sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1293318707469410304/OfdJ5rPz_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">henry 🤖 AI Bot </div> <div style="font-size: 15px">@confusionm8trix bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@confusionm8trix's tweets](https://twitter.com/confusionm8trix). | Data | Quantity | | --- | --- | | Tweets downloaded | 766 | | Retweets | 52 | | Short tweets | 108 | | Tweets kept | 606 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2otdqnlb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @confusionm8trix's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tgtfwi1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tgtfwi1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/confusionm8trix') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/confusionm8trix/1616684874152/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/confusionm8trix
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
henry AI Bot @confusionm8trix bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @confusionm8trix's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @confusionm8trix's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1330676998851670016/eJ3IYcvR_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">conrad 🤖 AI Bot </div> <div style="font-size: 15px">@conrad_hotdish bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@conrad_hotdish's tweets](https://twitter.com/conrad_hotdish). | Data | Quantity | | --- | --- | | Tweets downloaded | 3211 | | Retweets | 85 | | Short tweets | 1024 | | Tweets kept | 2102 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1unihbge/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conrad_hotdish's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7jgc9067) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7jgc9067/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conrad_hotdish') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/conrad_hotdish/1614106927714/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/conrad_hotdish
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
conrad AI Bot @conrad\_hotdish bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @conrad\_hotdish's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @conrad\_hotdish's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412951058121330691/TPaX9p2y_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381333613585727489/KjV-Te29_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">occultbot & conspiracybot</div> <div style="text-align: center; font-size: 14px;">@conspiracyb0t-occultb0t</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from occultbot & conspiracybot. | Data | occultbot | conspiracybot | | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | | Retweets | 0 | 0 | | Short tweets | 1659 | 1651 | | Tweets kept | 1591 | 1599 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fou3nfp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conspiracyb0t-occultb0t's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3kx38spd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3kx38spd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conspiracyb0t-occultb0t') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/conspiracyb0t-occultb0t
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
AI CYBORG occultbot & conspiracybot @conspiracyb0t-occultb0t I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from occultbot & conspiracybot. Data: Tweets downloaded, occultbot: 3250, conspiracybot: 3250 Data: Retweets, occultbot: 0, conspiracybot: 0 Data: Short tweets, occultbot: 1659, conspiracybot: 1651 Data: Tweets kept, occultbot: 1591, conspiracybot: 1599 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @conspiracyb0t-occultb0t's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 58 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 0.01490766927599907, -0.029707439243793488, -0.005551214329898357, 0.019200731068849564, 0.13538123667240143, 0.031960584223270416, 0.07854003459215164, 0.15176640450954437, -0.03478027135133743, 0.020825274288654327, 0.17780765891075134, 0.13369141519069672, -0.025615064427256584, 0.10110418498516083, -0.04495277628302574, -0.27562591433525085, 0.05076512694358826, 0.04804648086428642, -0.03660755604505539, 0.13914404809474945, 0.08130049705505371, -0.04002818092703819, 0.09946437180042267, -0.02348330244421959, -0.18448196351528168, 0.03603345900774002, 0.03874115273356438, -0.10113959014415741, 0.1245182529091835, 0.042210761457681656, 0.097016341984272, 0.02144498936831951, -0.08173582702875137, -0.09949471801519394, 0.04076211526989937, 0.0524214468896389, -0.06747427582740784, 0.07371947914361954, 0.06548287719488144, -0.09104428440332413, 0.15018822252750397, 0.032346583902835846, -0.015613866969943047, 0.05642572045326233, -0.17452795803546906, -0.05158021301031113, -0.038718461990356445, 0.007089211139827967, 0.026932736858725548, 0.0765126645565033, -0.03151388466358185, 0.1801837533712387, -0.09969375282526016, 0.08080597966909409, 0.19449612498283386, -0.3136744201183319, -0.008555608801543713, 0.09032562375068665, 0.10929754376411438, 0.04874800145626068, -0.027296993881464005, 0.0915885642170906, 0.06193246319890022, 0.01960965059697628, 0.03833269700407982, -0.04861060902476311, -0.10319411009550095, 0.05647158622741699, -0.09057577699422836, -0.06054073944687843, 0.21635963022708893, -0.04008340463042259, 0.06982671469449997, -0.06175680458545685, -0.10815948247909546, -0.04076464846730232, -0.0019450898980721831, 0.007722846698015928, -0.04665110260248184, 0.07648039609193802, -0.018055662512779236, -0.07031384110450745, -0.16104750335216522, 0.004024024587124586, -0.19634990394115448, 0.15040342509746552, -0.007091521751135588, 0.03826533630490303, -0.18292304873466492, 0.11239926517009735, -0.00463539082556963, -0.09352986514568329, 0.05768691375851631, -0.09079932421445847, 0.06515228003263474, 0.012864203192293644, -0.07714717835187912, -0.01476553175598383, 0.07529455423355103, 0.14459288120269775, -0.03202451393008232, -0.014661530964076519, 0.005731707438826561, 0.08028950542211533, 0.0649947077035904, 0.0529506653547287, -0.05044480413198471, -0.04604479670524597, 0.023471293970942497, -0.12279047816991806, 0.005323461256921291, -0.08722265064716339, -0.11850544810295105, -0.06324991583824158, 0.02913680486381054, 0.0409526452422142, 0.05413410812616348, 0.11646701395511627, -0.03819722682237625, 0.003125704126432538, 0.0790749341249466, -0.04754907265305519, 0.014819944277405739, -0.019563961774110794, 0.019939353689551353, 0.10169259458780289, -0.004264532588422298, 0.02739645354449749, -0.08098349720239639, 0.053036682307720184, -0.10909318923950195, -0.01619906909763813, -0.01401914469897747, -0.08360559493303299, 0.03495157137513161, -0.13044656813144684, 0.003459199797362089, -0.1794617623090744, -0.08515556156635284, 0.004473025444895029, -0.02669714391231537, -0.029448989778757095, -0.07044726610183716, -0.000012087725735909771, -0.03782980516552925, 0.09037511795759201, -0.049331095069646835, 0.02187872678041458, -0.05999310687184334, 0.10105309635400772, -0.06390658020973206, 0.10026112198829651, -0.14347022771835327, 0.062101077288389206, -0.13453714549541473, -0.007185438182204962, -0.056844428181648254, 0.06125464290380478, 0.003428247757256031, 0.14510339498519897, -0.0019743351731449366, -0.024058373644948006, -0.11893454194068909, 0.07660667598247528, -0.013276024721562862, 0.20594745874404907, -0.08867699652910233, -0.12363981455564499, 0.18977078795433044, -0.05639764666557312, -0.13151882588863373, 0.12418028712272644, 0.014429234899580479, 0.0632154569029808, 0.06213442608714104, 0.22679246962070465, 0.019381923601031303, -0.012931653298437595, 0.022296493873000145, 0.09503678232431412, -0.14555561542510986, -0.009661003015935421, 0.00841028243303299, -0.0034040703903883696, -0.08606491982936859, 0.03532338887453079, 0.11260384321212769, 0.09308808296918869, -0.06410733610391617, -0.02130906470119953, -0.04973118007183075, -0.002825164934620261, 0.08984078466892242, -0.004783526994287968, 0.10731708258390427, -0.1087048277258873, -0.0696249008178711, -0.030250849202275276, -0.0012943379115313292, 0.019239740446209908, 0.047808386385440826, -0.02344650961458683, 0.12562713027000427, -0.007734235376119614, 0.03894360736012459, -0.1425095796585083, -0.08136747777462006, -0.0352344736456871, 0.1538124978542328, 0.043824564665555954, 0.12064811587333679, 0.05824866518378258, -0.05751828849315643, -0.01182011142373085, -0.0009749550954438746, 0.1436033844947815, -0.01271585002541542, -0.0852496474981308, -0.05857346951961517, 0.08234002441167831, -0.07005385309457779, 0.025747623294591904, -0.044775284826755524, 0.034807976335287094, 0.07559926062822342, 0.12458331137895584, -0.012196341529488564, 0.03711283579468727, -0.0114806042984128, -0.00011358146002748981, -0.0896436795592308, -0.017758425325155258, 0.08426769077777863, -0.01031328085809946, -0.06891145557165146, 0.2548580765724182, -0.20196770131587982, 0.2299574315547943, 0.2296006977558136, -0.24926680326461792, -0.031021486967802048, -0.033769410103559494, -0.053823258727788925, 0.017695831134915352, 0.037970591336488724, -0.06758655607700348, 0.04836089164018631, -0.04798879474401474, 0.14743368327617645, -0.039952509105205536, -0.067154660820961, 0.011684614233672619, -0.06448059529066086, -0.05935867503285408, 0.06313008069992065, 0.042497556656599045, -0.12196247279644012, 0.19907300174236298, 0.256646990776062, 0.05731065943837166, 0.19537882506847382, 0.018505526706576347, -0.008647909387946129, 0.05532584711909294, -0.06024787575006485, -0.05939318984746933, -0.047756556421518326, -0.17080695927143097, -0.04192587733268738, 0.08264796435832977, 0.03818074241280556, 0.10142038762569427, -0.10767655074596405, -0.07215311378240585, 0.009001186117529869, 0.015298610553145409, -0.0071457610465586185, 0.13598360121250153, 0.0518062487244606, 0.13914446532726288, -0.005930832587182522, 0.025881925597786903, 0.06802397966384888, 0.02908273972570896, -0.08634071797132492, 0.1456945538520813, -0.1443340927362442, -0.3761582672595978, -0.1337488889694214, -0.09692523628473282, -0.01728254184126854, 0.04180695861577988, 0.12187701463699341, -0.12770286202430725, 0.0015871572541072965, -0.038519375026226044, 0.11093265563249588, -0.08619660884141922, 0.05064225569367409, -0.09312444925308228, 0.013121986761689186, -0.05371590703725815, -0.09208092838525772, -0.03968694806098938, -0.025510141626000404, -0.09566790610551834, 0.17000380158424377, -0.06683114916086197, 0.06858081370592117, 0.18506819009780884, 0.00719145592302084, 0.0289844311773777, -0.048802170902490616, 0.19252337515354156, -0.11087619513273239, 0.03966445475816727, 0.16040337085723877, 0.017642250284552574, 0.0870000347495079, 0.1063152626156807, -0.012242939323186874, -0.0729413852095604, 0.045604314655065536, 0.00838512647897005, -0.1192161962389946, -0.1628645360469818, -0.12800830602645874, -0.09412717819213867, 0.11832976341247559, 0.04896165430545807, 0.06800009310245514, 0.15884871780872345, 0.07476164400577545, -0.026399539783596992, -0.014989175833761692, -0.030628371983766556, 0.06698833405971527, 0.1810096949338913, -0.03410731256008148, 0.14575767517089844, -0.058808114379644394, -0.11332095414400101, 0.13757702708244324, 0.02930915355682373, 0.041703663766384125, 0.02182352915406227, -0.00909164547920227, 0.002967006294056773, 0.1275966912508011, 0.12905162572860718, 0.09085892140865326, -0.009210709482431412, -0.02600487507879734, -0.043374914675951004, -0.013961076736450195, -0.004321942571550608, 0.0544881634414196, 0.04976500943303108, -0.17056837677955627, -0.05252770707011223, -0.15036118030548096, 0.10635104030370712, 0.0658026859164238, 0.1097705140709877, -0.1943172961473465, -0.002813685918226838, 0.07878942042589188, -0.032336506992578506, -0.10688291490077972, 0.0711626410484314, 0.08084181696176529, -0.10172833502292633, 0.061861153692007065, -0.006532561499625444, 0.10406243056058884, 0.023742493242025375, 0.09878388792276382, -0.05866028368473053, -0.06148262321949005, -0.016518592834472656, 0.0939461812376976, -0.2926773428916931, 0.18179792165756226, -0.02907240390777588, -0.09844435751438141, -0.07134795933961868, -0.027840720489621162, 0.02770385891199112, 0.08060616999864578, 0.07026281952857971, 0.03338824585080147, 0.004331306088715792, -0.096750907599926, -0.025082198902964592, 0.01906721480190754, 0.12366755306720734, -0.05625581368803978, -0.01350511983036995, -0.041342347860336304, 0.02173074521124363, 0.00881099235266447, 0.06707418709993362, 0.021282022818922997, -0.16175130009651184, 0.07081238180398941, 0.03874411806464195, 0.03632965683937073, 0.02809896133840084, -0.02992626093327999, -0.1548270583152771, 0.1699383705854416, 0.02149343490600586, -0.06355534493923187, -0.12458667904138565, -0.04415702819824219, 0.06474760919809341, -0.04559854418039322, 0.039427343755960464, -0.0629853680729866, -0.001072446582838893, -0.07396374642848969, -0.19678819179534912, 0.1352648138999939, -0.06877507269382477, -0.07956159859895706, -0.03609750047326088, 0.17941854894161224, -0.07844837009906769, 0.018584884703159332, 0.007694936357438564, 0.047691553831100464, -0.14645716547966003, -0.11046357452869415, 0.06859224289655685, -0.04709484800696373, 0.036693572998046875, 0.01622764952480793, -0.02127574197947979, 0.005549534223973751, -0.012371892109513283, -0.0025305403396487236, 0.27376097440719604, 0.22965525090694427, -0.0802733525633812, 0.17710179090499878, 0.0630764365196228, -0.0507618673145771, -0.326980859041214, -0.09341348707675934, -0.14117297530174255, -0.009823985397815704, 0.023037875071167946, -0.13106577098369598, 0.05048951879143715, 0.029267780482769012, -0.014271927997469902, 0.11641538888216019, -0.20954635739326477, -0.09825599938631058, 0.09716890752315521, -0.06865759193897247, 0.4034286141395569, -0.1301247775554657, -0.07252515107393265, -0.03537401184439659, -0.14370368421077728, 0.1951674520969391, -0.06888531148433685, 0.09445398300886154, -0.02521556057035923, 0.13606955111026764, 0.05328543111681938, -0.02234726957976818, 0.11178411543369293, -0.01972258649766445, 0.0011309145484119654, -0.13865596055984497, -0.0604546032845974, 0.08001494407653809, -0.007717274595052004, 0.009300438687205315, -0.10272051393985748, 0.02493043802678585, -0.1687590479850769, -0.0011172585655003786, -0.11747178435325623, 0.09020119160413742, 0.021906770765781403, -0.06782494485378265, -0.050800591707229614, -0.0397600457072258, -0.009170935489237309, -0.01781470514833927, 0.14266571402549744, -0.05449723079800606, 0.1958875209093094, 0.07874593138694763, 0.06835102289915085, -0.1398908495903015, 0.05150968208909035, -0.027329890057444572, -0.0722222700715065, 0.07193705439567566, -0.1763947606086731, 0.04665200039744377, 0.08747349679470062, -0.03685600683093071, 0.04361190274357796, 0.09054525941610336, 0.0016616116045042872, 0.015259911306202412, 0.17542323470115662, -0.26249444484710693, -0.009265073575079441, -0.05851370841264725, -0.07754334062337875, 0.09399785101413727, 0.05022705718874931, 0.17302869260311127, 0.01883954182267189, -0.042071253061294556, 0.01570643112063408, 0.01509455218911171, -0.059037789702415466, 0.045513592660427094, 0.02684464305639267, 0.008570663630962372, -0.1221366673707962, 0.05156322568655014, 0.023951835930347443, -0.13511396944522858, 0.028608962893486023, 0.18224509060382843, -0.11025255918502808, -0.12385176122188568, -0.05918734520673752, 0.014604943804442883, -0.1147887259721756, 0.022507676854729652, -0.0024671610444784164, -0.09835006296634674, 0.062000639736652374, 0.13879112899303436, 0.06231173500418663, 0.12207856774330139, -0.016749046742916107, -0.009889025241136551, -0.02596008963882923, -0.03651546314358711, 0.030208537355065346, 0.03168511390686035, -0.0861181765794754, 0.11346250027418137, -0.02512839064002037, 0.1417820155620575, -0.10664749890565872, -0.05201685056090355, -0.14300444722175598, -0.032158151268959045, -0.08575893938541412, -0.11310356855392456, -0.07854323089122772, -0.07035478204488754, 0.009079275652766228, -0.06144321709871292, -0.04742341861128807, -0.07850945740938187, -0.1071249470114708, 0.0065527972765266895, -0.04037778079509735, 0.04593488946557045, -0.08211231976747513, -0.0025119397323578596, 0.11637649685144424, -0.022535819560289383, 0.16392095386981964, 0.11117493361234665, -0.09679865092039108, 0.07616551965475082, -0.12686336040496826, -0.10472826659679413, 0.09312791377305984, -0.011926734820008278, 0.03812364861369133, 0.11054535210132599, 0.005196572281420231, 0.026585882529616356, 0.05407439172267914, 0.06366553902626038, 0.03967318683862686, -0.10743927955627441, 0.0886315256357193, -0.020753242075443268, -0.1556011289358139, -0.045647621154785156, -0.0805148333311081, 0.03534896299242973, 0.01974404975771904, 0.10271792113780975, -0.034986238926649094, 0.0667109340429306, -0.08902619034051895, 0.024180470034480095, -0.000016180018064915203, -0.17815378308296204, -0.01795545034110546, -0.044853758066892624, 0.03495967015624046, 0.017773056402802467, 0.24157072603702545, 0.06085042282938957, -0.06760483235120773, 0.04657021537423134, 0.12547647953033447, 0.015325317159295082, 0.0012204478261992335, 0.15906299650669098, 0.09267544746398926, -0.07720284163951874, -0.1355191469192505, 0.06737678498029709, 0.019282789900898933, -0.045628830790519714, 0.09535399079322815, 0.009011821821331978, 0.021824736148118973, 0.0726994201540947, -0.01307250652462244, 0.0016560814110562205, -0.10145208984613419, -0.11841893196105957, -0.038609180599451065, 0.056700821965932846, -0.03823903948068619, 0.08270184695720673, 0.1624554693698883, -0.01529943011701107, 0.038163430988788605, -0.03936288133263588, -0.01488962396979332, -0.12554575502872467, -0.1426725685596466, -0.06450272351503372, -0.16302600502967834, -0.007763232104480267, -0.08333444595336914, 0.06433288753032684, 0.07949802279472351, 0.059826187789440155, -0.04269853234291077, 0.07651268690824509, 0.041022781282663345, -0.10034794360399246, 0.07510355859994888, -0.02059151791036129, 0.05323530361056328, -0.021385202184319496, -0.019656827673316002, -0.10213424265384674, 0.05417940020561218, -0.020723329856991768, 0.0416044183075428, -0.05111391469836235, 0.009476713836193085, -0.17171601951122284, -0.1145220696926117, -0.06269708275794983, 0.05981360003352165, -0.05057463422417641, 0.05945824086666107, 0.01168898493051529, 0.011022492311894894, 0.016294511035084724, 0.24577881395816803, -0.06521986424922943, -0.04237864539027214, -0.039796773344278336, 0.1401647925376892, -0.010960960760712624, 0.07910837978124619, -0.04971875622868538, -0.026874123141169548, -0.11801496148109436, 0.31808507442474365, 0.3330231308937073, -0.09461544454097748, 0.042824193835258484, -0.011730561032891273, 0.03255566582083702, 0.12393459677696228, 0.12263859808444977, 0.1047649085521698, 0.23149316012859344, -0.07330518960952759, -0.04662523791193962, -0.0235530287027359, -0.011487046256661415, -0.07061693072319031, 0.09144455194473267, 0.024042300879955292, -0.06604029983282089, -0.04112962633371353, 0.061292614787817, -0.1968756765127182, 0.09409318119287491, -0.08292321115732193, -0.2009436935186386, -0.043561115860939026, 0.03980926424264908, 0.11663878709077835, -0.0058410209603607655, 0.12327833473682404, 0.0021221975330263376, -0.06928802281618118, 0.0007765711052343249, 0.021609993651509285, -0.21508292853832245, 0.024919532239437103, 0.07233009487390518, -0.12181923538446426, -0.003256353549659252, -0.03614840656518936, -0.0016090048011392355, 0.08110456168651581, 0.041294027119874954, -0.03950197249650955, 0.026108399033546448, 0.004547862336039543, -0.03431681916117668, -0.023192770779132843, 0.04429425671696663, 0.04074658825993538, -0.15583069622516632, 0.0852603018283844, -0.15913386642932892, 0.045099467039108276, -0.033806633204221725, 0.0012128398520871997, -0.010232296772301197, -0.0017561162821948528, -0.040829166769981384, 0.08149882405996323, 0.07333235442638397, -0.022076698020100594, -0.0061705452390015125, -0.06384896486997604, -0.055786989629268646, -0.027778856456279755, -0.08865642547607422, -0.09847963601350784, -0.12417391687631607, -0.10101866722106934, 0.09827395528554916, -0.022276965901255608, -0.17602279782295227, 0.008451612666249275, -0.09465660154819489, 0.06178250536322594, -0.14477479457855225, 0.11634210497140884, 0.08996126055717468, 0.0033104352187365294, 0.006666821893304586, -0.021679235622286797, 0.07054676860570908, 0.1143367812037468, -0.09097250550985336, -0.06963858008384705 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1381333613585727489/KjV-Te29_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">conspiracybot 🤖 AI Bot </div> <div style="font-size: 15px">@conspiracyb0t bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@conspiracyb0t's tweets](https://twitter.com/conspiracyb0t). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 1603 | | Tweets kept | 1647 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nfdu4jd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conspiracyb0t's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25ymtdbi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25ymtdbi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conspiracyb0t') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/conspiracyb0t/1618535079312/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/conspiracyb0t
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
conspiracybot AI Bot @conspiracyb0t bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @conspiracyb0t's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @conspiracyb0t's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1303044453544976394/U4N_fNXn_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Natalie Wynn 🤖 AI Bot </div> <div style="font-size: 15px">@contrapoints bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@contrapoints's tweets](https://twitter.com/contrapoints). | Data | Quantity | | --- | --- | | Tweets downloaded | 658 | | Retweets | 73 | | Short tweets | 132 | | Tweets kept | 453 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tehrpnk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @contrapoints's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i7tqmbhr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i7tqmbhr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/contrapoints') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/contrapoints/1616752707998/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/contrapoints
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Natalie Wynn AI Bot @contrapoints bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @contrapoints's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @contrapoints's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1385160467778310144/WyzPNrHb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🐱Sophie/Cookie🍪🏳️‍⚧️</div> <div style="text-align: center; font-size: 14px;">@cookie__sophie</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🐱Sophie/Cookie🍪🏳️‍⚧️. | Data | 🐱Sophie/Cookie🍪🏳️‍⚧️ | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 463 | | Short tweets | 375 | | Tweets kept | 2394 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15ifdxlx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cookie__sophie's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/390kytab) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/390kytab/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cookie__sophie') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cookie__sophie/1624473491534/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cookie__sophie
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Sophie/Cookie️‍️ @cookie\_\_sophie I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Sophie/Cookie️‍️. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cookie\_\_sophie's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1330648314203631619/v2qx0ncL_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">shinji icarly 🤖 AI Bot </div> <div style="font-size: 15px">@coolnerdfacts bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@coolnerdfacts's tweets](https://twitter.com/coolnerdfacts). | Data | Quantity | | --- | --- | | Tweets downloaded | 1711 | | Retweets | 513 | | Short tweets | 128 | | Tweets kept | 1070 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l96gdy8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coolnerdfacts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o5cywwmo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o5cywwmo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coolnerdfacts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/coolnerdfacts/1614213636356/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/coolnerdfacts
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
shinji icarly AI Bot @coolnerdfacts bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @coolnerdfacts's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @coolnerdfacts's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1080867330522001408/44pEKx_C_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cooperativa 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@cooperativa bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cooperativa's tweets](https://twitter.com/cooperativa). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3234</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>417</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>2</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2815</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/114yjete/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cooperativa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1vwsyebc) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1vwsyebc/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cooperativa'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cooperativa/1604184922075/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cooperativa
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cooperativa AI Bot </div> <div style="font-size: 15px; color: #657786">@cooperativa bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @cooperativa's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3234</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>417</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>2</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2815</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cooperativa's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cooperativa'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cooperativa's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3234</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>417</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>2</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2815</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cooperativa's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cooperativa'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cooperativa's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3234</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>417</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>2</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2815</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cooperativa's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cooperativa'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/425749544886755329/_1EJmE-8_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cooper Quinn 🤖 AI Bot </div> <div style="font-size: 15px">@cooperquinn_wy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cooperquinn_wy's tweets](https://twitter.com/cooperquinn_wy). | Data | Quantity | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 452 | | Short tweets | 564 | | Tweets kept | 2226 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4kx01uhm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cooperquinn_wy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vg5bxn2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vg5bxn2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cooperquinn_wy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cooperquinn_wy/1617467984667/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cooperquinn_wy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cooper Quinn AI Bot @cooperquinn\_wy bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cooperquinn\_wy's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cooperquinn\_wy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1232060545626497024/ltc63x4__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Coronavirus 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@coronavid19 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@coronavid19's tweets](https://twitter.com/coronavid19). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1618</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>12</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>96</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1510</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lgjd18p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coronavid19's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ki9s94y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ki9s94y/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/coronavid19'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/coronavid19/1608807621950/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/coronavid19
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Coronavirus AI Bot </div> <div style="font-size: 15px; color: #657786">@coronavid19 bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @coronavid19's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1618</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>12</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>96</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1510</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @coronavid19's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/coronavid19'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @coronavid19's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1618</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>12</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>96</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1510</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @coronavid19's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/coronavid19'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @coronavid19's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1618</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>12</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>96</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1510</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @coronavid19's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/coronavid19'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1366103941675585536/EcMyRRuK_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Corpse Husband 🤖 AI Bot </div> <div style="font-size: 15px">@corpse_husband bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@corpse_husband's tweets](https://twitter.com/corpse_husband). | Data | Quantity | | --- | --- | | Tweets downloaded | 1533 | | Retweets | 35 | | Short tweets | 534 | | Tweets kept | 964 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/183lret6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @corpse_husband's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ctkgzjp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ctkgzjp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/corpse_husband') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/corpse_husband/1617737581104/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/corpse_husband
