3i2l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caucasianjames-haleyosomething-officialkat's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vge9p265) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vge9p265/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caucasianjames-haleyosomething-officialkat') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caucasianjames-haleyosomething-officialkat/1632622460306/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/caucasianjames-haleyosomething-officialkat
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG haley o'shaughnessy & James & Kat Dennings @caucasianjames-haleyosomething-officialkat I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from haley o'shaughnessy & James & Kat Dennings. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @caucasianjames-haleyosomething-officialkat's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393212575911976968/gDX5uIyF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CaVe Yt</div> <div style="text-align: center; font-size: 14px;">@caveyt3</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CaVe Yt. | Data | CaVe Yt | | --- | --- | | Tweets downloaded | 777 | | Retweets | 49 | | Short tweets | 349 | | Tweets kept | 379 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/380nkug5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caveyt3's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ee4maq0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ee4maq0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caveyt3') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/caveyt3/1623457616455/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/caveyt3
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT CaVe Yt @caveyt3 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from CaVe Yt. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @caveyt3's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416443682157473795/dGtFbtht_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1420013003483852810/Rsl-fb7i_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Cavid Ağa</div> <div style="text-align: center; font-size: 14px;">@cavidaga-elonmusk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Cavid Ağa. | Data | Elon Musk | Cavid Ağa | | --- | --- | --- | | Tweets downloaded | 830 | 3221 | | Retweets | 48 | 483 | | Short tweets | 237 | 263 | | Tweets kept | 545 | 2475 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ydwi0ay/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cavidaga-elonmusk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mxx9rsu8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mxx9rsu8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cavidaga-elonmusk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cavidaga-elonmusk
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Elon Musk & Cavid Ağa @cavidaga-elonmusk I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Elon Musk & Cavid Ağa. Data: Tweets downloaded, Elon Musk: 830, Cavid Ağa: 3221 Data: Retweets, Elon Musk: 48, Cavid Ağa: 483 Data: Short tweets, Elon Musk: 237, Cavid Ağa: 263 Data: Tweets kept, Elon Musk: 545, Cavid Ağa: 2475 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cavidaga-elonmusk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1337495809684869120/t8G2xlTV_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cazum8 🍮 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@cazum8videos bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cazum8videos's tweets](https://twitter.com/cazum8videos). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3188</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>501</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>657</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2030</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lqzjziv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cazum8videos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29q66rf9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29q66rf9/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cazum8videos'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cazum8videos/1607736154080/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cazum8videos
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cazum8 AI Bot </div> <div style="font-size: 15px; color: #657786">@cazum8videos bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @cazum8videos's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3188</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>501</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>657</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2030</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cazum8videos's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cazum8videos'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cazum8videos's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3188</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>501</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>657</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2030</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cazum8videos's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cazum8videos'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cazum8videos's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3188</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>501</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>657</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2030</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cazum8videos's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cazum8videos'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1041707865583566850/b2U1-eTk_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Robbie Wakefield 🤖 AI Bot </div> <div style="font-size: 15px">@ccwaterboy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ccwaterboy's tweets](https://twitter.com/ccwaterboy). | Data | Quantity | | --- | --- | | Tweets downloaded | 1680 | | Retweets | 143 | | Short tweets | 98 | | Tweets kept | 1439 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dz0al5jb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ccwaterboy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lhihgx6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lhihgx6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ccwaterboy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ccwaterboy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Robbie Wakefield AI Bot @ccwaterboy bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ccwaterboy's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ccwaterboy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/880104586211581952/KPwn1JyQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">CDC 🤖 AI Bot </div> <div style="font-size: 15px">@cdcgov bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cdcgov's tweets](https://twitter.com/cdcgov). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 1036 | | Short tweets | 1 | | Tweets kept | 2213 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2salp8gg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cdcgov's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tncuzay) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tncuzay/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cdcgov') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cdcgov/1619462636252/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cdcgov
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
CDC AI Bot @cdcgov bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cdcgov's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cdcgov's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1251490479990022145/lS6i5Wgy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Celosia2 🌻 Kristi 💚</div> <div style="text-align: center; font-size: 14px;">@celosia2</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Celosia2 🌻 Kristi 💚. | Data | Celosia2 🌻 Kristi 💚 | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 613 | | Short tweets | 494 | | Tweets kept | 2140 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ohtfdalm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @celosia2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xzr0nuzp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xzr0nuzp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/celosia2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/celosia2/1627149452177/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/celosia2
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Celosia2 Kristi @celosia2 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Celosia2 Kristi . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @celosia2's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]