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Corpse Husband AI Bot @corpse\_husband bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @corpse\_husband's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @corpse\_husband's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1515787050334801925/tyxpMmj1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Corpse Crusader 🫀🇫🇮 gamedev hours🧱🍐💨💪</div> <div style="text-align: center; font-size: 14px;">@corpsecrusader</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Corpse Crusader 🫀🇫🇮 gamedev hours🧱🍐💨💪. | Data | Corpse Crusader 🫀🇫🇮 gamedev hours🧱🍐💨💪 | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 405 | | Short tweets | 658 | | Tweets kept | 2181 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ogdqtie2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @corpsecrusader's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ecpg08j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ecpg08j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/corpsecrusader') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/corpsecrusader/1651240626010/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/corpsecrusader
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Corpse Crusader 🇫🇮 gamedev hours @corpsecrusader I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Corpse Crusader 🇫🇮 gamedev hours. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @corpsecrusader's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1265389720047058944/hWPrCwh7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394712172010393608/tkWea9AS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406255548228640781/wzOACSA8_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SA | Glitchre & glitchre & cosmic gangster</div> <div style="text-align: center; font-size: 14px;">@cosm1cgrandma-glitchre-glitchre8</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SA | Glitchre & glitchre & cosmic gangster. | Data | SA | Glitchre | glitchre | cosmic gangster | | --- | --- | --- | --- | | Tweets downloaded | 2920 | 2891 | 2960 | | Retweets | 347 | 808 | 1410 | | Short tweets | 872 | 600 | 359 | | Tweets kept | 1701 | 1483 | 1191 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15s2bdg3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cosm1cgrandma-glitchre-glitchre8's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jv76342) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jv76342/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cosm1cgrandma-glitchre-glitchre8') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cosm1cgrandma-glitchre-glitchre8/1631658643977/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cosm1cgrandma-glitchre-glitchre8
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI CYBORG </div> <div style="text-align: center; font-size: 16px; font-weight: 800">SA | Glitchre & glitchre & cosmic gangster</div> <div style="text-align: center; font-size: 14px;">@cosm1cgrandma-glitchre-glitchre8</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on tweets from SA | Glitchre & glitchre & cosmic gangster. | Data | SA | Glitchre | glitchre | cosmic gangster | | --- | --- | --- | --- | | Tweets downloaded | 2920 | 2891 | 2960 | | Retweets | 347 | 808 | 1410 | | Short tweets | 872 | 600 | 359 | | Tweets kept | 1701 | 1483 | 1191 | Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cosm1cgrandma-glitchre-glitchre8's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from SA | Glitchre & glitchre & cosmic gangster.\n\n| Data | SA | Glitchre | glitchre | cosmic gangster |\n| --- | --- | --- | --- |\n| Tweets downloaded | 2920 | 2891 | 2960 |\n| Retweets | 347 | 808 | 1410 |\n| Short tweets | 872 | 600 | 359 |\n| Tweets kept | 1701 | 1483 | 1191 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cosm1cgrandma-glitchre-glitchre8's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from SA | Glitchre & glitchre & cosmic gangster.\n\n| Data | SA | Glitchre | glitchre | cosmic gangster |\n| --- | --- | --- | --- |\n| Tweets downloaded | 2920 | 2891 | 2960 |\n| Retweets | 347 | 808 | 1410 |\n| Short tweets | 872 | 600 | 359 |\n| Tweets kept | 1701 | 1483 | 1191 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cosm1cgrandma-glitchre-glitchre8's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 54, 34, 170, 89, 18, 47, 38 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on tweets from SA | Glitchre & glitchre & cosmic gangster.\n\n| Data | SA | Glitchre | glitchre | cosmic gangster |\n| --- | --- | --- | --- |\n| Tweets downloaded | 2920 | 2891 | 2960 |\n| Retweets | 347 | 808 | 1410 |\n| Short tweets | 872 | 600 | 359 |\n| Tweets kept | 1701 | 1483 | 1191 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cosm1cgrandma-glitchre-glitchre8's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.0377906858921051, 0.15536640584468842, -0.004695071838796139, 0.09105090796947479, 0.08991125226020813, 0.036701250821352005, 0.07396405190229416, 0.13027533888816833, 0.01603076420724392, 0.16261151432991028, 0.07206235080957413, 0.015525223687291145, 0.05947485193610191, 0.18958190083503723, 0.07681131362915039, -0.190015971660614, 0.005960557609796524, -0.13908015191555023, -0.07085787504911423, 0.1342475861310959, 0.09034298360347748, -0.07916825264692307, 0.07637151330709457, -0.05904274433851242, -0.10079602897167206, 0.025720255449414253, -0.011172473430633545, -0.050916559994220734, 0.051423292607069016, 0.023247484117746353, 0.005191141273826361, 0.03569388389587402, 0.07125077396631241, -0.12712761759757996, 0.039703816175460815, 0.12183640897274017, -0.014454621821641922, 0.06810616701841354, 0.10325977951288223, -0.03685380518436432, 0.14438197016716003, -0.09803254902362823, 0.05245587229728699, 0.06527698040008545, -0.17442095279693604, -0.08620527386665344, -0.17019057273864746, 0.0843135416507721, 0.10054601728916168, 0.07826118171215057, -0.06198052689433098, 0.10215069353580475, -0.026154812425374985, 0.0013923157239332795, 0.19605059921741486, -0.25059929490089417, -0.05965924635529518, 0.08610037714242935, 0.01946146786212921, 0.09563241899013519, -0.1166815236210823, 0.05280100181698799, 0.027313603088259697, -0.011741275899112225, 0.03833732753992081, -0.0443081334233284, 0.12368061393499374, 0.014338212087750435, -0.12027644366025925, -0.061688631772994995, 0.0066375285387039185, 0.012714976444840431, -0.04950042441487312, -0.13890689611434937, -0.03128478676080704, -0.05958373472094536, -0.007764871697872877, -0.056844230741262436, 0.01548822969198227, -0.0018431174103170633, -0.020781056955456734, -0.062410276383161545, -0.06558064371347427, -0.04211069643497467, 0.0035999403335154057, 0.06950840353965759, 0.024883192032575607, 0.014805464074015617, -0.03977585956454277, 0.16186058521270752, 0.03978901356458664, -0.13236933946609497, -0.050300922244787216, -0.0430927611887455, -0.10323604196310043, -0.03000086545944214, 0.02214556187391281, 0.06882540881633759, 0.06225162371993065, 0.2331652045249939, -0.030450375750660896, 0.06180427595973015, 0.03856552019715309, -0.01455094013363123, 0.082442507147789, 0.09254902601242065, -0.12281372398138046, -0.10220213979482651, 0.0654338002204895, 0.0018480784492567182, -0.05147501081228256, -0.0830756276845932, 0.007937678135931492, 0.021553052589297295, 0.043249282985925674, 0.11069785058498383, 0.0847521498799324, 0.028305023908615112, -0.009631653316318989, -0.04866667836904526, 0.08341138809919357, -0.14316561818122864, 0.07516457140445709, 0.038551874458789825, -0.04256156459450722, -0.04036824032664299, -0.0369415283203125, -0.0208981242030859, -0.10029466450214386, 0.044250018894672394, -0.10312838852405548, -0.0618182010948658, -0.049375198781490326, -0.048101868480443954, 0.008207197301089764, 0.025635715574026108, -0.0796920508146286, -0.10500925779342651, -0.10058227926492691, -0.08956936001777649, 0.0027833329513669014, -0.09300785511732101, 0.008373125456273556, 0.02044115588068962, -0.054682161659002304, 0.02896862104535103, 0.025475071743130684, 0.05071339011192322, -0.02431477978825569, 0.03928235173225403, -0.058169908821582794, 0.008914914913475513, 0.13084855675697327, 0.027747081592679024, -0.10731801390647888, 0.06904935836791992, -0.13205045461654663, 0.11702874302864075, -0.10399893671274185, 0.03456759452819824, -0.15198110044002533, -0.09072170406579971, 0.008413872681558132, -0.06474018841981888, 0.03705938532948494, 0.12732526659965515, -0.10924115777015686, -0.03885960206389427, 0.137889564037323, -0.05016665160655975, -0.05277691036462784, 0.09516850113868713, -0.05367951840162277, -0.025487758219242096, 0.08835728466510773, 0.12179066240787506, 0.11657297611236572, -0.05058508738875389, -0.018873443827033043, -0.12230005860328674, -0.05624208226799965, 0.2278987318277359, 0.0386631153523922, -0.025505350902676582, 0.0053746965713799, -0.02359711192548275, -0.10280484706163406, -0.024049896746873856, -0.060358934104442596, -0.04717636480927467, 0.029353000223636627, -0.012260264717042446, 0.02308025024831295, -0.01137380488216877, -0.03580848127603531, -0.08324834704399109, -0.14287994801998138, -0.11825324594974518, 0.08804973214864731, -0.02850961498916149, -0.01664646714925766, -0.11104244738817215, 0.07628796249628067, 0.0263607706874609, 0.0391143336892128, -0.1142047569155693, -0.13515602052211761, 0.04418493062257767, -0.05783422663807869, 0.11258440464735031, -0.08765354752540588, 0.03833628073334694, 0.05033024027943611, -0.004447122570127249, 0.004876873455941677, -0.07791478931903839, -0.0023373987060040236, -0.05024927109479904, -0.15893593430519104, -0.02672007866203785, -0.03507549315690994, 0.14085431396961212, -0.13670624792575836, -0.0038239234127104282, 0.11478736251592636, 0.10663158446550369, -0.0046478621661663055, -0.07898712903261185, 0.025521941483020782, -0.0423993319272995, 0.00837648380547762, -0.12235435843467712, -0.04526736959815025, -0.02655033953487873, 0.007288145832717419, 0.06790543347597122, -0.2029247134923935, -0.09481415897607803, 0.09143665432929993, 0.08809114992618561, -0.1365494579076767, 0.0591667965054512, -0.04927024617791176, -0.028128501027822495, -0.062476981431245804, -0.04362001642584801, 0.19542625546455383, 0.0012513992842286825, 0.04641078785061836, -0.0576181598007679, -0.08924084156751633, -0.0021705266553908587, -0.016870198771357536, -0.036434970796108246, 0.08030953258275986, -0.017906999215483665, -0.24014195799827576, 0.09767873585224152, 0.07223322987556458, 0.09849884361028671, 0.12431883811950684, 0.01598735898733139, -0.09586513787508011, -0.06592074781656265, -0.028943222016096115, 0.03389802202582359, 0.06155413016676903, 0.027532992884516716, 0.004786188248544931, 0.029589509591460228, 0.027532145380973816, 0.021625133231282234, -0.07875195890665054, -0.015169312246143818, 0.03257247433066368, -0.03558063879609108, 0.020237484946846962, 0.017577607184648514, 0.011001654900610447, 0.12174170464277267, 0.056118983775377274, 0.051012516021728516, -0.06753437966108322, -0.05299420282244682, -0.1255343109369278, 0.14870783686637878, -0.0975826308131218, -0.1833413690328598, -0.0629536584019661, -0.013849038630723953, 0.035153161734342575, -0.0019701358396559954, 0.02271004393696785, -0.08772087842226028, -0.047563716769218445, -0.0801360160112381, 0.05755338445305824, 0.019506141543388367, -0.02362915314733982, 0.04143394157290459, -0.01900874823331833, -0.011466549709439278, -0.10613884031772614, -0.02615981362760067, 0.043591637164354324, -0.12725132703781128, 0.03237350285053253, 0.06961891800165176, 0.0818563923239708, 0.17258687317371368, -0.01981637068092823, 0.02451159618794918, -0.028480716049671173, 0.24765120446681976, -0.17275096476078033, 0.08395598828792572, 0.08028249442577362, 0.01694512367248535, 0.05525171011686325, 0.02967461384832859, 0.013195971958339214, -0.10461236536502838, 0.06693655997514725, 0.06430025398731232, -0.053770024329423904, -0.20320114493370056, -0.049464236944913864, -0.01634148508310318, 0.039692386984825134, 0.10211038589477539, 0.08963634073734283, 0.06423062086105347, -0.015161378309130669, -0.06842755526304245, -0.046936698257923126, 0.0651995912194252, 0.08006400614976883, -0.06579487770795822, 0.0503876619040966, 0.03137413039803505, -0.027012057602405548, 0.024589288979768753, 0.14879201352596283, -0.02735077776014805, 0.16751079261302948, -0.007856677286326885, 0.15459956228733063, 0.03145437687635422, 0.10299338400363922, -0.00103227817453444, -0.03541187569499016, 0.009515652433037758, 0.019188163802027702, 0.014145944267511368, -0.09566192328929901, 0.03667237237095833, 0.03242208808660507, 0.027540579438209534, -0.06043582409620285, -0.02861173450946808, -0.039014946669340134, 0.10392975807189941, 0.15991105139255524, 0.03981047123670578, -0.15099798142910004, -0.071994349360466, 0.05651436746120453, -0.05924942344427109, -0.03917321935296059, -0.022860461845993996, 0.06816704571247101, -0.19991303980350494, 0.035159528255462646, -0.0251176655292511, 0.10504450649023056, -0.007147954311221838, -0.02338324300944805, 0.0792141929268837, 0.0888257697224617, -0.05402081832289696, 0.08514425903558731, -0.16945184767246246, 0.09375767409801483, -0.02299228496849537, 0.04590587690472603, -0.05931929498910904, 0.005317121744155884, 0.04919961467385292, -0.041477106511592865, 0.14854319393634796, 0.036917299032211304, 0.04279942065477371, -0.05012187361717224, -0.10051564872264862, -0.028205733746290207, 0.12439935654401779, -0.17476655542850494, 0.10084038227796555, -0.017979266121983528, -0.00530354306101799, -0.050767429172992706, -0.04302269220352173, -0.10355868935585022, -0.09213314205408096, 0.09659656137228012, -0.14026129245758057, -0.008959596045315266, -0.06743869185447693, -0.03333268314599991, -0.08380883187055588, 0.20525139570236206, -0.04204441234469414, -0.06599806249141693, -0.14995311200618744, 0.08295932412147522, 0.12465117871761322, -0.07200025022029877, 0.03331752121448517, 0.0331963449716568, 0.09600959718227386, 0.02267911471426487, -0.1356155127286911, 0.07235892862081528, -0.04063353314995766, -0.26156508922576904, -0.024040251970291138, 0.15677222609519958, 0.12439244240522385, 0.038096167147159576, 0.022275341674685478, 0.06815756112337112, -0.022479943931102753, -0.17045573890209198, 0.07080573588609695, -0.0021181090269237757, -0.005232571624219418, 0.01573074609041214, 0.11270558834075928, 0.021847939118742943, -0.13528093695640564, -0.0029926232527941465, 0.05673517659306526, 0.20999281108379364, -0.09874042123556137, 0.14317426085472107, 0.04537826403975487, -0.07909424602985382, -0.20463581383228302, -0.011331028304994106, 0.0029924861155450344, 0.016434766352176666, 0.02029315195977688, -0.15086129307746887, 0.05375174432992935, 0.12299391627311707, -0.014167845249176025, 0.09326706826686859, -0.3529907763004303, -0.12764815986156464, 0.020008046180009842, 0.02397664450109005, -0.1364711970090866, -0.16151458024978638, -0.05904578045010567, 0.0007564492989331484, -0.18871831893920898, 0.08641614019870758, -0.10456904768943787, 0.07144667953252792, 0.007002608850598335, 0.06920646876096725, 0.022799979895353317, -0.03241701051592827, 0.17273756861686707, 0.0032091718167066574, 0.04380005970597267, -0.11125960946083069, -0.07552939653396606, 0.14277198910713196, -0.04740406200289726, 0.041629157960414886, 0.02630273438990116, 0.06737648695707321, -0.09804636240005493, -0.017818031832575798, -0.08311500400304794, 0.023675130680203438, -0.06864049285650253, -0.05535682663321495, -0.09047690778970718, 0.11635646224021912, 0.07620923221111298, -0.06315379589796066, -0.05365012586116791, -0.030792023986577988, 0.05148102715611458, 0.0815143808722496, 0.08583341538906097, 0.07269920408725739, -0.07853034138679504, 0.010283173993229866, 0.007965152151882648, 0.016804756596684456, -0.10309940576553345, 0.04782165214419365, 0.12314962595701218, 0.05232667550444603, 0.07664050906896591, 0.008393525145947933, -0.13021300733089447, 0.023291757330298424, 0.06366018950939178, -0.16365286707878113, -0.18802930414676666, -0.009640018455684185, -0.005521055310964584, -0.05393986776471138, -0.053481511771678925, 0.10037007182836533, -0.033372171223163605, -0.06935635954141617, 0.0308517012745142, 0.07394792139530182, -0.03158215805888176, 0.1598040610551834, 0.05790429562330246, 0.046337924897670746, -0.08989967405796051, 0.13014841079711914, 0.10857203602790833, -0.009258968755602837, 0.019983090460300446, 0.2381507009267807, -0.09257694333791733, -0.04093654826283455, 0.010369776748120785, -0.0006102772313170135, 0.008292952552437782, 0.03779759258031845, 0.0440693162381649, -0.04721542075276375, 0.055325187742710114, 0.08159811049699783, -0.004707318730652332, 0.07365526258945465, -0.0008734370931051672, 0.04387499392032623, -0.07966794073581696, 0.07169877737760544, 0.08060212433338165, 0.03202052414417267, -0.06758110970258713, 0.14956152439117432, -0.0066246348433196545, 0.08036232739686966, -0.057715922594070435, -0.04095936939120293, -0.11001741141080856, -0.022747183218598366, -0.02783946879208088, -0.012181869708001614, -0.0877595990896225, -0.04405956342816353, -0.024069691076874733, -0.05624888464808464, -0.006704034749418497, 0.05858267843723297, -0.049776192754507065, -0.09950973093509674, -0.05817914381623268, 0.045843370258808136, -0.15988391637802124, 0.0008955469238571823, 0.0928884744644165, -0.044018521904945374, 0.16281214356422424, 0.06975634396076202, 0.003539034631103277, 0.0004651254275813699, -0.19679991900920868, 0.014373422600328922, -0.051644716411828995, -0.00619463948532939, 0.04051772877573967, -0.18234166502952576, 0.0230111051350832, -0.09838315099477768, -0.07729849964380264, 0.02290327660739422, 0.05533164367079735, -0.1193038672208786, 0.02161298505961895, -0.02833249233663082, -0.02608666941523552, -0.07166317105293274, 0.03806467354297638, 0.03376169875264168, 0.0017373673617839813, 0.03942941874265671, -0.05795799940824509, 0.09297427535057068, -0.20912052690982819, -0.05636226758360863, 0.019340863451361656, 0.007617929019033909, -0.034080080687999725, 0.014857337810099125, 0.09333346039056778, -0.0321514867246151, 0.08609345555305481, -0.012288830243051052, -0.04753364622592926, 0.043600354343652725, 0.013713018037378788, 0.018484311178326607, 0.05983814597129822, 0.04566366970539093, -0.014161563478410244, -0.057161714881658554, -0.010225653648376465, -0.031017843633890152, -0.0662667453289032, -0.0858648270368576, 0.1474071443080902, 0.0900532677769661, 0.15829819440841675, -0.04867209494113922, 0.05242722108960152, -0.11263778805732727, -0.1477556675672531, 0.021530622616410255, -0.07808570563793182, -0.00174329720903188, -0.0988742858171463, 0.05373736470937729, 0.16590248048305511, -0.16485509276390076, 0.1048734113574028, -0.046503473073244095, -0.05205421522259712, -0.05630510672926903, -0.18838554620742798, -0.03894331306219101, -0.06729614734649658, 0.02531786449253559, -0.1094256266951561, 0.11932831257581711, 0.04692744463682175, 0.06410477310419083, -0.04100464656949043, 0.1421726644039154, -0.04327085614204407, -0.10531564056873322, 0.06682077050209045, 0.038584135472774506, 0.03739036247134209, 0.08587280660867691, 0.05883747339248657, -0.017365245148539543, 0.012515371665358543, 0.10338443517684937, 0.028922712430357933, 0.04133644700050354, 0.04815935716032982, -0.06896650791168213, -0.08305003494024277, 0.031561676412820816, -0.011817910708487034, -0.028362758457660675, 0.07245650887489319, 0.05813344195485115, 0.007355126086622477, -0.02008643001317978, 0.27149146795272827, -0.0328323096036911, -0.01957724057137966, -0.11683663725852966, 0.18856436014175415, -0.015770073980093002, 0.015149039216339588, 0.017326299101114273, -0.14950595796108246, 0.024423839524388313, 0.09577344357967377, 0.19837552309036255, -0.06449483335018158, 0.0276990607380867, -0.026271233335137367, 0.013097519986331463, 0.05652109906077385, 0.10379056632518768, 0.052087556570768356, 0.15952704846858978, -0.0493999719619751, 0.04574322700500488, -0.014561046846210957, -0.03190987929701805, -0.07891405373811722, 0.10997915267944336, 0.0042112236842513084, 0.014332396909594536, -0.06610395014286041, 0.11994628608226776, -0.04097910225391388, -0.21928814053535461, 0.04130752757191658, -0.09789235889911652, -0.13007852435112, 0.05536974221467972, -0.04588048905134201, 0.004265287891030312, 0.07838437706232071, 0.06719335168600082, 0.008577808737754822, 0.07868820428848267, 0.07305758446455002, -0.018481643870472908, -0.025466743856668472, 0.08392392098903656, -0.08794697374105453, 0.23541472852230072, -0.032653700560331345, 0.02641250751912594, 0.10679303854703903, 0.005140160210430622, -0.16459766030311584, 0.03496028482913971, 0.07465831190347672, -0.07370954751968384, 0.0074543338268995285, 0.1756860464811325, 0.029395226389169693, 0.0017294797580689192, 0.08553515374660492, -0.0043748412281274796, -0.01385483704507351, -0.021064897999167442, 0.09008347243070602, -0.11242292076349258, 0.05413578450679779, -0.06837645918130875, 0.13472217321395874, 0.1462356597185135, -0.07895885407924652, 0.04148782417178154, -0.0591009147465229, -0.02101493440568447, 0.004569651558995247, 0.1612911820411682, -0.008423440158367157, -0.14590154588222504, 0.023449737578630447, -0.007925969548523426, 0.057633645832538605, -0.09830882400274277, -0.058274045586586, -0.024342020973563194, -0.006238424684852362, -0.019823884591460228, 0.219486802816391, 0.07335340231657028, 0.021495532244443893, -0.020970147103071213, -0.09686597436666489, 0.0030207366216927767, 0.16028478741645813, -0.16434314846992493, -0.02148415520787239 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1436186613667622920/PQrOPSrV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nolan Koblischke</div> <div style="text-align: center; font-size: 14px;">@cosmonolan</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nolan Koblischke. | Data | Nolan Koblischke | | --- | --- | | Tweets downloaded | 154 | | Retweets | 5 | | Short tweets | 6 | | Tweets kept | 143 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13msto5g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cosmonolan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25mhxfie) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25mhxfie/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cosmonolan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cosmonolan/1643752768713/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cosmonolan
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Nolan Koblischke @cosmonolan I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Nolan Koblischke. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cosmonolan's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1308245436961095681/nDFNvmWO_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jack Costello 🤖 AI Bot </div> <div style="font-size: 15px">@costello_jack99 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@costello_jack99's tweets](https://twitter.com/costello_jack99). | Data | Quantity | | --- | --- | | Tweets downloaded | 2347 | | Retweets | 635 | | Short tweets | 231 | | Tweets kept | 1481 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rov8a35/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @costello_jack99's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1s8xi6cx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1s8xi6cx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/costello_jack99') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/costello_jack99/1617764113397/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/costello_jack99
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Jack Costello AI Bot @costello\_jack99 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @costello\_jack99's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @costello\_jack99's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1336840815818235905/dZGaXBpZ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">J0eCool 🤖 AI Bot </div> <div style="font-size: 15px">@countj0ecool bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@countj0ecool's tweets](https://twitter.com/countj0ecool). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 4 | | Short tweets | 262 | | Tweets kept | 2984 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/190fgqpe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @countj0ecool's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ecnl4cfv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ecnl4cfv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/countj0ecool') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/countj0ecool/1617753960045/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/countj0ecool
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
J0eCool AI Bot @countj0ecool bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @countj0ecool's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @countj0ecool's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2263645733/Magpievatar_400x400.gif')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Coyote Steel 🤖 AI Bot </div> <div style="font-size: 15px">@coyote_steel bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@coyote_steel's tweets](https://twitter.com/coyote_steel). | Data | Quantity | | --- | --- | | Tweets downloaded | 3187 | | Retweets | 1521 | | Short tweets | 82 | | Tweets kept | 1584 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jdp64ya/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coyote_steel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gm5qc03) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gm5qc03/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coyote_steel') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/coyote_steel/1617984150750/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/coyote_steel
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Coyote Steel AI Bot @coyote\_steel bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @coyote\_steel's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @coyote\_steel's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1324122879823368194/JkdgpNC5_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">cordelia 🤖 AI Bot </div> <div style="font-size: 15px">@cozyunoist bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cozyunoist's tweets](https://twitter.com/cozyunoist). | Data | Quantity | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 98 | | Short tweets | 328 | | Tweets kept | 2817 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21zrvp84/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cozyunoist's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/iqrbjxnw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/iqrbjxnw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cozyunoist') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cozyunoist/1616670777235/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cozyunoist
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
cordelia AI Bot @cozyunoist bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cozyunoist's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cozyunoist's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1049362687216562176/fLWP67_f_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">C Philip Zarina</div> <div style="text-align: center; font-size: 14px;">@cphilipzarina</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from C Philip Zarina. | Data | C Philip Zarina | | --- | --- | | Tweets downloaded | 71 | | Retweets | 5 | | Short tweets | 6 | | Tweets kept | 60 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2500hnbe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cphilipzarina's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11qav433) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11qav433/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cphilipzarina') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cphilipzarina/1627063725221/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cphilipzarina
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT C Philip Zarina @cphilipzarina I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from C Philip Zarina. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cphilipzarina's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1272386649134002183/paocjwdV_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2757772202/4cc42af7c05cb9738c1794978c54999a_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pete Whelan & Pete Whelan</div> <div style="text-align: center; font-size: 14px;">@cptpete-tweetwhelan</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pete Whelan & Pete Whelan. | Data | Pete Whelan | Pete Whelan | | --- | --- | --- | | Tweets downloaded | 62 | 128 | | Retweets | 10 | 8 | | Short tweets | 3 | 11 | | Tweets kept | 49 | 109 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/314r1lav/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cptpete-tweetwhelan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2llpl54p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2llpl54p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cptpete-tweetwhelan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cptpete-tweetwhelan/1632721354188/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cptpete-tweetwhelan
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Pete Whelan & Pete Whelan @cptpete-tweetwhelan I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Pete Whelan & Pete Whelan. Data: Tweets downloaded, Pete Whelan: 62, Pete Whelan: 128 Data: Retweets, Pete Whelan: 10, Pete Whelan: 8 Data: Short tweets, Pete Whelan: 3, Pete Whelan: 11 Data: Tweets kept, Pete Whelan: 49, Pete Whelan: 109 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cptpete-tweetwhelan's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365026426219552771/XSMkVt5O_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chris Chan Sonichu/CPU Blue Heart⚡️💙⚡️ 🤖 AI Bot </div> <div style="font-size: 15px">@cpu_cwcsonichu bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cpu_cwcsonichu's tweets](https://twitter.com/cpu_cwcsonichu). | Data | Quantity | | --- | --- | | Tweets downloaded | 3215 | | Retweets | 217 | | Short tweets | 156 | | Tweets kept | 2842 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8rv6drpy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cpu_cwcsonichu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34ahaa25) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34ahaa25/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cpu_cwcsonichu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cpu_cwcsonichu/1619652828596/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cpu_cwcsonichu
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Chris Chan Sonichu/CPU Blue Heart️️ AI Bot @cpu\_cwcsonichu bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cpu\_cwcsonichu's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cpu\_cwcsonichu's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409223083181936645/7VNv8Pv4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mexican Space Laser 🌐🇺🇲🇲🇽🇮🇱🇹🇼</div> <div style="text-align: center; font-size: 14px;">@crazynormie</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mexican Space Laser 🌐🇺🇲🇲🇽🇮🇱🇹🇼. | Data | Mexican Space Laser 🌐🇺🇲🇲🇽🇮🇱🇹🇼 | | --- | --- | | Tweets downloaded | 3169 | | Retweets | 1181 | | Short tweets | 214 | | Tweets kept | 1774 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oetk38p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crazynormie's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29bpyif0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29bpyif0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/crazynormie') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/crazynormie/1628837302892/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/crazynormie
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Mexican Space Laser 🇺🇲🇲🇽🇮🇱🇹🇼 @crazynormie I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Mexican Space Laser 🇺🇲🇲🇽🇮🇱🇹🇼. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @crazynormie's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362975023741472772/bcRrzmub_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Heartbeat 🤖 AI Bot </div> <div style="font-size: 15px">@crisprchild bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@crisprchild's tweets](https://twitter.com/crisprchild). | Data | Quantity | | --- | --- | | Tweets downloaded | 3227 | | Retweets | 130 | | Short tweets | 419 | | Tweets kept | 2678 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pxtxtm8s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crisprchild's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8dczuuse) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8dczuuse/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/crisprchild') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/crisprchild/1617755013837/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/crisprchild
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Heartbeat AI Bot @crisprchild bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @crisprchild's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @crisprchild's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1157313327867092993/a09TxL_1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cristiano Ronaldo</div> <div style="text-align: center; font-size: 14px;">@cristiano</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cristiano Ronaldo. | Data | Cristiano Ronaldo | | --- | --- | | Tweets downloaded | 3190 | | Retweets | 203 | | Short tweets | 425 | | Tweets kept | 2562 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1izkof9f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cristiano's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qhhscef) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qhhscef/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cristiano') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cristiano/1656957050575/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cristiano
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Cristiano Ronaldo @cristiano I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Cristiano Ronaldo. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cristiano's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1435734658281521152/Cr3YwlRb_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425591153689309194/HZgAzjVl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CritFacts the Genuine Baked Potato & Spangles & Friends</div> <div style="text-align: center; font-size: 14px;">@critfacts-critlite</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CritFacts the Genuine Baked Potato & Spangles & Friends. | Data | CritFacts the Genuine Baked Potato | Spangles & Friends | | --- | --- | --- | | Tweets downloaded | 3243 | 1150 | | Retweets | 892 | 443 | | Short tweets | 329 | 112 | | Tweets kept | 2022 | 595 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mcmhnn7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @critfacts-critlite's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/iqxcx826) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/iqxcx826/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/critfacts-critlite') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/critfacts-critlite/1632085147990/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/critfacts-critlite
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG CritFacts the Genuine Baked Potato & Spangles & Friends @critfacts-critlite I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from CritFacts the Genuine Baked Potato & Spangles & Friends. Data: Tweets downloaded, CritFacts the Genuine Baked Potato: 3243, Spangles & Friends: 1150 Data: Retweets, CritFacts the Genuine Baked Potato: 892, Spangles & Friends: 443 Data: Short tweets, CritFacts the Genuine Baked Potato: 329, Spangles & Friends: 112 Data: Tweets kept, CritFacts the Genuine Baked Potato: 2022, Spangles & Friends: 595 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @critfacts-critlite's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1366146634959192067/AsSgL8T8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">hayley! | semi-ia 🤖 AI Bot </div> <div style="font-size: 15px">@croftsdiaries bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@croftsdiaries's tweets](https://twitter.com/croftsdiaries). | Data | Quantity | | --- | --- | | Tweets downloaded | 629 | | Retweets | 59 | | Short tweets | 92 | | Tweets kept | 478 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nzwx6y8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @croftsdiaries's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/yyn29o4p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/yyn29o4p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/croftsdiaries') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/croftsdiaries/1617110814179/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/croftsdiaries
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
hayley! | semi-ia AI Bot @croftsdiaries bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @croftsdiaries's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @croftsdiaries's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/660175557414391808/NrzKk--P_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">CrowdHaiku 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@crowdhaiku bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@crowdhaiku's tweets](https://twitter.com/crowdhaiku). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3225</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>0</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>2</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3223</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/eba44yh9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crowdhaiku's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/12y0mddu) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/12y0mddu/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/crowdhaiku'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/crowdhaiku
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">CrowdHaiku AI Bot </div> <div style="font-size: 15px; color: #657786">@crowdhaiku bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @crowdhaiku's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3225</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>0</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>2</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3223</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @crowdhaiku's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/crowdhaiku'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @crowdhaiku's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3225</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>0</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>2</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3223</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @crowdhaiku's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/crowdhaiku'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @crowdhaiku's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3225</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>0</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>2</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3223</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @crowdhaiku's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/crowdhaiku'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1298370252028469249/WEARc0H5_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Tolga Esat 🤖 AI Bot </div> <div style="font-size: 15px">@crowonthewire1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@crowonthewire1's tweets](https://twitter.com/crowonthewire1). | Data | Quantity | | --- | --- | | Tweets downloaded | 187 | | Retweets | 10 | | Short tweets | 10 | | Tweets kept | 167 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2iu7215s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crowonthewire1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8zo7rrc0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8zo7rrc0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/crowonthewire1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/crowonthewire1/1616665645467/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/crowonthewire1
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Tolga Esat AI Bot @crowonthewire1 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @crowonthewire1's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @crowonthewire1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1344893786187575296/_7NUJsg1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">✨Non-Euclidian Claire✨ 🤖 AI Bot </div> <div style="font-size: 15px">@crstingray bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@crstingray's tweets](https://twitter.com/crstingray). | Data | Quantity | | --- | --- | | Tweets downloaded | 3223 | | Retweets | 1355 | | Short tweets | 730 | | Tweets kept | 1138 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8qgqhk4f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crstingray's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14tjxjpn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14tjxjpn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/crstingray') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/crstingray/1617897987874/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/crstingray
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Non-Euclidian Claire AI Bot @crstingray bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @crstingray's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @crstingray's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1185482861639589889/VEfoJcDk_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Crusader Kings III 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@crusaderkings bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@crusaderkings's tweets](https://twitter.com/crusaderkings). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3234</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>506</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>174</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2554</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3qnalhzx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crusaderkings's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/34525ldv) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/34525ldv/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/crusaderkings'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/crusaderkings
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Crusader Kings III AI Bot </div> <div style="font-size: 15px; color: #657786">@crusaderkings bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @crusaderkings's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3234</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>506</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>174</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2554</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @crusaderkings's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/crusaderkings'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @crusaderkings's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3234</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>506</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>174</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2554</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @crusaderkings's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/crusaderkings'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @crusaderkings's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3234</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>506</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>174</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2554</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @crusaderkings's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/crusaderkings'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 432, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419244584367005696/F5fnPoI1_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🔲🔳 & wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@cryptolith_-drilbot_neo-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merz & 🔲🔳 & wintbot_neo. | Data | merz | 🔲🔳 | wintbot_neo | | --- | --- | --- | --- | | Tweets downloaded | 2483 | 3223 | 3244 | | Retweets | 427 | 449 | 215 | | Short tweets | 419 | 1022 | 274 | | Tweets kept | 1637 | 1752 | 2755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3i10strm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-drilbot_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptolith_-drilbot_neo-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cryptolith_-drilbot_neo-rusticgendarme/1627250043753/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cryptolith_-drilbot_neo-rusticgendarme
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG merz & & wintbot\_neo @cryptolith\_-drilbot\_neo-rusticgendarme I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from merz & & wintbot\_neo. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cryptolith\_-drilbot\_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404892466810085378/yKYGklGP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1370191602241654785/zbbSFsyw_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🏁🗼 & severian</div> <div style="text-align: center; font-size: 14px;">@cryptolith_-poaststructural-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merz & 🏁🗼 & severian. | Data | merz | 🏁🗼 | severian | | --- | --- | --- | --- | | Tweets downloaded | 2456 | 3223 | 3226 | | Retweets | 424 | 450 | 358 | | Short tweets | 416 | 1017 | 577 | | Tweets kept | 1616 | 1756 | 2291 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2t7za49v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-poaststructural-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/txcxy9qk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/txcxy9qk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptolith_-poaststructural-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cryptolith_-poaststructural-rusticgendarme/1627059554644/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cryptolith_-poaststructural-rusticgendarme
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG merz & & severian @cryptolith\_-poaststructural-rusticgendarme I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from merz & & severian. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cryptolith\_-poaststructural-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404892466810085378/yKYGklGP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🏁🗼</div> <div style="text-align: center; font-size: 14px;">@cryptolith_-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merz & 🏁🗼. | Data | merz | 🏁🗼 | | --- | --- | --- | | Tweets downloaded | 2452 | 3220 | | Retweets | 423 | 449 | | Short tweets | 416 | 1016 | | Tweets kept | 1613 | 1755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1czbbc9w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1f2ee97y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1f2ee97y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptolith_-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cryptolith_-rusticgendarme/1627050935243/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cryptolith_-rusticgendarme
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG merz & @cryptolith\_-rusticgendarme I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from merz & . Data: Tweets downloaded, merz: 2452 Data: Retweets, merz: 423 Data: Short tweets, merz: 416 Data: Tweets kept, merz: 1613 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cryptolith\_-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/855460243152801793/cxX82P3V_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">infineot</div> <div style="text-align: center; font-size: 14px;">@ctrlcreep</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from infineot. | Data | infineot | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 171 | | Short tweets | 51 | | Tweets kept | 3019 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26459hr9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ctrlcreep's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1prcdcpn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1prcdcpn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ctrlcreep') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/ctrlcreep/1637573720314/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/ctrlcreep
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT infineot @ctrlcreep I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from infineot. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ctrlcreep's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442129295477035013/15LSPrJo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Manu’</div> <div style="text-align: center; font-size: 14px;">@cu_coquin</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Manu’. | Data | Manu’ | | --- | --- | | Tweets downloaded | 1982 | | Retweets | 63 | | Short tweets | 291 | | Tweets kept | 1628 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jyazmuh8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cu_coquin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29a5jk2r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29a5jk2r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cu_coquin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cu_coquin/1644250567283/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cu_coquin
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Manu’ @cu\_coquin I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Manu’. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cu\_coquin's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1540509467934162944/lgbdvsqz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">|i!i|</div> <div style="text-align: center; font-size: 14px;">@cubytes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from |i!i|. | Data | |i!i| | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 1 | | Short tweets | 112 | | Tweets kept | 3136 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xojbovmo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cubytes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1x1wffyb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1x1wffyb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cubytes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cubytes/1656815845890/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cubytes
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI BOT </div> <div style="text-align: center; font-size: 16px; font-weight: 800">|i!i|</div> <div style="text-align: center; font-size: 14px;">@cubytes</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on tweets from |i!i|. | Data | |i!i| | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 1 | | Short tweets | 112 | | Tweets kept | 3136 | Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cubytes's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from |i!i|.\n\n| Data | |i!i| |\n| --- | --- |\n| Tweets downloaded | 3249 |\n| Retweets | 1 |\n| Short tweets | 112 |\n| Tweets kept | 3136 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cubytes's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from |i!i|.\n\n| Data | |i!i| |\n| --- | --- |\n| Tweets downloaded | 3249 |\n| Retweets | 1 |\n| Short tweets | 112 |\n| Tweets kept | 3136 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cubytes's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 54, 34, 107, 75, 18, 47, 38 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on tweets from |i!i|.\n\n| Data | |i!i| |\n| --- | --- |\n| Tweets downloaded | 3249 |\n| Retweets | 1 |\n| Short tweets | 112 |\n| Tweets kept | 3136 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cubytes's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.014093196950852871, 0.0845564603805542, -0.004484633915126324, 0.07506993412971497, 0.10579149425029755, 0.020146016031503677, 0.14315538108348846, 0.10881218314170837, 0.014507769607007504, 0.11502464860677719, 0.08917087316513062, -0.009421800263226032, 0.05440004914999008, 0.20536354184150696, 0.061554502695798874, -0.24182529747486115, 0.0026077881921082735, -0.09014680981636047, -0.057899098843336105, 0.1471576988697052, 0.09116704761981964, -0.0832618772983551, 0.07214005291461945, -0.025387104600667953, -0.09141968190670013, 0.019436240196228027, 0.024231838062405586, -0.04641296714544296, 0.07052234560251236, 0.05233375355601311, 0.048148006200790405, 0.008488905616104603, 0.04953959211707115, -0.12023165822029114, 0.03377129137516022, 0.12519676983356476, -0.020571604371070862, 0.08849143236875534, 0.06658214330673218, -0.04287143424153328, 0.11262165755033493, -0.10081513226032257, 0.049746669828891754, 0.0619136206805706, -0.1536542922258377, -0.04910300672054291, -0.14112931489944458, 0.11083342134952545, 0.09432012587785721, 0.068680040538311, -0.05523543432354927, 0.14715887606143951, -0.04682458937168121, 0.033234093338251114, 0.1966046243906021, -0.23808841407299042, -0.03645845130085945, 0.030930688604712486, 0.026742475107312202, 0.1355615258216858, -0.03358756750822067, 0.005541701801121235, 0.01988920196890831, 0.024574756622314453, 0.059362076222896576, -0.03885640576481819, 0.14520958065986633, 0.011463302187621593, -0.15348997712135315, -0.05171378329396248, 0.010546229779720306, 0.026503439992666245, -0.04195261746644974, -0.10699193179607391, -0.07593469321727753, -0.08424599468708038, 0.010040824301540852, -0.030189333483576775, -0.0037179780192673206, -0.001668207929469645, -0.06844145059585571, -0.13229656219482422, -0.07183264940977097, -0.04102195054292679, -0.028872165828943253, 0.10376760363578796, 0.019866110756993294, 0.03711196780204773, -0.09168867766857147, 0.17150498926639557, 0.022374188527464867, -0.11929842829704285, -0.021459419280290604, -0.048663392663002014, -0.044910501688718796, -0.03497256711125374, 0.015039404854178429, 0.04246075451374054, 0.037840113043785095, 0.1945519596338272, 0.0006534272106364369, 0.023752078413963318, 0.04403706640005112, -0.0011582524748519063, 0.09549994766712189, 0.137556791305542, -0.12558776140213013, -0.08474774658679962, 0.07933008670806885, 0.017444495111703873, -0.062285084277391434, -0.07634414732456207, -0.019945548847317696, -0.01230648159980774, 0.06623677909374237, 0.09481611847877502, 0.06595906615257263, 0.043099068105220795, -0.011828441172838211, -0.028759034350514412, 0.08308085799217224, -0.16817346215248108, 0.05191213637590408, 0.010195394046604633, -0.06884916126728058, 0.013916250318288803, -0.0037396971601992846, -0.025367936119437218, -0.1397296041250229, 0.03516137972474098, -0.11071348935365677, -0.036025360226631165, -0.07334873080253601, -0.10974949598312378, -0.008330403827130795, -0.03313479572534561, -0.07707122713327408, -0.08608797937631607, -0.1054675281047821, -0.0556134432554245, -0.002598234685137868, -0.06426969915628433, 0.010974195785820484, 0.0019128116546198726, -0.051220230758190155, 0.010661407373845577, 0.012867205776274204, 0.0281059630215168, -0.029082251712679863, 0.05758296325802803, -0.05024334788322449, 0.010518195107579231, 0.0526701956987381, 0.024847663938999176, -0.09669068455696106, 0.05919364467263222, -0.12427221238613129, 0.16371217370033264, -0.05638854578137398, -0.03131001442670822, -0.14664752781391144, -0.07358136773109436, 0.03745397925376892, -0.049447719007730484, 0.046326782554388046, 0.12811978161334991, -0.15913119912147522, -0.06165579706430435, 0.17352496087551117, -0.04634417966008186, -0.011575596407055855, 0.1218542754650116, -0.07346691191196442, 0.0403946116566658, 0.12876276671886444, 0.07401097565889359, 0.1455058753490448, -0.06941826641559601, -0.008399014361202717, -0.04805825650691986, -0.0572342686355114, 0.15170733630657196, 0.04515307396650314, 0.002143721329048276, 0.04275126755237579, -0.02597317472100258, -0.08468866348266602, -0.006529014557600021, -0.07820478081703186, -0.037119608372449875, 0.030103961005806923, 0.00035921973176300526, 0.02214711531996727, -0.06707648932933807, -0.031158147379755974, -0.042471811175346375, -0.12515033781528473, 0.034272294491529465, 0.06453081220388412, -0.041322167962789536, 0.010668277740478516, -0.12378108501434326, 0.04374527186155319, -0.015516465529799461, 0.014833220280706882, -0.15205159783363342, -0.055911917239427567, 0.028270788490772247, -0.000989567837677896, 0.1349596083164215, -0.051572710275650024, 0.0452546663582325, 0.04788338392972946, -0.001286785351112485, 0.023005200549960136, -0.08699073642492294, -0.00036296731559559703, -0.06716316938400269, -0.13455970585346222, -0.034337807446718216, -0.035881273448467255, 0.06307018548250198, -0.11783796548843384, -0.008257690817117691, 0.12352980673313141, 0.08598846942186356, 0.03512531891465187, -0.048631079494953156, -0.016235819086432457, -0.014783392660319805, 0.006600500550121069, -0.09049520641565323, -0.04526510462164879, -0.02799101732671261, -0.037525665014982224, 0.11676587909460068, -0.1901879459619522, -0.13068827986717224, 0.10732530802488327, 0.09492959827184677, -0.12944097816944122, 0.03916456177830696, -0.05241894721984863, -0.025437425822019577, -0.050364378839731216, -0.04711732268333435, 0.19785037636756897, 0.01906522363424301, 0.06328146159648895, -0.06354723125696182, -0.07295939326286316, -0.004273722413927317, -0.06781689822673798, -0.012891050428152084, 0.0791643038392067, 0.009866660460829735, -0.22492437064647675, 0.07649526745080948, 0.028724778443574905, 0.03303154185414314, 0.18360581994056702, 0.005204719491302967, -0.10167517513036728, -0.08394651114940643, -0.04302143305540085, 0.018552184104919434, 0.05088777095079422, 0.05322090908885002, 0.00755315413698554, 0.02983802743256092, 0.06316821277141571, 0.033272188156843185, -0.10728345066308975, 0.0170684102922678, 0.0489230714738369, -0.05975591391324997, -0.010949380695819855, -0.029964040964841843, 0.005966493394225836, 0.12293703854084015, 0.06968990713357925, 0.09057379513978958, -0.03724639117717743, -0.04450497403740883, -0.14582066237926483, 0.13820384442806244, -0.10654715448617935, -0.17166347801685333, -0.12050138413906097, -0.07056266814470291, 0.05261456221342087, 0.0030811713077127934, 0.005857444368302822, -0.0667659118771553, -0.030250973999500275, -0.08999134600162506, 0.11381730437278748, 0.05457840487360954, -0.006684621796011925, -0.016356002539396286, 0.008891981095075607, -0.012242782860994339, -0.1227133572101593, -0.018500886857509613, 0.03090823069214821, -0.11110285669565201, 0.04054790362715721, 0.04056426137685776, 0.03274112567305565, 0.1667034924030304, -0.03667167201638222, 0.014364035800099373, -0.017336854711174965, 0.3317427635192871, -0.13023759424686432, 0.11688261479139328, 0.12172355502843857, -0.0046211304143071175, 0.0868588387966156, 0.05409694463014603, 0.01313556544482708, -0.051664263010025024, 0.07297361642122269, 0.053476255387067795, -0.07404043525457382, -0.20039230585098267, -0.03733590617775917, 0.002137973438948393, 0.01768648810684681, 0.07926510274410248, 0.05954541265964508, 0.0007396904984489083, 0.0063898502849042416, -0.07660864293575287, 0.0027160716708749533, 0.05793203040957451, 0.06276455521583557, -0.054974451661109924, 0.04254988208413124, 0.04646863415837288, -0.03847051411867142, -0.0007592980982735753, 0.15645527839660645, 0.014787586405873299, 0.15384536981582642, -0.049312543123960495, 0.12343479692935944, 0.03241020068526268, 0.07143375277519226, 0.045336149632930756, 0.026033665984869003, -0.02511843852698803, 0.04134679213166237, -0.00243260501883924, -0.09648063778877258, 0.027425281703472137, 0.003911273553967476, 0.021264683455228806, -0.03926819935441017, 0.013071060180664062, 0.005176881328225136, 0.08489609509706497, 0.2044789046049118, 0.09078000485897064, -0.18232470750808716, -0.0780339241027832, 0.02454843372106552, -0.07746057957410812, -0.03505038470029831, -0.036718446761369705, 0.1120888739824295, -0.18498674035072327, -0.021942734718322754, -0.015540472231805325, 0.10841261595487595, -0.05983363464474678, -0.02141726016998291, 0.051929689943790436, 0.09811897575855255, -0.07513077557086945, 0.06508892774581909, -0.2011532187461853, 0.09808065742254257, 0.0014985179295763373, 0.06257238239049911, -0.05475492775440216, -0.007117073051631451, 0.02612229809165001, -0.05750163272023201, 0.07021474838256836, 0.04785384610295296, 0.1502845585346222, -0.08741919696331024, -0.1314452439546585, -0.005460935179144144, 0.11930112540721893, -0.11641927063465118, 0.11798812448978424, -0.0339086651802063, 0.01284578163176775, -0.01201386097818613, -0.06962967664003372, -0.07260075956583023, -0.09528552740812302, 0.05574432760477066, -0.09485122561454773, -0.004161060322076082, -0.02116280235350132, -0.034257400780916214, 0.031354401260614395, 0.13654586672782898, -0.09115327149629593, -0.11730501800775528, -0.13174226880073547, 0.05032538250088692, 0.12578244507312775, -0.09142611920833588, 0.02535773068666458, 0.028557006269693375, 0.10885550081729889, 0.008307863026857376, -0.14487764239311218, 0.04844016581773758, -0.019947299733757973, -0.233950674533844, -0.020728699862957, 0.14158500730991364, 0.14899945259094238, 0.04903394728899002, -0.010392537340521812, 0.04126662015914917, -0.05301613360643387, -0.15247832238674164, 0.004859286360442638, 0.0047613331116735935, -0.025163238868117332, 0.05328812077641487, 0.09510424733161926, -0.021527137607336044, -0.15042418241500854, 0.03557659685611725, 0.07655730098485947, 0.23228402435779572, -0.08247067779302597, 0.10616102814674377, 0.09808279573917389, -0.05337880924344063, -0.2275204211473465, -0.027221502736210823, 0.0499061718583107, 0.0378149151802063, 0.014983810484409332, -0.1585228592157364, 0.050802625715732574, 0.09958525002002716, 0.0033814730122685432, 0.11517683416604996, -0.32916465401649475, -0.13759636878967285, 0.0010578383225947618, 0.04201797768473625, -0.04954330250620842, -0.08728638291358948, -0.04467632248997688, -0.0015440291026607156, -0.17799575626850128, 0.14142055809497833, -0.08361620455980301, 0.07237837463617325, 0.04780249670147896, 0.12845785915851593, 0.003262053243815899, -0.029821110889315605, 0.13014815747737885, -0.018413599580526352, 0.03089860826730728, -0.08911079168319702, -0.10984572768211365, 0.1293131411075592, -0.06222992390394211, 0.04009333252906799, 0.014149694703519344, 0.08126524835824966, -0.07798825204372406, -0.04205719381570816, -0.08449776470661163, 0.017517661675810814, -0.05829811096191406, -0.09481517225503922, -0.05557091161608696, 0.08767441660165787, 0.0585101954638958, -0.07859951257705688, -0.07110092043876648, -0.037874527275562286, -0.014411382377147675, 0.14855171740055084, 0.049308620393276215, 0.05827302113175392, -0.07015817612409592, 0.002731748390942812, -0.013489934615790844, 0.044573258608579636, -0.0984235629439354, 0.04106435552239418, 0.08395309746265411, 0.0546594001352787, 0.1116957738995552, -0.00034544809022918344, -0.15901899337768555, 0.03531994670629501, 0.041017014533281326, -0.17044267058372498, -0.15187077224254608, -0.009300529956817627, -0.043836843222379684, -0.09221921116113663, -0.04362163320183754, 0.13507895171642303, -0.05747400224208832, -0.05578874051570892, 0.02322017028927803, 0.05225237458944321, -0.05742427706718445, 0.15341022610664368, 0.10150372236967087, 0.0509985126554966, -0.0858875960111618, 0.0732233002781868, 0.09364897757768631, 0.007729372475296259, 0.033732831478118896, 0.17748484015464783, -0.12544216215610504, -0.013860644772648811, 0.0036530070938169956, -0.021253108978271484, -0.02837747521698475, 0.023534251376986504, 0.014435086399316788, -0.04425099119544029, 0.05177682638168335, 0.1595311164855957, 0.01562710478901863, 0.1001097559928894, -0.02405332401394844, 0.01837274059653282, -0.07743486762046814, 0.07974918931722641, 0.07846876233816147, 0.010173625312745571, -0.06385994702577591, 0.19915951788425446, -0.012689671479165554, 0.0917021855711937, -0.06406714022159576, -0.03696458786725998, -0.10164594650268555, -0.02221631072461605, -0.11732542514801025, 0.00831705890595913, -0.05307508260011673, -0.03209449723362923, -0.02725457400083542, -0.05502936616539955, -0.015912145376205444, 0.036681752651929855, -0.03549201413989067, -0.0714239850640297, -0.06353069096803665, 0.017038041725754738, -0.16256491839885712, 0.021331699565052986, 0.10161092132329941, -0.05700983107089996, 0.15462066233158112, 0.07798738032579422, -0.04143223538994789, 0.015568363480269909, -0.09140647947788239, 0.015128285624086857, -0.04202839732170105, -0.006311668548732996, 0.0834953635931015, -0.0874219462275505, 0.03172671049833298, -0.09295370429754257, -0.013095523230731487, 0.02217286266386509, 0.07896047830581665, -0.11950340121984482, 0.07056231051683426, -0.03136841580271721, -0.015574248507618904, -0.09115582704544067, 0.05775775760412216, 0.01404177863150835, 0.046914685517549515, 0.0851757600903511, -0.04963451251387596, 0.09222225099802017, -0.1946895271539688, -0.05016227439045906, 0.024416448548436165, 0.002062202198430896, -0.028397032991051674, -0.009037843905389309, 0.061956364661455154, -0.04915850609540939, 0.12085697054862976, 0.03119575046002865, -0.03602977842092514, 0.04859314486384392, -0.0395713709294796, -0.046703413128852844, 0.04807787388563156, 0.05993586406111717, -0.012502203695476055, -0.051596637815237045, -0.0637182965874672, -0.023931922391057014, -0.057044219225645065, -0.10111796110868454, 0.15574243664741516, 0.07611143589019775, 0.13450096547603607, -0.01278059370815754, 0.05323724448680878, -0.03486720100045204, -0.11922749131917953, -0.09456856548786163, -0.07549621164798737, 0.015588423237204552, -0.08287672698497772, 0.1073271855711937, 0.1608532965183258, -0.15290889143943787, 0.08797968178987503, 0.0032464182004332542, -0.06419196724891663, -0.09029269963502884, -0.20191042125225067, -0.035485461354255676, -0.046804338693618774, 0.001371171441860497, -0.11680403351783752, 0.09038513898849487, 0.07283426821231842, 0.06785812228918076, -0.03722556680440903, 0.1154712587594986, -0.05335189774632454, -0.1109570637345314, 0.06173240765929222, 0.037773989140987396, 0.037140682339668274, 0.07532178610563278, 0.03558104857802391, 0.0026718752924352884, 0.05471356213092804, 0.08981241285800934, 0.05867095664143562, 0.014526554383337498, 0.018340811133384705, -0.07865475118160248, -0.10671116411685944, 0.010275528766214848, 0.011109146289527416, -0.019779298454523087, 0.07546039670705795, 0.04246082529425621, -0.024154245853424072, -0.031925804913043976, 0.2864081859588623, -0.054458167403936386, -0.1116790771484375, -0.14427995681762695, 0.24610045552253723, -0.026030641049146652, 0.02844056859612465, -0.005291573237627745, -0.15897177159786224, -0.014135794714093208, 0.10890817642211914, 0.24430958926677704, -0.07896657288074493, 0.017214646562933922, -0.028609339147806168, 0.026002809405326843, 0.05223023518919945, 0.11276693642139435, 0.03907030075788498, 0.17382866144180298, -0.05353609099984169, 0.07611576467752457, -0.04211195185780525, -0.031084369868040085, -0.05171002447605133, 0.08046790212392807, 0.010523488745093346, 0.0155794033780694, -0.08381503820419312, 0.10618793219327927, -0.06134141981601715, -0.27199944853782654, -0.01489978190511465, -0.06930183619260788, -0.11387555301189423, 0.05233883485198021, -0.03789326176047325, -0.0033045951277017593, 0.08865003287792206, 0.054584652185440063, 0.025462375953793526, 0.040956273674964905, 0.04787377268075943, -0.010895682498812675, 0.013735082000494003, 0.11366348713636398, -0.05340024083852768, 0.16146694123744965, 0.009142404422163963, 0.03492484614253044, 0.09653083235025406, 0.010566659271717072, -0.13507075607776642, 0.07037558406591415, 0.06503161787986755, -0.037169210612773895, -0.04097551479935646, 0.13489475846290588, 0.020597629249095917, -0.05546857416629791, 0.06753402948379517, -0.06370647996664047, -0.02102486789226532, -0.11076074093580246, 0.05523669719696045, -0.12967337667942047, 0.03672782704234123, -0.04767965152859688, 0.12469182163476944, 0.19677802920341492, -0.08922382444143295, 0.04948104918003082, -0.06129777058959007, -0.03577717766165733, 0.017107874155044556, 0.1062360405921936, -0.01590435579419136, -0.13354146480560303, -0.015438237227499485, 0.040605586022138596, 0.0416460782289505, -0.1759394258260727, -0.013334658928215504, -0.020888490602374077, -0.012892448343336582, -0.012268300168216228, 0.1971079260110855, 0.06151304021477699, 0.0497349351644516, -0.010742572136223316, -0.04068857803940773, -0.01080967579036951, 0.13289020955562592, -0.15032576024532318, -0.04423612728714943 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1255121613357486088/7dEgo0f3_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1231086579336257536/cwkV33rb_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1342468924496031745/GQXNyPSq_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">♠️ Jenny Snowbunny ♠️ & 🇹🇭👸🏽♠️ Thai Queen of Spades ♠️👸🏽🇹🇭 7.25K & Cuckold DNA</div> <div style="text-align: center; font-size: 14px;">@cuckolddna-jennyyoyo92-thaiqos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ♠️ Jenny Snowbunny ♠️ & 🇹🇭👸🏽♠️ Thai Queen of Spades ♠️👸🏽🇹🇭 7.25K & Cuckold DNA. | Data | ♠️ Jenny Snowbunny ♠️ | 🇹🇭👸🏽♠️ Thai Queen of Spades ♠️👸🏽🇹🇭 7.25K | Cuckold DNA | | --- | --- | --- | --- | | Tweets downloaded | 222 | 639 | 2928 | | Retweets | 33 | 247 | 1607 | | Short tweets | 64 | 37 | 108 | | Tweets kept | 125 | 355 | 1213 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21bck17h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuckolddna-jennyyoyo92-thaiqos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jf6bm27t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jf6bm27t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cuckolddna-jennyyoyo92-thaiqos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cuckolddna-jennyyoyo92-thaiqos/1627818315619/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cuckolddna-jennyyoyo92-thaiqos
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG ️ Jenny Snowbunny ️ & 🇹🇭️ Thai Queen of Spades ️🇹🇭 7.25K & Cuckold DNA @cuckolddna-jennyyoyo92-thaiqos I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ️ Jenny Snowbunny ️ & 🇹🇭️ Thai Queen of Spades ️🇹🇭 7.25K & Cuckold DNA. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cuckolddna-jennyyoyo92-thaiqos's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1342468924496031745/GQXNyPSq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cuckold DNA</div> <div style="text-align: center; font-size: 14px;">@cuckolddna</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cuckold DNA. | Data | Cuckold DNA | | --- | --- | | Tweets downloaded | 2868 | | Retweets | 1537 | | Short tweets | 107 | | Tweets kept | 1224 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39n7komh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuckolddna's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tnket83) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tnket83/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cuckolddna') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cuckolddna/1629199173022/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cuckolddna
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Cuckold DNA @cuckolddna I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Cuckold DNA. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cuckolddna's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399382014214737924/QsAw6oxP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/755753205028577280/nwtLbTwy_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1254593296455872513/Qdyli1JK_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet</div> <div style="text-align: center; font-size: 14px;">@cuckoldresss-qobetty-ragamuffin197</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet. | Data | BettyBoopQoS | Ragamuffin1970 | Cuckoldress Scarlet | | --- | --- | --- | --- | | Tweets downloaded | 129 | 3247 | 1005 | | Retweets | 2 | 11 | 252 | | Short tweets | 10 | 584 | 70 | | Tweets kept | 117 | 2652 | 683 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zfpi2vmm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuckoldresss-qobetty-ragamuffin197's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/172rz2sh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/172rz2sh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cuckoldresss-qobetty-ragamuffin197') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cuckoldresss-qobetty-ragamuffin197
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
AI CYBORG BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet @cuckoldresss-qobetty-ragamuffin197 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cuckoldresss-qobetty-ragamuffin197's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 58 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 0.01490766927599907, -0.029707439243793488, -0.005551214329898357, 0.019200731068849564, 0.13538123667240143, 0.031960584223270416, 0.07854003459215164, 0.15176640450954437, -0.03478027135133743, 0.020825274288654327, 0.17780765891075134, 0.13369141519069672, -0.025615064427256584, 0.10110418498516083, -0.04495277628302574, -0.27562591433525085, 0.05076512694358826, 0.04804648086428642, -0.03660755604505539, 0.13914404809474945, 0.08130049705505371, -0.04002818092703819, 0.09946437180042267, -0.02348330244421959, -0.18448196351528168, 0.03603345900774002, 0.03874115273356438, -0.10113959014415741, 0.1245182529091835, 0.042210761457681656, 0.097016341984272, 0.02144498936831951, -0.08173582702875137, -0.09949471801519394, 0.04076211526989937, 0.0524214468896389, -0.06747427582740784, 0.07371947914361954, 0.06548287719488144, -0.09104428440332413, 0.15018822252750397, 0.032346583902835846, -0.015613866969943047, 0.05642572045326233, -0.17452795803546906, -0.05158021301031113, -0.038718461990356445, 0.007089211139827967, 0.026932736858725548, 0.0765126645565033, -0.03151388466358185, 0.1801837533712387, -0.09969375282526016, 0.08080597966909409, 0.19449612498283386, -0.3136744201183319, -0.008555608801543713, 0.09032562375068665, 0.10929754376411438, 0.04874800145626068, -0.027296993881464005, 0.0915885642170906, 0.06193246319890022, 0.01960965059697628, 0.03833269700407982, -0.04861060902476311, -0.10319411009550095, 0.05647158622741699, -0.09057577699422836, -0.06054073944687843, 0.21635963022708893, -0.04008340463042259, 0.06982671469449997, -0.06175680458545685, -0.10815948247909546, -0.04076464846730232, -0.0019450898980721831, 0.007722846698015928, -0.04665110260248184, 0.07648039609193802, -0.018055662512779236, -0.07031384110450745, -0.16104750335216522, 0.004024024587124586, -0.19634990394115448, 0.15040342509746552, -0.007091521751135588, 0.03826533630490303, -0.18292304873466492, 0.11239926517009735, -0.00463539082556963, -0.09352986514568329, 0.05768691375851631, -0.09079932421445847, 0.06515228003263474, 0.012864203192293644, -0.07714717835187912, -0.01476553175598383, 0.07529455423355103, 0.14459288120269775, -0.03202451393008232, -0.014661530964076519, 0.005731707438826561, 0.08028950542211533, 0.0649947077035904, 0.0529506653547287, -0.05044480413198471, -0.04604479670524597, 0.023471293970942497, -0.12279047816991806, 0.005323461256921291, -0.08722265064716339, -0.11850544810295105, -0.06324991583824158, 0.02913680486381054, 0.0409526452422142, 0.05413410812616348, 0.11646701395511627, -0.03819722682237625, 0.003125704126432538, 0.0790749341249466, -0.04754907265305519, 0.014819944277405739, -0.019563961774110794, 0.019939353689551353, 0.10169259458780289, -0.004264532588422298, 0.02739645354449749, -0.08098349720239639, 0.053036682307720184, -0.10909318923950195, -0.01619906909763813, -0.01401914469897747, -0.08360559493303299, 0.03495157137513161, -0.13044656813144684, 0.003459199797362089, -0.1794617623090744, -0.08515556156635284, 0.004473025444895029, -0.02669714391231537, -0.029448989778757095, -0.07044726610183716, -0.000012087725735909771, -0.03782980516552925, 0.09037511795759201, -0.049331095069646835, 0.02187872678041458, -0.05999310687184334, 0.10105309635400772, -0.06390658020973206, 0.10026112198829651, -0.14347022771835327, 0.062101077288389206, -0.13453714549541473, -0.007185438182204962, -0.056844428181648254, 0.06125464290380478, 0.003428247757256031, 0.14510339498519897, -0.0019743351731449366, -0.024058373644948006, -0.11893454194068909, 0.07660667598247528, -0.013276024721562862, 0.20594745874404907, -0.08867699652910233, -0.12363981455564499, 0.18977078795433044, -0.05639764666557312, -0.13151882588863373, 0.12418028712272644, 0.014429234899580479, 0.0632154569029808, 0.06213442608714104, 0.22679246962070465, 0.019381923601031303, -0.012931653298437595, 0.022296493873000145, 0.09503678232431412, -0.14555561542510986, -0.009661003015935421, 0.00841028243303299, -0.0034040703903883696, -0.08606491982936859, 0.03532338887453079, 0.11260384321212769, 0.09308808296918869, -0.06410733610391617, -0.02130906470119953, -0.04973118007183075, -0.002825164934620261, 0.08984078466892242, -0.004783526994287968, 0.10731708258390427, -0.1087048277258873, -0.0696249008178711, -0.030250849202275276, -0.0012943379115313292, 0.019239740446209908, 0.047808386385440826, -0.02344650961458683, 0.12562713027000427, -0.007734235376119614, 0.03894360736012459, -0.1425095796585083, -0.08136747777462006, -0.0352344736456871, 0.1538124978542328, 0.043824564665555954, 0.12064811587333679, 0.05824866518378258, -0.05751828849315643, -0.01182011142373085, -0.0009749550954438746, 0.1436033844947815, -0.01271585002541542, -0.0852496474981308, -0.05857346951961517, 0.08234002441167831, -0.07005385309457779, 0.025747623294591904, -0.044775284826755524, 0.034807976335287094, 0.07559926062822342, 0.12458331137895584, -0.012196341529488564, 0.03711283579468727, -0.0114806042984128, -0.00011358146002748981, -0.0896436795592308, -0.017758425325155258, 0.08426769077777863, -0.01031328085809946, -0.06891145557165146, 0.2548580765724182, -0.20196770131587982, 0.2299574315547943, 0.2296006977558136, -0.24926680326461792, -0.031021486967802048, -0.033769410103559494, -0.053823258727788925, 0.017695831134915352, 0.037970591336488724, -0.06758655607700348, 0.04836089164018631, -0.04798879474401474, 0.14743368327617645, -0.039952509105205536, -0.067154660820961, 0.011684614233672619, -0.06448059529066086, -0.05935867503285408, 0.06313008069992065, 0.042497556656599045, -0.12196247279644012, 0.19907300174236298, 0.256646990776062, 0.05731065943837166, 0.19537882506847382, 0.018505526706576347, -0.008647909387946129, 0.05532584711909294, -0.06024787575006485, -0.05939318984746933, -0.047756556421518326, -0.17080695927143097, -0.04192587733268738, 0.08264796435832977, 0.03818074241280556, 0.10142038762569427, -0.10767655074596405, -0.07215311378240585, 0.009001186117529869, 0.015298610553145409, -0.0071457610465586185, 0.13598360121250153, 0.0518062487244606, 0.13914446532726288, -0.005930832587182522, 0.025881925597786903, 0.06802397966384888, 0.02908273972570896, -0.08634071797132492, 0.1456945538520813, -0.1443340927362442, -0.3761582672595978, -0.1337488889694214, -0.09692523628473282, -0.01728254184126854, 0.04180695861577988, 0.12187701463699341, -0.12770286202430725, 0.0015871572541072965, -0.038519375026226044, 0.11093265563249588, -0.08619660884141922, 0.05064225569367409, -0.09312444925308228, 0.013121986761689186, -0.05371590703725815, -0.09208092838525772, -0.03968694806098938, -0.025510141626000404, -0.09566790610551834, 0.17000380158424377, -0.06683114916086197, 0.06858081370592117, 0.18506819009780884, 0.00719145592302084, 0.0289844311773777, -0.048802170902490616, 0.19252337515354156, -0.11087619513273239, 0.03966445475816727, 0.16040337085723877, 0.017642250284552574, 0.0870000347495079, 0.1063152626156807, -0.012242939323186874, -0.0729413852095604, 0.045604314655065536, 0.00838512647897005, -0.1192161962389946, -0.1628645360469818, -0.12800830602645874, -0.09412717819213867, 0.11832976341247559, 0.04896165430545807, 0.06800009310245514, 0.15884871780872345, 0.07476164400577545, -0.026399539783596992, -0.014989175833761692, -0.030628371983766556, 0.06698833405971527, 0.1810096949338913, -0.03410731256008148, 0.14575767517089844, -0.058808114379644394, -0.11332095414400101, 0.13757702708244324, 0.02930915355682373, 0.041703663766384125, 0.02182352915406227, -0.00909164547920227, 0.002967006294056773, 0.1275966912508011, 0.12905162572860718, 0.09085892140865326, -0.009210709482431412, -0.02600487507879734, -0.043374914675951004, -0.013961076736450195, -0.004321942571550608, 0.0544881634414196, 0.04976500943303108, -0.17056837677955627, -0.05252770707011223, -0.15036118030548096, 0.10635104030370712, 0.0658026859164238, 0.1097705140709877, -0.1943172961473465, -0.002813685918226838, 0.07878942042589188, -0.032336506992578506, -0.10688291490077972, 0.0711626410484314, 0.08084181696176529, -0.10172833502292633, 0.061861153692007065, -0.006532561499625444, 0.10406243056058884, 0.023742493242025375, 0.09878388792276382, -0.05866028368473053, -0.06148262321949005, -0.016518592834472656, 0.0939461812376976, -0.2926773428916931, 0.18179792165756226, -0.02907240390777588, -0.09844435751438141, -0.07134795933961868, -0.027840720489621162, 0.02770385891199112, 0.08060616999864578, 0.07026281952857971, 0.03338824585080147, 0.004331306088715792, -0.096750907599926, -0.025082198902964592, 0.01906721480190754, 0.12366755306720734, -0.05625581368803978, -0.01350511983036995, -0.041342347860336304, 0.02173074521124363, 0.00881099235266447, 0.06707418709993362, 0.021282022818922997, -0.16175130009651184, 0.07081238180398941, 0.03874411806464195, 0.03632965683937073, 0.02809896133840084, -0.02992626093327999, -0.1548270583152771, 0.1699383705854416, 0.02149343490600586, -0.06355534493923187, -0.12458667904138565, -0.04415702819824219, 0.06474760919809341, -0.04559854418039322, 0.039427343755960464, -0.0629853680729866, -0.001072446582838893, -0.07396374642848969, -0.19678819179534912, 0.1352648138999939, -0.06877507269382477, -0.07956159859895706, -0.03609750047326088, 0.17941854894161224, -0.07844837009906769, 0.018584884703159332, 0.007694936357438564, 0.047691553831100464, -0.14645716547966003, -0.11046357452869415, 0.06859224289655685, -0.04709484800696373, 0.036693572998046875, 0.01622764952480793, -0.02127574197947979, 0.005549534223973751, -0.012371892109513283, -0.0025305403396487236, 0.27376097440719604, 0.22965525090694427, -0.0802733525633812, 0.17710179090499878, 0.0630764365196228, -0.0507618673145771, -0.326980859041214, -0.09341348707675934, -0.14117297530174255, -0.009823985397815704, 0.023037875071167946, -0.13106577098369598, 0.05048951879143715, 0.029267780482769012, -0.014271927997469902, 0.11641538888216019, -0.20954635739326477, -0.09825599938631058, 0.09716890752315521, -0.06865759193897247, 0.4034286141395569, -0.1301247775554657, -0.07252515107393265, -0.03537401184439659, -0.14370368421077728, 0.1951674520969391, -0.06888531148433685, 0.09445398300886154, -0.02521556057035923, 0.13606955111026764, 0.05328543111681938, -0.02234726957976818, 0.11178411543369293, -0.01972258649766445, 0.0011309145484119654, -0.13865596055984497, -0.0604546032845974, 0.08001494407653809, -0.007717274595052004, 0.009300438687205315, -0.10272051393985748, 0.02493043802678585, -0.1687590479850769, -0.0011172585655003786, -0.11747178435325623, 0.09020119160413742, 0.021906770765781403, -0.06782494485378265, -0.050800591707229614, -0.0397600457072258, -0.009170935489237309, -0.01781470514833927, 0.14266571402549744, -0.05449723079800606, 0.1958875209093094, 0.07874593138694763, 0.06835102289915085, -0.1398908495903015, 0.05150968208909035, -0.027329890057444572, -0.0722222700715065, 0.07193705439567566, -0.1763947606086731, 0.04665200039744377, 0.08747349679470062, -0.03685600683093071, 0.04361190274357796, 0.09054525941610336, 0.0016616116045042872, 0.015259911306202412, 0.17542323470115662, -0.26249444484710693, -0.009265073575079441, -0.05851370841264725, -0.07754334062337875, 0.09399785101413727, 0.05022705718874931, 0.17302869260311127, 0.01883954182267189, -0.042071253061294556, 0.01570643112063408, 0.01509455218911171, -0.059037789702415466, 0.045513592660427094, 0.02684464305639267, 0.008570663630962372, -0.1221366673707962, 0.05156322568655014, 0.023951835930347443, -0.13511396944522858, 0.028608962893486023, 0.18224509060382843, -0.11025255918502808, -0.12385176122188568, -0.05918734520673752, 0.014604943804442883, -0.1147887259721756, 0.022507676854729652, -0.0024671610444784164, -0.09835006296634674, 0.062000639736652374, 0.13879112899303436, 0.06231173500418663, 0.12207856774330139, -0.016749046742916107, -0.009889025241136551, -0.02596008963882923, -0.03651546314358711, 0.030208537355065346, 0.03168511390686035, -0.0861181765794754, 0.11346250027418137, -0.02512839064002037, 0.1417820155620575, -0.10664749890565872, -0.05201685056090355, -0.14300444722175598, -0.032158151268959045, -0.08575893938541412, -0.11310356855392456, -0.07854323089122772, -0.07035478204488754, 0.009079275652766228, -0.06144321709871292, -0.04742341861128807, -0.07850945740938187, -0.1071249470114708, 0.0065527972765266895, -0.04037778079509735, 0.04593488946557045, -0.08211231976747513, -0.0025119397323578596, 0.11637649685144424, -0.022535819560289383, 0.16392095386981964, 0.11117493361234665, -0.09679865092039108, 0.07616551965475082, -0.12686336040496826, -0.10472826659679413, 0.09312791377305984, -0.011926734820008278, 0.03812364861369133, 0.11054535210132599, 0.005196572281420231, 0.026585882529616356, 0.05407439172267914, 0.06366553902626038, 0.03967318683862686, -0.10743927955627441, 0.0886315256357193, -0.020753242075443268, -0.1556011289358139, -0.045647621154785156, -0.0805148333311081, 0.03534896299242973, 0.01974404975771904, 0.10271792113780975, -0.034986238926649094, 0.0667109340429306, -0.08902619034051895, 0.024180470034480095, -0.000016180018064915203, -0.17815378308296204, -0.01795545034110546, -0.044853758066892624, 0.03495967015624046, 0.017773056402802467, 0.24157072603702545, 0.06085042282938957, -0.06760483235120773, 0.04657021537423134, 0.12547647953033447, 0.015325317159295082, 0.0012204478261992335, 0.15906299650669098, 0.09267544746398926, -0.07720284163951874, -0.1355191469192505, 0.06737678498029709, 0.019282789900898933, -0.045628830790519714, 0.09535399079322815, 0.009011821821331978, 0.021824736148118973, 0.0726994201540947, -0.01307250652462244, 0.0016560814110562205, -0.10145208984613419, -0.11841893196105957, -0.038609180599451065, 0.056700821965932846, -0.03823903948068619, 0.08270184695720673, 0.1624554693698883, -0.01529943011701107, 0.038163430988788605, -0.03936288133263588, -0.01488962396979332, -0.12554575502872467, -0.1426725685596466, -0.06450272351503372, -0.16302600502967834, -0.007763232104480267, -0.08333444595336914, 0.06433288753032684, 0.07949802279472351, 0.059826187789440155, -0.04269853234291077, 0.07651268690824509, 0.041022781282663345, -0.10034794360399246, 0.07510355859994888, -0.02059151791036129, 0.05323530361056328, -0.021385202184319496, -0.019656827673316002, -0.10213424265384674, 0.05417940020561218, -0.020723329856991768, 0.0416044183075428, -0.05111391469836235, 0.009476713836193085, -0.17171601951122284, -0.1145220696926117, -0.06269708275794983, 0.05981360003352165, -0.05057463422417641, 0.05945824086666107, 0.01168898493051529, 0.011022492311894894, 0.016294511035084724, 0.24577881395816803, -0.06521986424922943, -0.04237864539027214, -0.039796773344278336, 0.1401647925376892, -0.010960960760712624, 0.07910837978124619, -0.04971875622868538, -0.026874123141169548, -0.11801496148109436, 0.31808507442474365, 0.3330231308937073, -0.09461544454097748, 0.042824193835258484, -0.011730561032891273, 0.03255566582083702, 0.12393459677696228, 0.12263859808444977, 0.1047649085521698, 0.23149316012859344, -0.07330518960952759, -0.04662523791193962, -0.0235530287027359, -0.011487046256661415, -0.07061693072319031, 0.09144455194473267, 0.024042300879955292, -0.06604029983282089, -0.04112962633371353, 0.061292614787817, -0.1968756765127182, 0.09409318119287491, -0.08292321115732193, -0.2009436935186386, -0.043561115860939026, 0.03980926424264908, 0.11663878709077835, -0.0058410209603607655, 0.12327833473682404, 0.0021221975330263376, -0.06928802281618118, 0.0007765711052343249, 0.021609993651509285, -0.21508292853832245, 0.024919532239437103, 0.07233009487390518, -0.12181923538446426, -0.003256353549659252, -0.03614840656518936, -0.0016090048011392355, 0.08110456168651581, 0.041294027119874954, -0.03950197249650955, 0.026108399033546448, 0.004547862336039543, -0.03431681916117668, -0.023192770779132843, 0.04429425671696663, 0.04074658825993538, -0.15583069622516632, 0.0852603018283844, -0.15913386642932892, 0.045099467039108276, -0.033806633204221725, 0.0012128398520871997, -0.010232296772301197, -0.0017561162821948528, -0.040829166769981384, 0.08149882405996323, 0.07333235442638397, -0.022076698020100594, -0.0061705452390015125, -0.06384896486997604, -0.055786989629268646, -0.027778856456279755, -0.08865642547607422, -0.09847963601350784, -0.12417391687631607, -0.10101866722106934, 0.09827395528554916, -0.022276965901255608, -0.17602279782295227, 0.008451612666249275, -0.09465660154819489, 0.06178250536322594, -0.14477479457855225, 0.11634210497140884, 0.08996126055717468, 0.0033104352187365294, 0.006666821893304586, -0.021679235622286797, 0.07054676860570908, 0.1143367812037468, -0.09097250550985336, -0.06963858008384705 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445592317314748423/Y3vOt6Xq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374721840472526851/kzKWx1OS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1448723012514041865/ydq1VOBm_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jumb & isaac & jay z</div> <div style="text-align: center; font-size: 14px;">@cummilkshake-miraiwillsaveus-technobaphomet</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jumb & isaac & jay z. | Data | jumb | isaac | jay z | | --- | --- | --- | --- | | Tweets downloaded | 3232 | 3153 | 3061 | | Retweets | 736 | 362 | 83 | | Short tweets | 594 | 977 | 1230 | | Tweets kept | 1902 | 1814 | 1748 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3tmpkkja/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cummilkshake-miraiwillsaveus-technobaphomet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39yato7e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39yato7e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cummilkshake-miraiwillsaveus-technobaphomet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cummilkshake-miraiwillsaveus-technobaphomet/1635820776478/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cummilkshake-miraiwillsaveus-technobaphomet
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG jumb & isaac & jay z @cummilkshake-miraiwillsaveus-technobaphomet I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from jumb & isaac & jay z. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cummilkshake-miraiwillsaveus-technobaphomet's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1303392166836830210/rxFf-dy0_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cane / he|him / Enby-femboi / Cute doggo 🔞🌽 🤖 AI Bot </div> <div style="font-size: 15px">@cunfamiliaris bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cunfamiliaris's tweets](https://twitter.com/cunfamiliaris). | Data | Quantity | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 135 | | Short tweets | 287 | | Tweets kept | 2822 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ndgivht/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cunfamiliaris's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b0a9baoe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b0a9baoe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cunfamiliaris') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cunfamiliaris/1616770251594/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cunfamiliaris
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cane / he|him / Enby-femboi / Cute doggo AI Bot @cunfamiliaris bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cunfamiliaris's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cunfamiliaris's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1061608813730635776/boCDIPDX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cupcakKe lyrics</div> <div style="text-align: center; font-size: 14px;">@cupcakkesays</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cupcakKe lyrics. | Data | cupcakKe lyrics | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 0 | | Short tweets | 44 | | Tweets kept | 3156 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3beoi9ei/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cupcakkesays's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kye6z0e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kye6z0e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cupcakkesays') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cupcakkesays/1637758613095/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cupcakkesays
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT cupcakKe lyrics @cupcakkesays I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from cupcakKe lyrics. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cupcakkesays's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/866006337255227393/jLbqeyn3_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Jacob Glanville 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@curlyjunglejake bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@curlyjunglejake's tweets](https://twitter.com/curlyjunglejake). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2193</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>94</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>194</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1905</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wpg429u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @curlyjunglejake's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u5lcs29) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u5lcs29/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/curlyjunglejake'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/curlyjunglejake/1611588649017/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/curlyjunglejake
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Jacob Glanville AI Bot </div> <div style="font-size: 15px; color: #657786">@curlyjunglejake bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @curlyjunglejake's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2193</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>94</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>194</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1905</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @curlyjunglejake's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/curlyjunglejake'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @curlyjunglejake's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2193</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>94</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>194</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1905</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @curlyjunglejake's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/curlyjunglejake'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @curlyjunglejake's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2193</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>94</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>194</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1905</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @curlyjunglejake's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/curlyjunglejake'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 433, 78, 9, 170, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/46209982/curtsmall_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Curt Krone 🤖 AI Bot </div> <div style="font-size: 15px">@curtkrone bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@curtkrone's tweets](https://twitter.com/curtkrone). | Data | Quantity | | --- | --- | | Tweets downloaded | 3203 | | Retweets | 1135 | | Short tweets | 250 | | Tweets kept | 1818 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3o9jhw98/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @curtkrone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gge3iwo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gge3iwo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/curtkrone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/curtkrone/1614127926380/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/curtkrone
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Curt Krone AI Bot @curtkrone bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @curtkrone's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @curtkrone's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1560517790900969473/MPbfc6w2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">matt christman</div> <div style="text-align: center; font-size: 14px;">@cushbomb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from matt christman. | Data | matt christman | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 241 | | Short tweets | 685 | | Tweets kept | 2304 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39bxpmve/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cushbomb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gd8zqob) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gd8zqob/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cushbomb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cushbomb/1663936814713/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cushbomb
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT matt christman @cushbomb I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from matt christman. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cushbomb's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342492565560430593/Ntm4IL-T_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sayako Hoshimiya 🤖 AI Bot </div> <div style="font-size: 15px">@cute_sayako bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cute_sayako's tweets](https://twitter.com/cute_sayako). | Data | Quantity | | --- | --- | | Tweets downloaded | 3228 | | Retweets | 324 | | Short tweets | 1887 | | Tweets kept | 1017 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cfs9mn2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cute_sayako's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1esq77ko) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1esq77ko/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cute_sayako') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cute_sayako/1617765258616/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cute_sayako
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Sayako Hoshimiya AI Bot @cute\_sayako bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cute\_sayako's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cute\_sayako's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1385023548935258114/UuMXQpjI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bunny ✊🏽✊🏾✊🏿 🏳️‍🌈</div> <div style="text-align: center; font-size: 14px;">@cutebunnys50</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bunny ✊🏽✊🏾✊🏿 🏳️‍🌈. | Data | Bunny ✊🏽✊🏾✊🏿 🏳️‍🌈 | | --- | --- | | Tweets downloaded | 3208 | | Retweets | 2575 | | Short tweets | 16 | | Tweets kept | 617 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2t0h4kcz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cutebunnys50's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ymfrlb8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ymfrlb8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cutebunnys50') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cutebunnys50/1631663231129/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cutebunnys50
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Bunny ️‍ @cutebunnys50 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Bunny ️‍. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cutebunnys50's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1394419594035490818/d-xaC7hn_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">maddie</div> <div style="text-align: center; font-size: 14px;">@cuteteengiri</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from maddie. | Data | maddie | | --- | --- | | Tweets downloaded | 755 | | Retweets | 80 | | Short tweets | 318 | | Tweets kept | 357 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23raikto/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuteteengiri's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rjelltc1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rjelltc1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cuteteengiri') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cuteteengiri/1621385805180/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cuteteengiri
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT maddie @cuteteengiri I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from maddie. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cuteteengiri's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363295022775365632/Wb6RnXVg_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">GOD HATES A COWARD 🤖 AI Bot </div> <div style="font-size: 15px">@cutiebomber bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cutiebomber's tweets](https://twitter.com/cutiebomber). | Data | Quantity | | --- | --- | | Tweets downloaded | 3071 | | Retweets | 2858 | | Short tweets | 52 | | Tweets kept | 161 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fdz5t1k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cutiebomber's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cge5lb9i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cge5lb9i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cutiebomber') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cutiebomber/1617765125988/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cutiebomber
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
GOD HATES A COWARD AI Bot @cutiebomber bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cutiebomber's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cutiebomber's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/812058964544389120/5wxoV2wt_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cami Williams #BlackLivesMatter 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@cwillycs bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cwillycs's tweets](https://twitter.com/cwillycs). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2137</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>648</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>290</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1199</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2faie74y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cwillycs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2efpeorz) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2efpeorz/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cwillycs'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cwillycs/1602269588028/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cwillycs
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cami Williams #BlackLivesMatter AI Bot </div> <div style="font-size: 15px; color: #657786">@cwillycs bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @cwillycs's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2137</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>648</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>290</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1199</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @cwillycs's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/cwillycs'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cwillycs's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2137</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>648</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>290</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1199</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cwillycs's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cwillycs'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @cwillycs's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2137</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>648</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>290</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1199</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @cwillycs's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/cwillycs'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1375463332732403714/TP6hwUxm_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">evil succubus 🤖 AI Bot </div> <div style="font-size: 15px">@cyberbully66 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cyberbully66's tweets](https://twitter.com/cyberbully66). | Data | Quantity | | --- | --- | | Tweets downloaded | 3195 | | Retweets | 397 | | Short tweets | 570 | | Tweets kept | 2228 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2c5t9ev6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cyberbully66's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/e4ld23gl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/e4ld23gl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cyberbully66') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cyberbully66/1616851006786/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cyberbully66
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
evil succubus AI Bot @cyberbully66 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cyberbully66's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cyberbully66's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1367247466706436097/LHxzHVxC_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">CyberGoreAlice 🤖 AI Bot </div> <div style="font-size: 15px">@cybercyberpop bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cybercyberpop's tweets](https://twitter.com/cybercyberpop). | Data | Quantity | | --- | --- | | Tweets downloaded | 3223 | | Retweets | 870 | | Short tweets | 925 | | Tweets kept | 1428 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/j1gdjged/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cybercyberpop's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kkuuwcd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kkuuwcd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cybercyberpop') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cybercyberpop/1617791525487/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cybercyberpop
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
CyberGoreAlice AI Bot @cybercyberpop bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cybercyberpop's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cybercyberpop's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371588783070707713/X0k6xQs__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">cyberglyphic 🤖 AI Bot </div> <div style="font-size: 15px">@cyberglyphic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cyberglyphic's tweets](https://twitter.com/cyberglyphic). | Data | Quantity | | --- | --- | | Tweets downloaded | 3174 | | Retweets | 498 | | Short tweets | 340 | | Tweets kept | 2336 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/243v14nf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cyberglyphic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qa0qgs8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qa0qgs8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cyberglyphic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cyberglyphic/1616616677471/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cyberglyphic
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
cyberglyphic AI Bot @cyberglyphic bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cyberglyphic's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cyberglyphic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1287977544134926342/pwwDXVUR_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cylinder 🤖 AI Bot </div> <div style="font-size: 15px">@cylinderlife bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@cylinderlife's tweets](https://twitter.com/cylinderlife). | Data | Quantity | | --- | --- | | Tweets downloaded | 130 | | Retweets | 14 | | Short tweets | 21 | | Tweets kept | 95 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qend5z7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cylinderlife's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hhpr6qt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hhpr6qt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cylinderlife') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cylinderlife/1614176138788/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cylinderlife
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cylinder AI Bot @cylinderlife bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @cylinderlife's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cylinderlife's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/713653445262237696/mdyVSGoj_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241620963768201216/sG68m_iE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308419103510626304/gUgr1gMo_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">fastfwd & Cyrus & Lily Ray 😏</div> <div style="text-align: center; font-size: 14px;">@cyrusshepard-fastfwdco-lilyraynyc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from fastfwd & Cyrus & Lily Ray 😏. | Data | fastfwd | Cyrus | Lily Ray 😏 | | --- | --- | --- | --- | | Tweets downloaded | 945 | 3248 | 3250 | | Retweets | 60 | 343 | 89 | | Short tweets | 5 | 729 | 310 | | Tweets kept | 880 | 2176 | 2851 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k89f9gx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cyrusshepard-fastfwdco-lilyraynyc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3eq4v17k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3eq4v17k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cyrusshepard-fastfwdco-lilyraynyc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cyrusshepard-fastfwdco-lilyraynyc/1632903540115/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/cyrusshepard-fastfwdco-lilyraynyc
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG fastfwd & Cyrus & Lily Ray @cyrusshepard-fastfwdco-lilyraynyc I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from fastfwd & Cyrus & Lily Ray . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @cyrusshepard-fastfwdco-lilyraynyc's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1387092178753687567/43vkVfBK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Greetest</div> <div style="text-align: center; font-size: 14px;">@d_greetest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Greetest. | Data | Greetest | | --- | --- | | Tweets downloaded | 629 | | Retweets | 265 | | Short tweets | 34 | | Tweets kept | 330 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kz7im60/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @d_greetest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1h67ju9y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1h67ju9y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/d_greetest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/d_greetest/1639533869820/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/d_greetest
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Greetest @d\_greetest I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Greetest. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @d\_greetest's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1021749789598212096/eo8-km4g_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dat Quoc Nguyen 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@d_q_nguyen bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@d_q_nguyen's tweets](https://twitter.com/d_q_nguyen). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>477</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>365</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>5</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>107</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/30izyjvz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @d_q_nguyen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2zyuag4u) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2zyuag4u/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/d_q_nguyen'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://res.cloudinary.com/huggingtweets/image/upload/v1599893349/d_q_nguyen.jpg", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/d_q_nguyen
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dat Quoc Nguyen AI Bot </div> <div style="font-size: 15px; color: #657786">@d_q_nguyen bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @d_q_nguyen's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>477</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>365</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>5</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>107</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @d_q_nguyen's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/d_q_nguyen'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @d_q_nguyen's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>477</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>365</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>5</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>107</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @d_q_nguyen's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/d_q_nguyen'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @d_q_nguyen's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>477</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>365</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>5</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>107</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @d_q_nguyen's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/d_q_nguyen'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 78, 9, 170, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1325253702815510530/aRBRhmOs_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">DaBaby 🤖 AI Bot </div> <div style="font-size: 15px">@dababydababy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dababydababy's tweets](https://twitter.com/dababydababy). | Data | Quantity | | --- | --- | | Tweets downloaded | 2970 | | Retweets | 2078 | | Short tweets | 300 | | Tweets kept | 592 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pxo4nhg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dababydababy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3byz0p03) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3byz0p03/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dababydababy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dababydababy
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
DaBaby AI Bot @dababydababy bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @dababydababy's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dababydababy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1268352530423205889/V6Nz7mIt_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nader Dabit 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@dabit3 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dabit3's tweets](https://twitter.com/dabit3). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3205</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>822</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>449</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1934</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19qlkkql/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dabit3's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ai4t9ptt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ai4t9ptt/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/dabit3'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dabit3/1607128642974/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dabit3
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nader Dabit AI Bot </div> <div style="font-size: 15px; color: #657786">@dabit3 bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @dabit3's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3205</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>822</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>449</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1934</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @dabit3's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/dabit3'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @dabit3's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3205</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>822</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>449</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1934</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dabit3's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/dabit3'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @dabit3's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3205</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>822</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>449</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1934</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dabit3's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/dabit3'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1010610389665497089/IbWw1VC8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">👀 backwards 🤖 AI Bot </div> <div style="font-size: 15px">@daddyblackbone bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@daddyblackbone's tweets](https://twitter.com/daddyblackbone). | Data | Quantity | | --- | --- | | Tweets downloaded | 3025 | | Retweets | 325 | | Short tweets | 349 | | Tweets kept | 2351 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30bwu48z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daddyblackbone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1co409eo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1co409eo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daddyblackbone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daddyblackbone/1616857292827/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/daddyblackbone
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
backwards AI Bot @daddyblackbone bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @daddyblackbone's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @daddyblackbone's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1353401231729950721/EAfnSQDa_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tweets by Kratos🪓</div> <div style="text-align: center; font-size: 14px;">@daddykratos1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tweets by Kratos🪓. | Data | Tweets by Kratos🪓 | | --- | --- | | Tweets downloaded | 626 | | Retweets | 14 | | Short tweets | 52 | | Tweets kept | 560 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12nz41n2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daddykratos1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33zt2owy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33zt2owy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daddykratos1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daddykratos1/1629576272636/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/daddykratos1
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Tweets by Kratos @daddykratos1 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Tweets by Kratos. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @daddykratos1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1325352638968328192/W75XS3Kj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Big Daddy's Cum Cock</div> <div style="text-align: center; font-size: 14px;">@daddyscumcock</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Big Daddy's Cum Cock. | Data | Big Daddy's Cum Cock | | --- | --- | | Tweets downloaded | 449 | | Retweets | 85 | | Short tweets | 41 | | Tweets kept | 323 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oidmwvy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daddyscumcock's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31o8y1r6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31o8y1r6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daddyscumcock') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daddyscumcock/1632087154595/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/daddyscumcock
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Big Daddy's Cum Cock @daddyscumcock I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Big Daddy's Cum Cock. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @daddyscumcock's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/923451113239703552/62jMMnTQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dad Jokes 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@dadsaysjokes bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dadsaysjokes's tweets](https://twitter.com/dadsaysjokes). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3205</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>47</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>8</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3150</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3tibg7vt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dadsaysjokes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pxb4a3v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pxb4a3v/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/dadsaysjokes'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dadsaysjokes
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dad Jokes AI Bot </div> <div style="font-size: 15px; color: #657786">@dadsaysjokes bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @dadsaysjokes's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3205</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>47</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>8</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3150</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @dadsaysjokes's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/dadsaysjokes'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @dadsaysjokes's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3205</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>47</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>8</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3150</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dadsaysjokes's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/dadsaysjokes'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @dadsaysjokes's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3205</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>47</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>8</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3150</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dadsaysjokes's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/dadsaysjokes'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 431, 77, 9, 169, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371713216414384129/-nBjR60B_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">K | Krimson Devils System🚩🏴 🤖 AI Bot </div> <div style="font-size: 15px">@daengerousk bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@daengerousk's tweets](https://twitter.com/daengerousk). | Data | Quantity | | --- | --- | | Tweets downloaded | 1980 | | Retweets | 1179 | | Short tweets | 320 | | Tweets kept | 481 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bo3ebco/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daengerousk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/26a437ue) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/26a437ue/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daengerousk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daengerousk/1616855326690/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/daengerousk
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
K | Krimson Devils System AI Bot @daengerousk bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @daengerousk's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @daengerousk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374906267555233792/cVdltqPj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daequon G. (the g is for gaymer) 🤖 AI Bot </div> <div style="font-size: 15px">@daequaen bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@daequaen's tweets](https://twitter.com/daequaen). | Data | Quantity | | --- | --- | | Tweets downloaded | 1919 | | Retweets | 883 | | Short tweets | 231 | | Tweets kept | 805 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/bafm2u4u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daequaen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2d9nm2rg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2d9nm2rg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daequaen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daequaen/1617765314697/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/daequaen
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Daequon G. (the g is for gaymer) AI Bot @daequaen bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @daequaen's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @daequaen's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1250356895199760384/fOxe1Ymd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Art Prompts</div> <div style="text-align: center; font-size: 14px;">@dailyartprompts</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Art Prompts. | Data | Art Prompts | | --- | --- | | Tweets downloaded | 726 | | Retweets | 16 | | Short tweets | 1 | | Tweets kept | 709 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1z29i666/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dailyartprompts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rrp1b3e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rrp1b3e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dailyartprompts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dailyartprompts/1632000660527/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dailyartprompts
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Art Prompts @dailyartprompts I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Art Prompts. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dailyartprompts's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362454772163350528/79tgdeLe_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daily Micro Fiction 🤖 AI Bot </div> <div style="font-size: 15px">@dailymicrofic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dailymicrofic's tweets](https://twitter.com/dailymicrofic). | Data | Quantity | | --- | --- | | Tweets downloaded | 296 | | Retweets | 5 | | Short tweets | 47 | | Tweets kept | 244 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yj0d4a8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dailymicrofic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38yvub5b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38yvub5b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dailymicrofic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dailymicrofic
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Daily Micro Fiction AI Bot @dailymicrofic bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @dailymicrofic's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dailymicrofic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1781434177/kaminsky2_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dan Kaminsky 🤖 AI Bot </div> <div style="font-size: 15px">@dakami bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dakami's tweets](https://twitter.com/dakami). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 133 | | Short tweets | 395 | | Tweets kept | 2722 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lgryhzp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dakami's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tgfiubli) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tgfiubli/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dakami') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dakami/1617343658924/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dakami
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Dan Kaminsky AI Bot @dakami bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @dakami's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dakami's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/529214699041067008/fqPBAr5s_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dalai Lama 🤖 AI Bot </div> <div style="font-size: 15px">@dalailama bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dalailama's tweets](https://twitter.com/dalailama). | Data | Quantity | | --- | --- | | Tweets downloaded | 1664 | | Retweets | 0 | | Short tweets | 1 | | Tweets kept | 1663 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/p9scy18q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dalailama's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1acshcvu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1acshcvu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dalailama') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dalailama/1615997106867/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dalailama
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
Dalai Lama AI Bot @dalailama bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @dalailama's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dalailama's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 61 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 0.023045063018798828, -0.02204611524939537, -0.0056217629462480545, 0.024998219683766365, 0.1312267929315567, 0.02466566488146782, 0.08025442808866501, 0.1621488779783249, -0.030768360942602158, 0.015156957320868969, 0.17928390204906464, 0.12833106517791748, -0.025381935760378838, 0.10042161494493484, -0.03942488506436348, -0.2719423770904541, 0.046165984123945236, 0.04379456117749214, -0.031213730573654175, 0.13666078448295593, 0.08867661654949188, -0.045726194977760315, 0.10844767093658447, -0.024391112849116325, -0.19374926388263702, 0.03891391307115555, 0.04400325194001198, -0.09513276815414429, 0.11447238177061081, 0.03918393328785896, 0.09885572642087936, 0.025941194966435432, -0.0787009596824646, -0.10229984670877457, 0.04564651846885681, 0.05498135834932327, -0.0677126869559288, 0.07756631076335907, 0.062077198177576065, -0.08898276835680008, 0.14696337282657623, 0.027552109211683273, -0.013472146354615688, 0.05225503072142601, -0.17611517012119293, -0.06823833286762238, -0.03582452982664108, 0.013555791229009628, 0.03382846713066101, 0.07916142791509628, -0.03099752962589264, 0.17965897917747498, -0.09157974272966385, 0.08549632132053375, 0.21223965287208557, -0.31330862641334534, -0.019718647003173828, 0.09505957365036011, 0.13277654349803925, 0.060757726430892944, -0.035037562251091, 0.08270368725061417, 0.060885775834321976, 0.014816065318882465, 0.053595565259456635, -0.05630973353981972, -0.11095286160707474, 0.05735233798623085, -0.08560370653867722, -0.053243570029735565, 0.2270948737859726, -0.03627891466021538, 0.06678362190723419, -0.06014703959226608, -0.0968315601348877, -0.05191762372851372, -0.014206932857632637, -0.0007905814563855529, -0.039079900830984116, 0.07661662995815277, -0.01842164434492588, -0.06635472923517227, -0.15472756326198578, 0.003009884152561426, -0.16963911056518555, 0.12417193502187729, -0.009206476621329784, 0.03786933794617653, -0.19481845200061798, 0.09602963179349899, -0.007850876078009605, -0.10225676745176315, 0.06259744614362717, -0.08888275921344757, 0.06638791412115097, 0.012942429631948471, -0.07640603184700012, -0.02106644958257675, 0.08056198060512543, 0.13388165831565857, -0.032740268856287, -0.00926523469388485, 0.013319301418960094, 0.0830560028553009, 0.06792842596769333, 0.04181957617402077, -0.041336700320243835, -0.05350780487060547, 0.029261786490678787, -0.10449601709842682, 0.0012442318256944418, -0.08886091411113739, -0.11949656903743744, -0.04972672089934349, 0.041117310523986816, 0.037330131977796555, 0.05952366814017296, 0.1147349551320076, -0.03513633459806442, 0.0018127808580175042, 0.06821189075708389, -0.04676239565014839, 0.02456514909863472, -0.021932292729616165, 0.026449091732501984, 0.09052641689777374, -0.009602625854313374, 0.029862230643630028, -0.07528015971183777, 0.04637369140982628, -0.11322551965713501, -0.012416922487318516, -0.023197615519165993, -0.08945703506469727, 0.03664110228419304, -0.11818758398294449, 0.006976603530347347, -0.17672543227672577, -0.0827573835849762, -0.0010230062762275338, -0.016674630343914032, -0.024935759603977203, -0.08746512979269028, -0.005465231370180845, -0.047830674797296524, 0.10002142190933228, -0.04745052009820938, 0.015952352434396744, -0.05889752879738808, 0.09694558382034302, -0.06273946166038513, 0.10444994270801544, -0.1365537941455841, 0.05791698396205902, -0.13272713124752045, -0.0095265107229352, -0.05663247033953667, 0.04933531954884529, -0.002125486033037305, 0.15809306502342224, -0.0019368804059922695, -0.0151921221986413, -0.11728960275650024, 0.0808638334274292, -0.014826769009232521, 0.2024649977684021, -0.10628247261047363, -0.12109203636646271, 0.19116753339767456, -0.05156968906521797, -0.13711145520210266, 0.1298442780971527, 0.011141160503029823, 0.06715473532676697, 0.05843217298388481, 0.23018912971019745, 0.015947241336107254, -0.02980491891503334, 0.026306381449103355, 0.09368371963500977, -0.1374131441116333, -0.006914369761943817, 0.017705213278532028, 0.006864378694444895, -0.08455020934343338, 0.03641775995492935, 0.11606235057115555, 0.08481859415769577, -0.061023809015750885, -0.02748442441225052, -0.0490991435945034, 0.004382774233818054, 0.06565552204847336, -0.0016684056026861072, 0.10515616089105606, -0.11406049132347107, -0.0735328420996666, -0.041395965963602066, 0.0035774358548223972, 0.023191820830106735, 0.04733319953083992, -0.026123911142349243, 0.12253347784280777, -0.010156016796827316, 0.04058242216706276, -0.14151473343372345, -0.08605361729860306, -0.03254232183098793, 0.15478350222110748, 0.03953593224287033, 0.11633965373039246, 0.05719606578350067, -0.06777982413768768, -0.01036068145185709, 0.002454544650390744, 0.14101839065551758, -0.015767211094498634, -0.08905056118965149, -0.07599052041769028, 0.07826608419418335, -0.07611092925071716, 0.020115256309509277, -0.057017967104911804, 0.037102315574884415, 0.06556723266839981, 0.11540397256612778, -0.0017086438601836562, 0.03440048173069954, -0.0123360063880682, -0.000012290506674617063, -0.08933671563863754, -0.013215054757893085, 0.08847546577453613, -0.008405817672610283, -0.05117173492908478, 0.2598556578159332, -0.19900687038898468, 0.24127228558063507, 0.231798455119133, -0.2356785386800766, -0.03353632614016533, -0.01462375745177269, -0.04819153994321823, 0.01492219790816307, 0.037874069064855576, -0.05811957269906998, 0.03794299066066742, -0.05634453147649765, 0.1481509953737259, -0.04520590230822563, -0.06490635871887207, 0.013088049367070198, -0.06494753062725067, -0.06585344672203064, 0.06484286487102509, 0.04194590449333191, -0.12645718455314636, 0.20141667127609253, 0.26711732149124146, 0.04010975360870361, 0.20662355422973633, 0.018375245854258537, -0.004053029697388411, 0.05102868750691414, -0.06542815268039703, -0.058470260351896286, -0.04150864854454994, -0.1588040441274643, -0.051093969494104385, 0.07530313730239868, 0.034314632415771484, 0.0898759514093399, -0.09657558798789978, -0.07673535495996475, 0.007029566913843155, 0.023532038554549217, -0.01306160632520914, 0.1372765153646469, 0.048913490027189255, 0.13490548729896545, -0.0032259346917271614, 0.011654623784124851, 0.06254645437002182, 0.02089114673435688, -0.08627534657716751, 0.13996493816375732, -0.14251753687858582, -0.36767199635505676, -0.11936365067958832, -0.09697052836418152, -0.011594709008932114, 0.029661882668733597, 0.12459489703178406, -0.12274473905563354, 0.006536944769322872, -0.04606909677386284, 0.09110275655984879, -0.09474314004182816, 0.046487726271152496, -0.09117124229669571, 0.0193075742572546, -0.053507283329963684, -0.08736079931259155, -0.04219098761677742, -0.021037515252828598, -0.08632376790046692, 0.16062548756599426, -0.0669471025466919, 0.07220233231782913, 0.17339450120925903, 0.005650070495903492, 0.029418056830763817, -0.04840487241744995, 0.1996528059244156, -0.10633594542741776, 0.03494453802704811, 0.15129250288009644, 0.019962413236498833, 0.08429192751646042, 0.10996142029762268, -0.010845727287232876, -0.06873574107885361, 0.04305357486009598, 0.009354572743177414, -0.11143358051776886, -0.1527336835861206, -0.10894794762134552, -0.10044675320386887, 0.13014699518680573, 0.05656032636761665, 0.06703919917345047, 0.16037318110466003, 0.061513472348451614, -0.019407641142606735, -0.009107081219553947, -0.019766777753829956, 0.07649408280849457, 0.1467757225036621, -0.026956025511026382, 0.14976274967193604, -0.05412312224507332, -0.11098915338516235, 0.12750805914402008, 0.02523878403007984, 0.02736341767013073, 0.030087651684880257, 0.004279325716197491, 0.00023339648032560945, 0.14612308144569397, 0.13334205746650696, 0.07964257895946503, -0.018630146980285645, -0.030937759205698967, -0.05317160487174988, -0.02153072878718376, -0.001635383814573288, 0.056616492569446564, 0.04805357754230499, -0.15345874428749084, -0.05428538843989372, -0.1453014612197876, 0.09931683540344238, 0.08077193051576614, 0.10425683856010437, -0.20023800432682037, -0.0020670441444963217, 0.08631721884012222, -0.031204866245388985, -0.10470310598611832, 0.07385390251874924, 0.0852615162730217, -0.10122890770435333, 0.050357360392808914, -0.00810049194842577, 0.11262702941894531, 0.03939642012119293, 0.10314954072237015, -0.056073401123285294, -0.05590416491031647, -0.017166707664728165, 0.08704748004674911, -0.29989248514175415, 0.16933052241802216, -0.026653995737433434, -0.09390314668416977, -0.06273353099822998, -0.027042074128985405, 0.02722407877445221, 0.08160185068845749, 0.08276555687189102, 0.03114314004778862, -0.03465403988957405, -0.07583022117614746, -0.021011626347899437, 0.0226152203977108, 0.11752773076295853, -0.05714089423418045, -0.009762411937117577, -0.04663566127419472, 0.01674286276102066, 0.010660070925951004, 0.09401563555002213, 0.010384885594248772, -0.16617059707641602, 0.06855206191539764, 0.042636506259441376, 0.033747557550668716, 0.029849642887711525, -0.031014347448945045, -0.13844801485538483, 0.17258141934871674, 0.03255597501993179, -0.050840288400650024, -0.12468960136175156, -0.052433181554079056, 0.053452592343091965, -0.04645095020532608, 0.022545570507645607, -0.06071555241942406, 0.008225022815167904, -0.07477552443742752, -0.20190678536891937, 0.1422843039035797, -0.07532759755849838, -0.06814900040626526, -0.0482926070690155, 0.1726374328136444, -0.08437072485685349, 0.021726032719016075, 0.00648227334022522, 0.05337712913751602, -0.15247385203838348, -0.10076600313186646, 0.07157283276319504, -0.04121299460530281, 0.0384424589574337, -0.002682593185454607, -0.029120588675141335, -0.0009653342422097921, -0.015056867152452469, 0.00028136532637290657, 0.27343273162841797, 0.23626449704170227, -0.08351079374551773, 0.17889991402626038, 0.06570972502231598, -0.0586962029337883, -0.32806596159935, -0.09495645016431808, -0.13385947048664093, -0.008901155553758144, 0.027000220492482185, -0.12693896889686584, 0.04112457484006882, 0.020501481369137764, -0.01586635410785675, 0.1080545112490654, -0.20121033489704132, -0.09839294105768204, 0.08066169917583466, -0.06320268660783768, 0.4066661596298218, -0.14013591408729553, -0.06666210293769836, -0.03479941561818123, -0.15767717361450195, 0.2101469784975052, -0.07493568956851959, 0.0867309719324112, -0.019003480672836304, 0.1150895357131958, 0.05205247923731804, -0.017986591905355453, 0.1076529324054718, -0.02941650152206421, 0.008291213773190975, -0.133688822388649, -0.0708819180727005, 0.07801494002342224, -0.013113176450133324, 0.0073072900995612144, -0.12169554829597473, 0.016744306311011314, -0.17788201570510864, 0.004354916512966156, -0.12219570577144623, 0.08279965072870255, 0.010220671072602272, -0.061546485871076584, -0.042094141244888306, -0.03481869027018547, -0.002012162236496806, -0.017395906150341034, 0.1828150898218155, -0.057601477950811386, 0.2122170478105545, 0.08566316217184067, 0.064366415143013, -0.13606293499469757, 0.05063160881400108, -0.0157748032361269, -0.07391754537820816, 0.08055251836776733, -0.19411487877368927, 0.050044044852256775, 0.07842409610748291, -0.03550063446164131, 0.049127377569675446, 0.09029321372509003, -0.004625566303730011, 0.007996995933353901, 0.17518295347690582, -0.2641419768333435, -0.00870419479906559, -0.06501568108797073, -0.06398701667785645, 0.08765042573213577, 0.03337143734097481, 0.16669827699661255, 0.002525120973587036, -0.050673842430114746, 0.014745346270501614, 0.021194254979491234, -0.05955834314227104, 0.031477998942136765, 0.02697918750345707, 0.012441786006093025, -0.11749376356601715, 0.04954813793301582, 0.030477186664938927, -0.15089958906173706, 0.032835379242897034, 0.20457783341407776, -0.10553225129842758, -0.1281069666147232, -0.049091774970293045, 0.04288773611187935, -0.08717567473649979, 0.02726605348289013, -0.009190280921757221, -0.09470494836568832, 0.0573163777589798, 0.13278797268867493, 0.062310438603162766, 0.10899180918931961, -0.0015607187524437904, -0.016328703612089157, -0.032409630715847015, -0.018961092457175255, 0.023581283167004585, 0.03034031018614769, -0.08721444010734558, 0.09516870975494385, -0.02652714028954506, 0.14469143748283386, -0.10320838540792465, -0.045907825231552124, -0.15597106516361237, -0.03938088193535805, -0.0625808909535408, -0.10799501836299896, -0.07772707939147949, -0.07070928066968918, 0.010625030845403671, -0.057112570852041245, -0.05386120453476906, -0.07970327138900757, -0.11000929772853851, -0.0029484170954674482, -0.03910250589251518, 0.04829269275069237, -0.07395005971193314, -0.002291048178449273, 0.1147882267832756, -0.020846085622906685, 0.15595434606075287, 0.10914915055036545, -0.0885118842124939, 0.0818740725517273, -0.11731013655662537, -0.09784740954637527, 0.08430901914834976, -0.012961963191628456, 0.03967556729912758, 0.10447244346141815, 0.0016526463441550732, 0.024455370381474495, 0.05921920761466026, 0.056686755269765854, 0.032198164612054825, -0.10841073840856552, 0.08236350864171982, -0.009807482361793518, -0.16146379709243774, -0.04428122565150261, -0.0764978900551796, 0.03825283423066139, 0.019274720922112465, 0.11204726994037628, -0.03897618129849434, 0.06797946989536285, -0.09499135613441467, 0.02731928415596485, -0.0030131423845887184, -0.18112139403820038, -0.02819901704788208, -0.05015208199620247, 0.03486237674951553, 0.0061057209968566895, 0.21226072311401367, 0.07469984889030457, -0.07797075062990189, 0.052126914262771606, 0.09802792966365814, 0.010076619684696198, 0.00902772881090641, 0.14953187108039856, 0.08701325207948685, -0.08160319179296494, -0.12231837213039398, 0.0692681148648262, 0.025796039029955864, -0.01994943618774414, 0.09121832251548767, 0.02836466394364834, 0.04820539429783821, 0.07800399512052536, -0.008208714425563812, 0.002804644638672471, -0.07332517206668854, -0.0980529934167862, -0.03354928642511368, 0.06204527989029884, -0.03742247819900513, 0.0858326330780983, 0.18433237075805664, -0.011270957067608833, 0.04023509472608566, -0.06021422520279884, -0.01479005441069603, -0.131768599152565, -0.1387748271226883, -0.06989447772502899, -0.16190116107463837, -0.01699049025774002, -0.08803019672632217, 0.06468790769577026, 0.06403729319572449, 0.05623135343194008, -0.0440327525138855, 0.0547567754983902, 0.0526677668094635, -0.09924907237291336, 0.07835037261247635, -0.02403833717107773, 0.045166827738285065, -0.019312484189867973, -0.0029918591026216745, -0.09736528247594833, 0.03896813467144966, -0.02290741354227066, 0.042304784059524536, -0.04907459020614624, 0.016129078343510628, -0.16801723837852478, -0.12587063014507294, -0.0551501139998436, 0.05602076277136803, -0.051323167979717255, 0.05448102205991745, 0.017261920496821404, 0.009536868892610073, 0.019009340554475784, 0.26213759183883667, -0.06562719494104385, -0.02456813119351864, -0.04132092744112015, 0.14051729440689087, -0.009935270063579082, 0.07769134640693665, -0.0549197718501091, -0.019326863810420036, -0.11462818831205368, 0.30631375312805176, 0.34365975856781006, -0.09576758742332458, 0.04471958056092262, -0.016151167452335358, 0.03212709724903107, 0.10395953804254532, 0.11348164826631546, 0.10550481081008911, 0.22288531064987183, -0.07528717070817947, -0.023958787322044373, -0.02763318084180355, -0.008543568663299084, -0.07610689103603363, 0.08119126409292221, 0.027744179591536522, -0.06762602180242538, -0.031160930171608925, 0.05028000473976135, -0.1926647573709488, 0.08593353629112244, -0.08396037667989731, -0.2089729756116867, -0.045300185680389404, 0.03321804851293564, 0.12435340881347656, -0.0017329715192317963, 0.12409063428640366, -0.001308076549321413, -0.06459707021713257, 0.004358434583991766, 0.01711258478462696, -0.2058516889810562, 0.010330619290471077, 0.07579771429300308, -0.1278086006641388, -0.008316628634929657, -0.036133430898189545, -0.007023192476481199, 0.08239703625440598, 0.030314216390252113, -0.04562307521700859, 0.013821984641253948, 0.002609855029731989, -0.023103008046746254, -0.03019971214234829, 0.05462737753987312, 0.03617123141884804, -0.13509878516197205, 0.08838478475809097, -0.1482846587896347, 0.0359911173582077, -0.06373808532953262, -0.0009798946557566524, -0.006681718863546848, 0.009986492805182934, -0.038703128695487976, 0.08425160497426987, 0.0816703662276268, -0.022384973242878914, -0.012395314872264862, -0.058895740658044815, -0.054292429238557816, -0.022564271464943886, -0.07696029543876648, -0.10243724286556244, -0.11822693049907684, -0.09812650829553604, 0.09495946764945984, -0.02070685848593712, -0.18472422659397125, 0.009433140978217125, -0.09159061312675476, 0.05415434390306473, -0.14695541560649872, 0.1135123074054718, 0.10353317111730576, 0.0020196076948195696, 0.004518974106758833, -0.041260309517383575, 0.08009263873100281, 0.1161307767033577, -0.08494146913290024, -0.07230672985315323 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1110842842254139392/ZOE_oJVk_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1133122333290291200/xV9gO-D6_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1202410649403428864/ARbH2iRC_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jack Grieve & Scott Hanselman & Marc Miller</div> <div style="text-align: center; font-size: 14px;">@dallaswentdown-jwgrieve-shanselman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jack Grieve & Scott Hanselman & Marc Miller. | Data | Jack Grieve | Scott Hanselman | Marc Miller | | --- | --- | --- | --- | | Tweets downloaded | 3241 | 3248 | 204 | | Retweets | 408 | 649 | 11 | | Short tweets | 325 | 953 | 16 | | Tweets kept | 2508 | 1646 | 177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1szwn06m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dallaswentdown-jwgrieve-shanselman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/umdhmmbr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/umdhmmbr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dallaswentdown-jwgrieve-shanselman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dallaswentdown-jwgrieve-shanselman/1622469689056/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dallaswentdown-jwgrieve-shanselman
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Jack Grieve & Scott Hanselman & Marc Miller @dallaswentdown-jwgrieve-shanselman I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Jack Grieve & Scott Hanselman & Marc Miller. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dallaswentdown-jwgrieve-shanselman's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1217211091912220673/z8rtZzMw_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hugh Jazz 🤖 AI Bot </div> <div style="font-size: 15px">@daltonegreene bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@daltonegreene's tweets](https://twitter.com/daltonegreene). | Data | Quantity | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 183 | | Short tweets | 354 | | Tweets kept | 2700 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25ywih65/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daltonegreene's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yizvyce) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yizvyce/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daltonegreene') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daltonegreene/1616643742816/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/daltonegreene
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Hugh Jazz AI Bot @daltonegreene bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @daltonegreene's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @daltonegreene's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1203851650215137286/Sjc-cYb8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dalton AR Sakthivadivel</div> <div style="text-align: center; font-size: 14px;">@daltonsakthi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dalton AR Sakthivadivel. | Data | Dalton AR Sakthivadivel | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 1653 | | Short tweets | 71 | | Tweets kept | 1496 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/aqk1rdls/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daltonsakthi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qr2itgh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qr2itgh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daltonsakthi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/daltonsakthi/1641169872533/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/daltonsakthi
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Dalton AR Sakthivadivel @daltonsakthi I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Dalton AR Sakthivadivel. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @daltonsakthi's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363858986903175169/2T0U6RjX_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bas Wisselink 🤖 AI Bot </div> <div style="font-size: 15px">@damelonbcws bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@damelonbcws's tweets](https://twitter.com/damelonbcws). | Data | Quantity | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 890 | | Short tweets | 186 | | Tweets kept | 2166 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17sw2i75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @damelonbcws's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8x4kzglp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8x4kzglp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/damelonbcws') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/damelonbcws
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Bas Wisselink AI Bot @damelonbcws bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @damelonbcws's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @damelonbcws's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349936650680492033/89ovSSF7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Himbo Slice 🤖 AI Bot </div> <div style="font-size: 15px">@damydothedishes bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@damydothedishes's tweets](https://twitter.com/damydothedishes). | Data | Quantity | | --- | --- | | Tweets downloaded | 3150 | | Retweets | 510 | | Short tweets | 341 | | Tweets kept | 2299 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jntufpd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @damydothedishes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2awoazq2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2awoazq2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/damydothedishes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/damydothedishes/1614113189615/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/damydothedishes
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Himbo Slice AI Bot @damydothedishes bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @damydothedishes's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @damydothedishes's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1336281436685541376/fRSl8uJP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dan</div> <div style="text-align: center; font-size: 14px;">@dan_abramov</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dan. | Data | Dan | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 605 | | Short tweets | 225 | | Tweets kept | 2416 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1o5h8795/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dan_abramov's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11780jlj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11780jlj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dan_abramov') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dan_abramov/1633280738580/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dan_abramov
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Dan @dan\_abramov I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Dan. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dan\_abramov's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1046498722815782912/JkZIybb-_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dana Ludwig 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@danaludwig bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@danaludwig's tweets](https://twitter.com/danaludwig). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>637</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>59</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>6</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>572</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2pqe574m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danaludwig's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/j3gaz7tt) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/j3gaz7tt/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/danaludwig'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danaludwig/1603674265747/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/danaludwig
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dana Ludwig AI Bot </div> <div style="font-size: 15px; color: #657786">@danaludwig bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @danaludwig's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>637</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>59</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>6</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>572</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @danaludwig's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/danaludwig'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @danaludwig's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>637</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>59</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>6</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>572</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @danaludwig's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/danaludwig'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @danaludwig's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>637</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>59</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>6</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>572</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @danaludwig's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/danaludwig'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 427, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/3592316706/186f22e8e63863281d35771c59879659_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">danawhite</div> <div style="text-align: center; font-size: 14px;">@danawhite</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from danawhite. | Data | danawhite | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 102 | | Short tweets | 264 | | Tweets kept | 2884 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2noyr0xi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danawhite's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1avci7w8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1avci7w8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/danawhite') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danawhite/1620951207984/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/danawhite
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT danawhite @danawhite I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from danawhite. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @danawhite's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1167076226646851584/ZKQBCF5o_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nicole Perry, CLMA 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@dancendrama1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dancendrama1's tweets](https://twitter.com/dancendrama1). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3200</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>680</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>230</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2290</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2pv57oh1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dancendrama1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2gd7kare) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2gd7kare/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/dancendrama1'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dancendrama1/1600740364323/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dancendrama1
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nicole Perry, CLMA AI Bot </div> <div style="font-size: 15px; color: #657786">@dancendrama1 bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @dancendrama1's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3200</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>680</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>230</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2290</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @dancendrama1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/dancendrama1'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @dancendrama1's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3200</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>680</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>230</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2290</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dancendrama1's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/dancendrama1'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @dancendrama1's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3200</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>680</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>230</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2290</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dancendrama1's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/dancendrama1'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1321155667206557697/zRpW3ZXl_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">dandy 🤖 AI Bot </div> <div style="font-size: 15px">@dandiestguylol bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dandiestguylol's tweets](https://twitter.com/dandiestguylol). | Data | Quantity | | --- | --- | | Tweets downloaded | 227 | | Retweets | 47 | | Short tweets | 41 | | Tweets kept | 139 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hgpscsj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dandiestguylol's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zoqskppv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zoqskppv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dandiestguylol') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dandiestguylol/1617757371542/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dandiestguylol
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
dandy AI Bot @dandiestguylol bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @dandiestguylol's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dandiestguylol's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1188087980721950721/98ji2Wwq_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Ellis 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@danellisscience bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@danellisscience's tweets](https://twitter.com/danellisscience). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>532</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>107</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>30</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>395</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3pv1wmct/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danellisscience's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1whytzxk) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1whytzxk/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/danellisscience'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danellisscience/1602254637048/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/danellisscience
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Ellis AI Bot </div> <div style="font-size: 15px; color: #657786">@danellisscience bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @danellisscience's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>532</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>107</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>30</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>395</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @danellisscience's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/danellisscience'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @danellisscience's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>532</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>107</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>30</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>395</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @danellisscience's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/danellisscience'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @danellisscience's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>532</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>107</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>30</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>395</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @danellisscience's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/danellisscience'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 428, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1034831543070425088/G-uRCdkZ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dani 🤖 AI Bot </div> <div style="font-size: 15px">@dani_remade bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dani_remade's tweets](https://twitter.com/dani_remade). | Data | Quantity | | --- | --- | | Tweets downloaded | 2270 | | Retweets | 1509 | | Short tweets | 108 | | Tweets kept | 653 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c0gm6a77/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dani_remade's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18pilez8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18pilez8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dani_remade') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dani_remade/1614192638303/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dani_remade
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Dani AI Bot @dani\_remade bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @dani\_remade's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dani\_remade's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1267943406304743424/QS6bXLq-_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Gedda Nuño 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@danielgedda bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@danielgedda's tweets](https://twitter.com/danielgedda). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3124</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2715</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>36</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>373</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/xk4kfjse/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danielgedda's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3lyvifcb) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3lyvifcb/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/danielgedda'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/danielgedda
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Gedda Nuño AI Bot </div> <div style="font-size: 15px; color: #657786">@danielgedda bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @danielgedda's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3124</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2715</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>36</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>373</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @danielgedda's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/danielgedda'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @danielgedda's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3124</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2715</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>36</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>373</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @danielgedda's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/danielgedda'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @danielgedda's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3124</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2715</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>36</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>373</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @danielgedda's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/danielgedda'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1245139606317793291/KeeHxsO7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1110842842254139392/ZOE_oJVk_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1343387459229540354/axWFzawA_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Tactical Times & Jack Grieve & Daniel Griffin MD PhD</div> <div style="text-align: center; font-size: 14px;">@danielgriffinmd-jwgrieve-tactical_times</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Tactical Times & Jack Grieve & Daniel Griffin MD PhD. | Data | The Tactical Times | Jack Grieve | Daniel Griffin MD PhD | | --- | --- | --- | --- | | Tweets downloaded | 3248 | 3241 | 1832 | | Retweets | 154 | 408 | 416 | | Short tweets | 102 | 325 | 181 | | Tweets kept | 2992 | 2508 | 1235 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/f0tjsov8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danielgriffinmd-jwgrieve-tactical_times's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lmqr46i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lmqr46i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/danielgriffinmd-jwgrieve-tactical_times') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danielgriffinmd-jwgrieve-tactical_times/1622467683418/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/danielgriffinmd-jwgrieve-tactical_times
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG The Tactical Times & Jack Grieve & Daniel Griffin MD PhD @danielgriffinmd-jwgrieve-tactical\_times I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from The Tactical Times & Jack Grieve & Daniel Griffin MD PhD. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @danielgriffinmd-jwgrieve-tactical\_times's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/3138755755/d5a784ba09507ecf86785b7bad5d87a9_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Gross 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@danielgross bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://bit.ly/2TGXMZf). ## Training data The model was trained on [@danielgross's tweets](https://twitter.com/danielgross). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>557</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>17</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>23</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>517</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3jijhfxi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danielgross's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/25msjov9) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/25msjov9/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/danielgross'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/danielgross
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Gross AI Bot </div> <div style="font-size: 15px; color: #657786">@danielgross bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @danielgross's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>557</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>17</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>23</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>517</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @danielgross's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/danielgross'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @danielgross's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>557</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>17</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>23</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>517</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @danielgross's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/danielgross'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @danielgross's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>557</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>17</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>23</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>517</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @danielgross's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/danielgross'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 429, 76, 9, 168, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445371970661531649/EscXxbe1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">danielle</div> <div style="text-align: center; font-size: 14px;">@danielleboccell</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from danielle. | Data | danielle | | --- | --- | | Tweets downloaded | 3223 | | Retweets | 656 | | Short tweets | 113 | | Tweets kept | 2454 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bm2j3po/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danielleboccell's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3o514z49) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3o514z49/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/danielleboccell') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/danielleboccell/1638891768493/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/danielleboccell
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT danielle @danielleboccell I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from danielle. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @danielleboccell's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
null
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/646595746905620480/oeKI14gB_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1190142566831984640/o4kO2hp-_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1283621672541536259/WI_8OTJz_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉</div> <div style="text-align: center; font-size: 14px;">@dankogai-hirox246-syakkin_dama</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉. | Data | ひろゆき, Hiroyuki Nishimura | Dan Kogai | 借金玉 | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3250 | 3249 | | Retweets | 283 | 341 | 260 | | Short tweets | 1819 | 2313 | 2918 | | Tweets kept | 1147 | 596 | 71 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1meoqt2b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dankogai-hirox246-syakkin_dama's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gc1ic0l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gc1ic0l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dankogai-hirox246-syakkin_dama') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dankogai-hirox246-syakkin_dama/1642471272927/predictions.png", "widget": [{"text": "My dream is"}]}
null
huggingtweets/dankogai-hirox246-syakkin_dama
[ "huggingtweets", "en", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #huggingtweets #en #region-us
AI CYBORG ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉 @dankogai-hirox246-syakkin\_dama I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dankogai-hirox246-syakkin\_dama's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#huggingtweets #en #region-us \n" ]
[ 13 ]
[ "passage: TAGS\n#huggingtweets #en #region-us \n" ]
[ 0.06862699240446091, -0.10726692527532578, -0.010401245206594467, -0.06321337819099426, 0.08621513843536377, 0.10232581198215485, 0.027164114639163017, 0.0985046774148941, 0.13242372870445251, 0.0191008560359478, 0.14544545114040375, -0.02377847209572792, -0.059302784502506256, 0.05649275705218315, 0.013633874244987965, -0.17248544096946716, 0.03670460358262062, -0.015605193562805653, 0.026972385123372078, 0.09363088756799698, 0.021145451813936234, 0.020441683009266853, 0.0902106985449791, -0.08021455258131027, -0.1398237943649292, 0.10563203692436218, 0.07052353769540787, 0.034161631017923355, 0.12517565488815308, -0.03278198093175888, 0.135564923286438, -0.03551725298166275, -0.11858534812927246, -0.20654892921447754, 0.05404523015022278, 0.03882395476102829, -0.061763372272253036, 0.03536899387836456, 0.07869033515453339, -0.15818791091442108, 0.11689841002225876, 0.05036948621273041, 0.036260005086660385, 0.13469965755939484, -0.22866027057170868, -0.07904011756181717, -0.04602409526705742, -0.07707278430461884, 0.10253201425075531, 0.00002397169555479195, 0.009154452942311764, 0.2598714828491211, -0.1161927580833435, 0.01967962086200714, 0.12730732560157776, -0.17017430067062378, 0.01806800253689289, 0.019835561513900757, 0.08412177860736847, 0.09157158434391022, 0.011509888805449009, 0.10852907598018646, 0.0707852765917778, -0.0101486686617136, -0.1360270082950592, -0.04950163885951042, -0.009859689511358738, 0.0853719413280487, -0.019690826535224915, -0.05046107620000839, 0.17664311826229095, 0.058999452739953995, 0.010314999148249626, 0.05766073241829872, -0.05329941213130951, 0.02751901187002659, 0.006196039728820324, -0.020993784070014954, 0.018363341689109802, 0.14473530650138855, 0.01760878413915634, -0.05249418318271637, -0.13410590589046478, 0.07058989256620407, -0.18945349752902985, 0.05454850196838379, -0.03698793053627014, 0.06096231937408447, -0.258131206035614, -0.01568523794412613, -0.14322851598262787, 0.012979496270418167, 0.09651564061641693, -0.0732380747795105, 0.03764953464269638, -0.012448606081306934, -0.021792607381939888, 0.11723798513412476, 0.10804640501737595, 0.1609608232975006, -0.04320541396737099, -0.00869857519865036, -0.0065362900495529175, 0.07786694169044495, 0.09295008331537247, -0.07654742151498795, 0.07032539695501328, -0.0564110204577446, -0.04492797330021858, -0.21906612813472748, 0.0008765582460910082, -0.030310221016407013, 0.04600467532873154, -0.01984437182545662, -0.13926945626735687, 0.0724203959107399, 0.028251374140381813, 0.005772269796580076, -0.10059063136577606, 0.07909262925386429, -0.02333223633468151, -0.002073736162856221, -0.04910872504115105, -0.043945688754320145, 0.01002762746065855, 0.056697506457567215, -0.10170026123523712, 0.03527959808707237, 0.07433190196752548, 0.07395917177200317, -0.16713260114192963, -0.013432089239358902, 0.04245100915431976, 0.042995184659957886, 0.062102507799863815, -0.17763984203338623, 0.0445265956223011, -0.15618294477462769, -0.0354858934879303, -0.00870739296078682, -0.05047069117426872, 0.01355440728366375, 0.06636203825473785, -0.027222590520977974, 0.11233346909284592, 0.01111317053437233, 0.005379479844123125, -0.12045124173164368, -0.06185131147503853, 0.06667035073041916, -0.02369607612490654, 0.0511794276535511, -0.14944906532764435, 0.007654519751667976, -0.180730938911438, 0.07720775902271271, 0.016102097928524017, 0.026931453496217728, -0.026627028360962868, 0.3114912509918213, 0.030569342896342278, 0.10634830594062805, -0.22846999764442444, 0.05719701200723648, -0.023560456931591034, 0.28067547082901, -0.1065937876701355, -0.12447673082351685, 0.18407796323299408, -0.06522929668426514, -0.12309088557958603, 0.12086527794599533, 0.03488042950630188, 0.10873927175998688, 0.09767720103263855, 0.3835752606391907, -0.10195262730121613, -0.08146942406892776, 0.03636458143591881, 0.1353151649236679, -0.25350436568260193, 0.02267700806260109, 0.025416342541575432, -0.08121002465486526, -0.1325274407863617, -0.01190396212041378, 0.2367665320634842, 0.14369091391563416, -0.11477484554052353, -0.02520707994699478, 0.020064817741513252, -0.016537215560674667, 0.05091886967420578, 0.017726575955748558, -0.0013406252255663276, -0.21194274723529816, 0.02760516293346882, -0.124215267598629, 0.03498653694987297, 0.13977846503257751, 0.04585346579551697, -0.07557849586009979, -0.040234941989183426, 0.08057703077793121, -0.01661347784101963, -0.02294166386127472, -0.16728036105632782, -0.06481286138296127, 0.1498730629682541, 0.1340765357017517, 0.013609949499368668, 0.09578457474708557, -0.12554091215133667, 0.002669427078217268, 0.013310762122273445, 0.13174262642860413, -0.007498446851968765, -0.04374158754944801, -0.022994134575128555, 0.1897602677345276, -0.09339086711406708, 0.07846151292324066, -0.05010027438402176, 0.001938516623340547, 0.10550153255462646, 0.060221847146749496, 0.0357060432434082, -0.013110004365444183, 0.03018314018845558, 0.005840349942445755, 0.018294237554073334, -0.06945645809173584, 0.12700411677360535, -0.011421116068959236, -0.11599461734294891, 0.22505104541778564, -0.12537546455860138, 0.1077398806810379, 0.1641158014535904, -0.15259717404842377, -0.09176535904407501, -0.05451177433133125, -0.05600990727543831, -0.04779776558279991, 0.12334655225276947, -0.07418269664049149, -0.04411538317799568, -0.044391438364982605, -0.0011415277840569615, 0.017120715230703354, -0.07650631666183472, 0.019346725195646286, -0.08435862511396408, -0.19952528178691864, 0.0862463191151619, -0.048986468464136124, -0.15294228494167328, 0.12348992377519608, 0.3562917411327362, 0.1481546014547348, 0.23727938532829285, -0.044758010655641556, 0.017626842483878136, 0.026004822924733162, -0.0384499691426754, -0.045703496783971786, 0.004267206881195307, -0.1251041442155838, -0.0365486666560173, -0.0015835420927032828, 0.004274635575711727, 0.10203591734170914, -0.036351218819618225, -0.14834646880626678, 0.02251344546675682, 0.0014692102558910847, -0.08886273205280304, 0.10843174904584885, -0.027543172240257263, 0.07448233664035797, 0.032922543585300446, 0.03858240693807602, 0.05848072096705437, 0.002110567642375827, -0.11813180893659592, 0.006854616105556488, -0.22355535626411438, -0.2711923122406006, -0.09768662601709366, -0.08925486356019974, 0.03989091515541077, 0.041187938302755356, 0.051699478179216385, -0.18302172422409058, 0.03948478400707245, 0.003198040649294853, 0.10697315633296967, -0.06025030463933945, 0.04016250744462013, -0.06218542903661728, 0.039252810180187225, -0.026844710111618042, -0.036029912531375885, -0.0012391663622111082, -0.0970999225974083, -0.10773636400699615, 0.11318950355052948, -0.12849527597427368, 0.08555713295936584, 0.14430534839630127, 0.03159665688872337, 0.02274978905916214, -0.06426727026700974, 0.08118022978305817, -0.10766161978244781, -0.02468705177307129, -0.020854998379945755, -0.012126539833843708, 0.08575579524040222, 0.08519800752401352, 0.02189561165869236, -0.15146233141422272, 0.0591089241206646, 0.048329032957553864, -0.13319815695285797, -0.13935089111328125, -0.09409863501787186, 5.991143439132429e-7, 0.2797071039676666, -0.002339477650821209, 0.023659970611333847, 0.14668741822242737, -0.005060214549303055, 0.07289005070924759, -0.20045752823352814, -0.05620472878217697, 0.018704742193222046, -0.004834607243537903, -0.022842248901724815, -0.008816422894597054, -0.08761768788099289, 0.006385814398527145, 0.2184516340494156, -0.004971520509570837, -0.12653324007987976, 0.13448448479175568, 0.0007297596894204617, 0.0038821459747850895, 0.1352946162223816, 0.08407466113567352, 0.06298195570707321, -0.07155273109674454, -0.03599351644515991, -0.043885089457035065, 0.03730371966958046, 0.0007575029158033431, 0.01575464755296707, 0.03105960786342621, -0.22486138343811035, -0.016705667600035667, -0.2129937708377838, 0.10879084467887878, -0.04748593270778656, 0.13807302713394165, 0.0026444492395967245, 0.04441913589835167, 0.10906891524791718, -0.005030614789575338, -0.011882180348038673, 0.10863572359085083, 0.1383846551179886, -0.03977278992533684, 0.07618652284145355, 0.10392951220273972, 0.08540554344654083, 0.10903793573379517, 0.06167486310005188, -0.08492720872163773, -0.021127475425601006, -0.053188424557447433, 0.04624804109334946, -0.20438914000988007, 0.16149352490901947, -0.038125935941934586, -0.14207349717617035, 0.04278627038002014, -0.1275794953107834, 0.047217957675457, 0.02532968670129776, 0.05271764472126961, 0.09215202182531357, 0.04994546249508858, -0.08136153966188431, -0.047041911631822586, -0.009494416415691376, 0.20800645649433136, -0.04930320754647255, -0.10087979584932327, -0.015097087249159813, 0.02010302059352398, -0.0005327145336195827, 0.11119779944419861, 0.02447434328496456, -0.04610208794474602, -0.08690282702445984, 0.03303453326225281, -0.03661355376243591, 0.08763010054826736, 0.09737902879714966, -0.02698802947998047, -0.05718262121081352, 0.1235092505812645, 0.06895491480827332, -0.1251404732465744, -0.14452208578586578, 0.015589582733809948, -0.007731362245976925, -0.003907877020537853, -0.03874189779162407, -0.17162851989269257, -0.09909867495298386, -0.1906745284795761, 0.12603247165679932, -0.02163488231599331, 0.030842140316963196, -0.054747339338064194, 0.230157732963562, -0.009354943409562111, 0.009969666600227356, -0.03108477219939232, -0.013541288673877716, -0.012568399310112, -0.05987691134214401, 0.17130033671855927, -0.1589484065771103, -0.04290361702442169, 0.08715757727622986, 0.03195212036371231, 0.022129757329821587, -0.07987111806869507, -0.03223046660423279, 0.13554437458515167, 0.35851117968559265, 0.0012283556861802936, 0.2099764049053192, 0.2042219638824463, -0.05234047770500183, -0.21901710331439972, -0.09460500627756119, -0.2348603904247284, -0.07078184932470322, 0.18186907470226288, -0.07664406299591064, 0.0643012747168541, 0.12657569348812103, 0.02973685972392559, 0.20995554327964783, -0.12457278370857239, -0.044523198157548904, 0.04818897321820259, -0.08845916390419006, 0.6114599704742432, -0.061698999255895615, -0.10802759975194931, -0.01825915277004242, -0.15282532572746277, 0.2387581467628479, -0.05154171586036682, 0.013269291259348392, 0.03874128684401512, 0.1005491390824318, 0.05056579411029816, 0.05772935599088669, 0.19292889535427094, 0.02319646254181862, 0.058188073337078094, -0.13999897241592407, -0.1260925531387329, 0.10026954114437103, -0.0229759830981493, -0.08925508707761765, -0.017890285700559616, -0.02936561405658722, -0.19818171858787537, 0.05141949653625488, -0.1515510380268097, 0.05321922153234482, 0.056100163608789444, -0.02688506431877613, -0.039986640214920044, -0.002744022523984313, -0.09706974029541016, -0.04741370305418968, 0.13259218633174896, -0.08547285199165344, 0.21339218318462372, -0.08619081228971481, 0.062479544430971146, -0.1132776141166687, 0.09236282855272293, -0.05286029726266861, -0.06702502816915512, 0.020908309146761894, -0.17462939023971558, 0.04489823803305626, 0.05220690742135048, -0.02032669261097908, 0.0322212353348732, 0.03294215351343155, -0.09376110136508942, 0.04418664798140526, 0.21215519309043884, -0.20752321183681488, -0.10239655524492264, -0.032411038875579834, -0.18671981990337372, 0.19688937067985535, 0.007372637744992971, 0.09758103638887405, 0.1276085525751114, -0.02415306493639946, 0.05030597373843193, 0.02030378393828869, -0.13016556203365326, -0.019506316632032394, 0.02471683733165264, -0.04843040183186531, -0.07417872548103333, 0.16410969197750092, 0.003125022863969207, -0.17150603234767914, -0.0407160185277462, 0.33249592781066895, -0.06882669776678085, -0.021546127274632454, -0.15638038516044617, 0.06429695338010788, -0.03442022576928139, 0.031490225344896317, 0.08549392223358154, 0.021496908739209175, -0.01903107762336731, 0.243308424949646, -0.0012956787832081318, 0.20592927932739258, 0.08698756247758865, 0.02289220504462719, 0.06535287946462631, -0.1015409454703331, 0.003708842908963561, -0.019963471218943596, -0.06298170238733292, -0.025758573785424232, -0.03440312668681145, 0.12883484363555908, -0.08708789944648743, -0.08515651524066925, -0.18808633089065552, -0.00678415410220623, -0.045131731778383255, -0.14115594327449799, -0.0497581847012043, -0.09431345015764236, 0.08569512516260147, -0.01951061561703682, -0.0172411035746336, -0.13612228631973267, -0.0707104429602623, 0.06029095500707626, 0.08022084087133408, 0.056907493621110916, -0.02142960950732231, -0.005597047973424196, 0.202048197388649, 0.0028164649847894907, 0.19390766322612762, 0.20113031566143036, -0.061333067715168, 0.1175730898976326, -0.2240629494190216, -0.10820194333791733, 0.09987909346818924, -0.1013496071100235, 0.02835783362388611, 0.2528587877750397, -0.06944312155246735, -0.07183004170656204, 0.023082008585333824, 0.0819302424788475, 0.0695723444223404, -0.06962034851312637, 0.13945920765399933, 0.11123763024806976, -0.24406595528125763, -0.029789475724101067, -0.22912776470184326, 0.10466330498456955, 0.026690829545259476, 0.05581321194767952, 0.030828367918729782, 0.025830436497926712, 0.02255583181977272, -0.011340123601257801, 0.06775032728910446, -0.11715590953826904, 0.07594534754753113, -0.006308197975158691, -0.0009284214465878904, 0.020968755707144737, 0.15689221024513245, -0.06443887948989868, -0.07048701494932175, 0.06289470195770264, 0.19063851237297058, -0.0735047310590744, -0.017401263117790222, 0.032150279730558395, 0.07059439271688461, -0.10505253821611404, -0.21839775145053864, 0.07302705198526382, -0.03587287291884422, -0.19983458518981934, 0.04817315936088562, -0.014539380557835102, 0.08539435267448425, 0.02739058807492256, 0.003347607795149088, 0.06624280661344528, 0.08827538043260574, -0.12586817145347595, -0.0005465050344355404, -0.06126665323972702, 0.040976397693157196, 0.1078856810927391, 0.16836385428905487, 0.012725654058158398, 0.0595620721578598, -0.091275155544281, 0.034217145293951035, -0.04657742381095886, -0.0708092749118805, 0.03863679990172386, -0.17856280505657196, 0.032593801617622375, -0.003704255213961005, -0.02675822377204895, 0.14164531230926514, 0.08683508634567261, -0.023918727412819862, 0.011150016449391842, -0.09630842506885529, -0.10818011313676834, 0.0868176817893982, -0.0019381127785891294, 0.03816099464893341, 0.013883480802178383, -0.11632172018289566, -0.13214722275733948, 0.006640009116381407, -0.10724195092916489, 0.014073909260332584, -0.015860673040151596, -0.027241721749305725, -0.2226807177066803, -0.07590645551681519, -0.021995285525918007, 0.0819355845451355, -0.15479689836502075, -0.07021456956863403, 0.03772281855344772, 0.07989605516195297, 0.010158415883779526, 0.18902714550495148, 0.04430154338479042, 0.06323259323835373, -0.021539712324738503, -0.03570494055747986, -0.1826917976140976, 0.08993129432201385, -0.10861438512802124, -0.0066994610242545605, -0.11356137692928314, 0.20738758146762848, 0.22770558297634125, -0.08759643882513046, -0.011138317175209522, -0.12471133470535278, 0.05767860263586044, 0.08991259336471558, 0.13322731852531433, 0.04955065995454788, 0.2215200960636139, -0.053830891847610474, -0.00016504255472682416, 0.07554452121257782, 0.005791462026536465, -0.03607539087533951, -0.0017499765381217003, 0.008505070582032204, 0.0027193266432732344, -0.05850288271903992, 0.12590549886226654, -0.22327828407287598, 0.09907186031341553, 0.011895917356014252, -0.216516375541687, 0.031215285882353783, -0.07893261313438416, 0.06044485419988632, -0.01862451434135437, 0.17547211050987244, -0.0153840696439147, -0.13527122139930725, -0.1813722848892212, 0.07340814918279648, -0.3564576506614685, -0.16425473988056183, 0.04304486885666847, -0.09049394726753235, 0.024793129414319992, -0.04938378185033798, -0.12449127435684204, -0.007948409765958786, 0.016860339790582657, -0.004252702929079533, -0.008621524088084698, 0.03531380742788315, 0.07221032679080963, -0.19206926226615906, 0.0369514636695385, 0.04588461294770241, -0.18126672506332397, 0.06043267995119095, -0.12337397038936615, -0.036451902240514755, 0.07750041782855988, 0.0004883371293544769, 0.037772078067064285, 0.06528574228286743, -0.12008415907621384, 0.058698076754808426, -0.008846146054565907, -0.0022655015345662832, 0.03388579562306404, -0.040226709097623825, -0.0697655975818634, 0.037853848189115524, -0.16796614229679108, -0.0534391887485981, 0.07193274796009064, -0.07208003848791122, 0.17316791415214539, -0.08974345773458481, -0.052828285843133926, 0.02319551631808281, -0.11347067356109619, 0.09840789437294006, -0.11054719239473343, 0.1294768750667572, 0.13222336769104004, 0.03777482360601425, 0.04262825846672058, -0.22420136630535126, 0.17175815999507904, 0.10596811026334763, 0.03310242295265198, -0.06821910291910172 ]
null
null
null
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/646595746905620480/oeKI14gB_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1190142566831984640/o4kO2hp-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura & Dan Kogai</div> <div style="text-align: center; font-size: 14px;">@dankogai-hirox246</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai. | Data | ひろゆき, Hiroyuki Nishimura | Dan Kogai | | --- | --- | --- | | Tweets downloaded | 3249 | 3250 | | Retweets | 284 | 340 | | Short tweets | 1988 | 2416 | | Tweets kept | 977 | 494 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vrtv6xf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dankogai-hirox246's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1yfxplpr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1yfxplpr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dankogai-hirox246') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dankogai-hirox246/1642499700234/predictions.png", "widget": [{"text": "My dream is"}]}
null
huggingtweets/dankogai-hirox246
[ "huggingtweets", "en", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #huggingtweets #en #region-us
AI CYBORG ひろゆき, Hiroyuki Nishimura & Dan Kogai @dankogai-hirox246 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai. Data: Tweets downloaded, ひろゆき, Hiroyuki Nishimura: 3249, Dan Kogai: 3250 Data: Retweets, ひろゆき, Hiroyuki Nishimura: 284, Dan Kogai: 340 Data: Short tweets, ひろゆき, Hiroyuki Nishimura: 1988, Dan Kogai: 2416 Data: Tweets kept, ひろゆき, Hiroyuki Nishimura: 977, Dan Kogai: 494 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dankogai-hirox246's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#huggingtweets #en #region-us \n" ]
[ 13 ]
[ "passage: TAGS\n#huggingtweets #en #region-us \n" ]
[ 0.06862699240446091, -0.10726692527532578, -0.010401245206594467, -0.06321337819099426, 0.08621513843536377, 0.10232581198215485, 0.027164114639163017, 0.0985046774148941, 0.13242372870445251, 0.0191008560359478, 0.14544545114040375, -0.02377847209572792, -0.059302784502506256, 0.05649275705218315, 0.013633874244987965, -0.17248544096946716, 0.03670460358262062, -0.015605193562805653, 0.026972385123372078, 0.09363088756799698, 0.021145451813936234, 0.020441683009266853, 0.0902106985449791, -0.08021455258131027, -0.1398237943649292, 0.10563203692436218, 0.07052353769540787, 0.034161631017923355, 0.12517565488815308, -0.03278198093175888, 0.135564923286438, -0.03551725298166275, -0.11858534812927246, -0.20654892921447754, 0.05404523015022278, 0.03882395476102829, -0.061763372272253036, 0.03536899387836456, 0.07869033515453339, -0.15818791091442108, 0.11689841002225876, 0.05036948621273041, 0.036260005086660385, 0.13469965755939484, -0.22866027057170868, -0.07904011756181717, -0.04602409526705742, -0.07707278430461884, 0.10253201425075531, 0.00002397169555479195, 0.009154452942311764, 0.2598714828491211, -0.1161927580833435, 0.01967962086200714, 0.12730732560157776, -0.17017430067062378, 0.01806800253689289, 0.019835561513900757, 0.08412177860736847, 0.09157158434391022, 0.011509888805449009, 0.10852907598018646, 0.0707852765917778, -0.0101486686617136, -0.1360270082950592, -0.04950163885951042, -0.009859689511358738, 0.0853719413280487, -0.019690826535224915, -0.05046107620000839, 0.17664311826229095, 0.058999452739953995, 0.010314999148249626, 0.05766073241829872, -0.05329941213130951, 0.02751901187002659, 0.006196039728820324, -0.020993784070014954, 0.018363341689109802, 0.14473530650138855, 0.01760878413915634, -0.05249418318271637, -0.13410590589046478, 0.07058989256620407, -0.18945349752902985, 0.05454850196838379, -0.03698793053627014, 0.06096231937408447, -0.258131206035614, -0.01568523794412613, -0.14322851598262787, 0.012979496270418167, 0.09651564061641693, -0.0732380747795105, 0.03764953464269638, -0.012448606081306934, -0.021792607381939888, 0.11723798513412476, 0.10804640501737595, 0.1609608232975006, -0.04320541396737099, -0.00869857519865036, -0.0065362900495529175, 0.07786694169044495, 0.09295008331537247, -0.07654742151498795, 0.07032539695501328, -0.0564110204577446, -0.04492797330021858, -0.21906612813472748, 0.0008765582460910082, -0.030310221016407013, 0.04600467532873154, -0.01984437182545662, -0.13926945626735687, 0.0724203959107399, 0.028251374140381813, 0.005772269796580076, -0.10059063136577606, 0.07909262925386429, -0.02333223633468151, -0.002073736162856221, -0.04910872504115105, -0.043945688754320145, 0.01002762746065855, 0.056697506457567215, -0.10170026123523712, 0.03527959808707237, 0.07433190196752548, 0.07395917177200317, -0.16713260114192963, -0.013432089239358902, 0.04245100915431976, 0.042995184659957886, 0.062102507799863815, -0.17763984203338623, 0.0445265956223011, -0.15618294477462769, -0.0354858934879303, -0.00870739296078682, -0.05047069117426872, 0.01355440728366375, 0.06636203825473785, -0.027222590520977974, 0.11233346909284592, 0.01111317053437233, 0.005379479844123125, -0.12045124173164368, -0.06185131147503853, 0.06667035073041916, -0.02369607612490654, 0.0511794276535511, -0.14944906532764435, 0.007654519751667976, -0.180730938911438, 0.07720775902271271, 0.016102097928524017, 0.026931453496217728, -0.026627028360962868, 0.3114912509918213, 0.030569342896342278, 0.10634830594062805, -0.22846999764442444, 0.05719701200723648, -0.023560456931591034, 0.28067547082901, -0.1065937876701355, -0.12447673082351685, 0.18407796323299408, -0.06522929668426514, -0.12309088557958603, 0.12086527794599533, 0.03488042950630188, 0.10873927175998688, 0.09767720103263855, 0.3835752606391907, -0.10195262730121613, -0.08146942406892776, 0.03636458143591881, 0.1353151649236679, -0.25350436568260193, 0.02267700806260109, 0.025416342541575432, -0.08121002465486526, -0.1325274407863617, -0.01190396212041378, 0.2367665320634842, 0.14369091391563416, -0.11477484554052353, -0.02520707994699478, 0.020064817741513252, -0.016537215560674667, 0.05091886967420578, 0.017726575955748558, -0.0013406252255663276, -0.21194274723529816, 0.02760516293346882, -0.124215267598629, 0.03498653694987297, 0.13977846503257751, 0.04585346579551697, -0.07557849586009979, -0.040234941989183426, 0.08057703077793121, -0.01661347784101963, -0.02294166386127472, -0.16728036105632782, -0.06481286138296127, 0.1498730629682541, 0.1340765357017517, 0.013609949499368668, 0.09578457474708557, -0.12554091215133667, 0.002669427078217268, 0.013310762122273445, 0.13174262642860413, -0.007498446851968765, -0.04374158754944801, -0.022994134575128555, 0.1897602677345276, -0.09339086711406708, 0.07846151292324066, -0.05010027438402176, 0.001938516623340547, 0.10550153255462646, 0.060221847146749496, 0.0357060432434082, -0.013110004365444183, 0.03018314018845558, 0.005840349942445755, 0.018294237554073334, -0.06945645809173584, 0.12700411677360535, -0.011421116068959236, -0.11599461734294891, 0.22505104541778564, -0.12537546455860138, 0.1077398806810379, 0.1641158014535904, -0.15259717404842377, -0.09176535904407501, -0.05451177433133125, -0.05600990727543831, -0.04779776558279991, 0.12334655225276947, -0.07418269664049149, -0.04411538317799568, -0.044391438364982605, -0.0011415277840569615, 0.017120715230703354, -0.07650631666183472, 0.019346725195646286, -0.08435862511396408, -0.19952528178691864, 0.0862463191151619, -0.048986468464136124, -0.15294228494167328, 0.12348992377519608, 0.3562917411327362, 0.1481546014547348, 0.23727938532829285, -0.044758010655641556, 0.017626842483878136, 0.026004822924733162, -0.0384499691426754, -0.045703496783971786, 0.004267206881195307, -0.1251041442155838, -0.0365486666560173, -0.0015835420927032828, 0.004274635575711727, 0.10203591734170914, -0.036351218819618225, -0.14834646880626678, 0.02251344546675682, 0.0014692102558910847, -0.08886273205280304, 0.10843174904584885, -0.027543172240257263, 0.07448233664035797, 0.032922543585300446, 0.03858240693807602, 0.05848072096705437, 0.002110567642375827, -0.11813180893659592, 0.006854616105556488, -0.22355535626411438, -0.2711923122406006, -0.09768662601709366, -0.08925486356019974, 0.03989091515541077, 0.041187938302755356, 0.051699478179216385, -0.18302172422409058, 0.03948478400707245, 0.003198040649294853, 0.10697315633296967, -0.06025030463933945, 0.04016250744462013, -0.06218542903661728, 0.039252810180187225, -0.026844710111618042, -0.036029912531375885, -0.0012391663622111082, -0.0970999225974083, -0.10773636400699615, 0.11318950355052948, -0.12849527597427368, 0.08555713295936584, 0.14430534839630127, 0.03159665688872337, 0.02274978905916214, -0.06426727026700974, 0.08118022978305817, -0.10766161978244781, -0.02468705177307129, -0.020854998379945755, -0.012126539833843708, 0.08575579524040222, 0.08519800752401352, 0.02189561165869236, -0.15146233141422272, 0.0591089241206646, 0.048329032957553864, -0.13319815695285797, -0.13935089111328125, -0.09409863501787186, 5.991143439132429e-7, 0.2797071039676666, -0.002339477650821209, 0.023659970611333847, 0.14668741822242737, -0.005060214549303055, 0.07289005070924759, -0.20045752823352814, -0.05620472878217697, 0.018704742193222046, -0.004834607243537903, -0.022842248901724815, -0.008816422894597054, -0.08761768788099289, 0.006385814398527145, 0.2184516340494156, -0.004971520509570837, -0.12653324007987976, 0.13448448479175568, 0.0007297596894204617, 0.0038821459747850895, 0.1352946162223816, 0.08407466113567352, 0.06298195570707321, -0.07155273109674454, -0.03599351644515991, -0.043885089457035065, 0.03730371966958046, 0.0007575029158033431, 0.01575464755296707, 0.03105960786342621, -0.22486138343811035, -0.016705667600035667, -0.2129937708377838, 0.10879084467887878, -0.04748593270778656, 0.13807302713394165, 0.0026444492395967245, 0.04441913589835167, 0.10906891524791718, -0.005030614789575338, -0.011882180348038673, 0.10863572359085083, 0.1383846551179886, -0.03977278992533684, 0.07618652284145355, 0.10392951220273972, 0.08540554344654083, 0.10903793573379517, 0.06167486310005188, -0.08492720872163773, -0.021127475425601006, -0.053188424557447433, 0.04624804109334946, -0.20438914000988007, 0.16149352490901947, -0.038125935941934586, -0.14207349717617035, 0.04278627038002014, -0.1275794953107834, 0.047217957675457, 0.02532968670129776, 0.05271764472126961, 0.09215202182531357, 0.04994546249508858, -0.08136153966188431, -0.047041911631822586, -0.009494416415691376, 0.20800645649433136, -0.04930320754647255, -0.10087979584932327, -0.015097087249159813, 0.02010302059352398, -0.0005327145336195827, 0.11119779944419861, 0.02447434328496456, -0.04610208794474602, -0.08690282702445984, 0.03303453326225281, -0.03661355376243591, 0.08763010054826736, 0.09737902879714966, -0.02698802947998047, -0.05718262121081352, 0.1235092505812645, 0.06895491480827332, -0.1251404732465744, -0.14452208578586578, 0.015589582733809948, -0.007731362245976925, -0.003907877020537853, -0.03874189779162407, -0.17162851989269257, -0.09909867495298386, -0.1906745284795761, 0.12603247165679932, -0.02163488231599331, 0.030842140316963196, -0.054747339338064194, 0.230157732963562, -0.009354943409562111, 0.009969666600227356, -0.03108477219939232, -0.013541288673877716, -0.012568399310112, -0.05987691134214401, 0.17130033671855927, -0.1589484065771103, -0.04290361702442169, 0.08715757727622986, 0.03195212036371231, 0.022129757329821587, -0.07987111806869507, -0.03223046660423279, 0.13554437458515167, 0.35851117968559265, 0.0012283556861802936, 0.2099764049053192, 0.2042219638824463, -0.05234047770500183, -0.21901710331439972, -0.09460500627756119, -0.2348603904247284, -0.07078184932470322, 0.18186907470226288, -0.07664406299591064, 0.0643012747168541, 0.12657569348812103, 0.02973685972392559, 0.20995554327964783, -0.12457278370857239, -0.044523198157548904, 0.04818897321820259, -0.08845916390419006, 0.6114599704742432, -0.061698999255895615, -0.10802759975194931, -0.01825915277004242, -0.15282532572746277, 0.2387581467628479, -0.05154171586036682, 0.013269291259348392, 0.03874128684401512, 0.1005491390824318, 0.05056579411029816, 0.05772935599088669, 0.19292889535427094, 0.02319646254181862, 0.058188073337078094, -0.13999897241592407, -0.1260925531387329, 0.10026954114437103, -0.0229759830981493, -0.08925508707761765, -0.017890285700559616, -0.02936561405658722, -0.19818171858787537, 0.05141949653625488, -0.1515510380268097, 0.05321922153234482, 0.056100163608789444, -0.02688506431877613, -0.039986640214920044, -0.002744022523984313, -0.09706974029541016, -0.04741370305418968, 0.13259218633174896, -0.08547285199165344, 0.21339218318462372, -0.08619081228971481, 0.062479544430971146, -0.1132776141166687, 0.09236282855272293, -0.05286029726266861, -0.06702502816915512, 0.020908309146761894, -0.17462939023971558, 0.04489823803305626, 0.05220690742135048, -0.02032669261097908, 0.0322212353348732, 0.03294215351343155, -0.09376110136508942, 0.04418664798140526, 0.21215519309043884, -0.20752321183681488, -0.10239655524492264, -0.032411038875579834, -0.18671981990337372, 0.19688937067985535, 0.007372637744992971, 0.09758103638887405, 0.1276085525751114, -0.02415306493639946, 0.05030597373843193, 0.02030378393828869, -0.13016556203365326, -0.019506316632032394, 0.02471683733165264, -0.04843040183186531, -0.07417872548103333, 0.16410969197750092, 0.003125022863969207, -0.17150603234767914, -0.0407160185277462, 0.33249592781066895, -0.06882669776678085, -0.021546127274632454, -0.15638038516044617, 0.06429695338010788, -0.03442022576928139, 0.031490225344896317, 0.08549392223358154, 0.021496908739209175, -0.01903107762336731, 0.243308424949646, -0.0012956787832081318, 0.20592927932739258, 0.08698756247758865, 0.02289220504462719, 0.06535287946462631, -0.1015409454703331, 0.003708842908963561, -0.019963471218943596, -0.06298170238733292, -0.025758573785424232, -0.03440312668681145, 0.12883484363555908, -0.08708789944648743, -0.08515651524066925, -0.18808633089065552, -0.00678415410220623, -0.045131731778383255, -0.14115594327449799, -0.0497581847012043, -0.09431345015764236, 0.08569512516260147, -0.01951061561703682, -0.0172411035746336, -0.13612228631973267, -0.0707104429602623, 0.06029095500707626, 0.08022084087133408, 0.056907493621110916, -0.02142960950732231, -0.005597047973424196, 0.202048197388649, 0.0028164649847894907, 0.19390766322612762, 0.20113031566143036, -0.061333067715168, 0.1175730898976326, -0.2240629494190216, -0.10820194333791733, 0.09987909346818924, -0.1013496071100235, 0.02835783362388611, 0.2528587877750397, -0.06944312155246735, -0.07183004170656204, 0.023082008585333824, 0.0819302424788475, 0.0695723444223404, -0.06962034851312637, 0.13945920765399933, 0.11123763024806976, -0.24406595528125763, -0.029789475724101067, -0.22912776470184326, 0.10466330498456955, 0.026690829545259476, 0.05581321194767952, 0.030828367918729782, 0.025830436497926712, 0.02255583181977272, -0.011340123601257801, 0.06775032728910446, -0.11715590953826904, 0.07594534754753113, -0.006308197975158691, -0.0009284214465878904, 0.020968755707144737, 0.15689221024513245, -0.06443887948989868, -0.07048701494932175, 0.06289470195770264, 0.19063851237297058, -0.0735047310590744, -0.017401263117790222, 0.032150279730558395, 0.07059439271688461, -0.10505253821611404, -0.21839775145053864, 0.07302705198526382, -0.03587287291884422, -0.19983458518981934, 0.04817315936088562, -0.014539380557835102, 0.08539435267448425, 0.02739058807492256, 0.003347607795149088, 0.06624280661344528, 0.08827538043260574, -0.12586817145347595, -0.0005465050344355404, -0.06126665323972702, 0.040976397693157196, 0.1078856810927391, 0.16836385428905487, 0.012725654058158398, 0.0595620721578598, -0.091275155544281, 0.034217145293951035, -0.04657742381095886, -0.0708092749118805, 0.03863679990172386, -0.17856280505657196, 0.032593801617622375, -0.003704255213961005, -0.02675822377204895, 0.14164531230926514, 0.08683508634567261, -0.023918727412819862, 0.011150016449391842, -0.09630842506885529, -0.10818011313676834, 0.0868176817893982, -0.0019381127785891294, 0.03816099464893341, 0.013883480802178383, -0.11632172018289566, -0.13214722275733948, 0.006640009116381407, -0.10724195092916489, 0.014073909260332584, -0.015860673040151596, -0.027241721749305725, -0.2226807177066803, -0.07590645551681519, -0.021995285525918007, 0.0819355845451355, -0.15479689836502075, -0.07021456956863403, 0.03772281855344772, 0.07989605516195297, 0.010158415883779526, 0.18902714550495148, 0.04430154338479042, 0.06323259323835373, -0.021539712324738503, -0.03570494055747986, -0.1826917976140976, 0.08993129432201385, -0.10861438512802124, -0.0066994610242545605, -0.11356137692928314, 0.20738758146762848, 0.22770558297634125, -0.08759643882513046, -0.011138317175209522, -0.12471133470535278, 0.05767860263586044, 0.08991259336471558, 0.13322731852531433, 0.04955065995454788, 0.2215200960636139, -0.053830891847610474, -0.00016504255472682416, 0.07554452121257782, 0.005791462026536465, -0.03607539087533951, -0.0017499765381217003, 0.008505070582032204, 0.0027193266432732344, -0.05850288271903992, 0.12590549886226654, -0.22327828407287598, 0.09907186031341553, 0.011895917356014252, -0.216516375541687, 0.031215285882353783, -0.07893261313438416, 0.06044485419988632, -0.01862451434135437, 0.17547211050987244, -0.0153840696439147, -0.13527122139930725, -0.1813722848892212, 0.07340814918279648, -0.3564576506614685, -0.16425473988056183, 0.04304486885666847, -0.09049394726753235, 0.024793129414319992, -0.04938378185033798, -0.12449127435684204, -0.007948409765958786, 0.016860339790582657, -0.004252702929079533, -0.008621524088084698, 0.03531380742788315, 0.07221032679080963, -0.19206926226615906, 0.0369514636695385, 0.04588461294770241, -0.18126672506332397, 0.06043267995119095, -0.12337397038936615, -0.036451902240514755, 0.07750041782855988, 0.0004883371293544769, 0.037772078067064285, 0.06528574228286743, -0.12008415907621384, 0.058698076754808426, -0.008846146054565907, -0.0022655015345662832, 0.03388579562306404, -0.040226709097623825, -0.0697655975818634, 0.037853848189115524, -0.16796614229679108, -0.0534391887485981, 0.07193274796009064, -0.07208003848791122, 0.17316791415214539, -0.08974345773458481, -0.052828285843133926, 0.02319551631808281, -0.11347067356109619, 0.09840789437294006, -0.11054719239473343, 0.1294768750667572, 0.13222336769104004, 0.03777482360601425, 0.04262825846672058, -0.22420136630535126, 0.17175815999507904, 0.10596811026334763, 0.03310242295265198, -0.06821910291910172 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1364800766817484803/hqPgBOTB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Danny Barefoot</div> <div style="text-align: center; font-size: 14px;">@dannybarefoot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Danny Barefoot. | Data | Danny Barefoot | | --- | --- | | Tweets downloaded | 909 | | Retweets | 168 | | Short tweets | 124 | | Tweets kept | 617 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7awrd5uh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dannybarefoot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33cmwhib) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33cmwhib/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dannybarefoot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dannybarefoot/1624927497917/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dannybarefoot
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Danny Barefoot @dannybarefoot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Danny Barefoot. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dannybarefoot's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1352941984596586503/kZUK_M2V_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Danny BirchAll Power to the Soviets 🤖 AI Bot </div> <div style="font-size: 15px">@dannybirchall bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dannybirchall's tweets](https://twitter.com/dannybirchall). | Data | Quantity | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 749 | | Short tweets | 371 | | Tweets kept | 2109 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3e5qooh6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dannybirchall's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1z2jl9pw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1z2jl9pw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dannybirchall') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dannybirchall/1616673826129/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dannybirchall
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Danny BirchAll Power to the Soviets AI Bot @dannybirchall bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @dannybirchall's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dannybirchall's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1133218052303048704/1JXz7DT8_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dan Salvato 🤖 AI Bot </div> <div style="font-size: 15px">@dansalvato bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dansalvato's tweets](https://twitter.com/dansalvato). | Data | Quantity | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 197 | | Short tweets | 233 | | Tweets kept | 2803 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jbu3vnq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dansalvato's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1c66e4az) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1c66e4az/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dansalvato') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dansalvato/1612858230042/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dansalvato
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Dan Salvato AI Bot @dansalvato bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @dansalvato's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dansalvato's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1354567673762508804/ZJvq-LKd_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dan Wootton 🤖 AI Bot </div> <div style="font-size: 15px">@danwootton bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@danwootton's tweets](https://twitter.com/danwootton). | Data | Quantity | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 1660 | | Short tweets | 341 | | Tweets kept | 1242 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32da4jja/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danwootton's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1esngdn6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1esngdn6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/danwootton') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danwootton/1618797945976/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/danwootton
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Dan Wootton AI Bot @danwootton bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @danwootton's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @danwootton's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409230363906424832/67a8m2BA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ho3K | Daramgar 🔜 CROSSxUP</div> <div style="text-align: center; font-size: 14px;">@daramgaria</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ho3K | Daramgar 🔜 CROSSxUP. | Data | Ho3K | Daramgar 🔜 CROSSxUP | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 30 | | Short tweets | 807 | | Tweets kept | 2412 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/z2deo4d4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daramgaria's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29cuxcz9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29cuxcz9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daramgaria') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/daramgaria
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI BOT </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ho3K | Daramgar CROSSxUP</div> <div style="text-align: center; font-size: 14px;">@daramgaria</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on tweets from Ho3K | Daramgar CROSSxUP. | Data | Ho3K | Daramgar CROSSxUP | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 30 | | Short tweets | 807 | | Tweets kept | 2412 | Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @daramgaria's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from Ho3K | Daramgar CROSSxUP.\n\n| Data | Ho3K | Daramgar CROSSxUP |\n| --- | --- |\n| Tweets downloaded | 3249 |\n| Retweets | 30 |\n| Short tweets | 807 |\n| Tweets kept | 2412 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @daramgaria's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from Ho3K | Daramgar CROSSxUP.\n\n| Data | Ho3K | Daramgar CROSSxUP |\n| --- | --- |\n| Tweets downloaded | 3249 |\n| Retweets | 30 |\n| Short tweets | 807 |\n| Tweets kept | 2412 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @daramgaria's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 54, 34, 120, 75, 18, 47, 38 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on tweets from Ho3K | Daramgar CROSSxUP.\n\n| Data | Ho3K | Daramgar CROSSxUP |\n| --- | --- |\n| Tweets downloaded | 3249 |\n| Retweets | 30 |\n| Short tweets | 807 |\n| Tweets kept | 2412 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @daramgaria's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.0338456854224205, 0.08203399926424026, -0.0027913039084523916, 0.055998168885707855, 0.10383820533752441, 0.024196108803153038, 0.1143043264746666, 0.11460182815790176, -0.013776852749288082, 0.07609612494707108, 0.08424637466669083, 0.03313511610031128, 0.06931287795305252, 0.17551051080226898, 0.10718870162963867, -0.28564298152923584, 0.013499549590051174, -0.09317928552627563, -0.038417749106884, 0.12520831823349, 0.10335677117109299, -0.07970614731311798, 0.08607907593250275, 0.0005349433631636202, -0.0735035315155983, 0.014707881957292557, -0.0049905311316251755, -0.052638400346040726, 0.07772818207740784, 0.06007327884435654, 0.050518590956926346, 0.013941418379545212, 0.09969628602266312, -0.1641169935464859, 0.03317134827375412, 0.11391276121139526, 0.005618164781481028, 0.0891273096203804, 0.07628089189529419, -0.05335816368460655, 0.17006893455982208, -0.03531589359045029, 0.08795484900474548, 0.06582044810056686, -0.14258843660354614, -0.1557081937789917, -0.119087353348732, 0.11519771814346313, 0.13894473016262054, 0.10351460427045822, -0.053956691175699234, 0.09131110459566116, -0.03450595960021019, 0.04271988570690155, 0.1606537103652954, -0.24156610667705536, -0.039099182933568954, 0.0967193990945816, 0.03977359086275101, 0.08092892169952393, -0.07603281736373901, 0.0024673922453075647, 0.024347739294171333, 0.02571684867143631, 0.03901093453168869, -0.03788544237613678, 0.13052432239055634, 0.0030364315025508404, -0.13872367143630981, -0.04321425408124924, 0.07020474970340729, -0.0019853918347507715, -0.05506160110235214, -0.1387925148010254, -0.024044552817940712, -0.09244203567504883, 0.009427059441804886, -0.0341050811111927, 0.0040622614324092865, 0.02540784887969494, -0.061372414231300354, -0.09836910665035248, -0.10513843595981598, -0.05688508599996567, -0.0025610397569835186, 0.06326058506965637, 0.04169074818491936, 0.022827500477433205, -0.07525305449962616, 0.20804284512996674, 0.03338046371936798, -0.10815465450286865, -0.04490425065159798, -0.07925660163164139, -0.09163635224103928, -0.06121906638145447, 0.0028083366341888905, 0.04471825808286667, 0.018335284665226936, 0.2204788327217102, -0.01405242457985878, 0.06346400827169418, 0.05286698043346405, -0.007795353885740042, 0.10030067712068558, 0.13735312223434448, -0.13413172960281372, -0.05445384606719017, 0.05124734714627266, -0.007482146844267845, -0.07655453681945801, -0.03959111496806145, -0.018568428233265877, 0.02898537926375866, 0.03241457790136337, 0.07767235487699509, 0.034032147377729416, 0.06737235188484192, 0.008943764492869377, -0.042876604944467545, 0.061899758875370026, -0.14135552942752838, 0.024670802056789398, 0.026136387139558792, -0.058418210595846176, -0.017156308516860008, 0.04761934280395508, 0.013464691117405891, -0.0978594720363617, 0.05723811313509941, -0.07872459292411804, -0.049952320754528046, -0.06754383444786072, -0.06225603446364403, -0.009963891468942165, -0.01735309697687626, -0.05407825857400894, -0.08864665776491165, -0.13387008011341095, -0.08644430339336395, 0.04539452865719795, -0.0633607730269432, -0.007221044506877661, 0.003166475100442767, -0.018407518044114113, 0.00924037117511034, 0.01982240006327629, 0.04824642837047577, -0.032617636024951935, 0.0453316904604435, -0.06075040623545647, -0.00009854548989096656, 0.08435843139886856, 0.039732348173856735, -0.10323615372180939, 0.04910298064351082, -0.14745838940143585, 0.14303162693977356, -0.04210028424859047, 0.06274466961622238, -0.15448735654354095, -0.09014826267957687, -0.0412813201546669, -0.015733832493424416, 0.0339081846177578, 0.11609786748886108, -0.11919678002595901, -0.02877907082438469, 0.2006578892469406, -0.0790962427854538, -0.06417139619588852, 0.08113206923007965, -0.0742207020521164, 0.10334751009941101, 0.11237166821956635, 0.07562384009361267, 0.15487219393253326, -0.0862475261092186, 0.01686996780335903, -0.019967330619692802, -0.04246820881962776, 0.13779206573963165, 0.05807498097419739, -0.031092366203665733, 0.0035157878883183002, -0.007441194262355566, -0.05801559239625931, 0.0020218982826918364, -0.05163657292723656, -0.044735752046108246, 0.0230372566729784, -0.0031215776689350605, -0.0590071864426136, -0.02390069141983986, -0.015087979845702648, -0.018664129078388214, -0.13175924122333527, -0.014270505867898464, 0.10663154721260071, -0.0487823523581028, -0.013294965960085392, -0.10290507227182388, 0.006450289860367775, -0.012469417415559292, 0.01810823753476143, -0.14825719594955444, -0.05899631977081299, 0.005426042713224888, -0.04663277044892311, 0.108957938849926, 0.009501100517809391, 0.053141944110393524, 0.05819036439061165, -0.00670250691473484, -0.0017206239281222224, -0.03638841211795807, 0.001180775579996407, -0.07094451040029526, -0.15179970860481262, -0.04350179806351662, -0.056552495807409286, 0.11955827474594116, -0.14875997602939606, 0.011026261374354362, 0.0965469554066658, 0.10551498830318451, 0.009963479824364185, -0.05422476306557655, 0.012822107411921024, -0.041365474462509155, 0.016206232830882072, -0.10863052308559418, -0.01623043790459633, 0.0031946804374456406, -0.033099327236413956, 0.0823882445693016, -0.18428684771060944, -0.07926996797323227, 0.1068805679678917, 0.05874771252274513, -0.13899894058704376, 0.021878650411963463, -0.078213632106781, -0.01865103468298912, -0.057618461549282074, -0.025540634989738464, 0.2475566267967224, 0.01438125129789114, 0.07562018185853958, -0.0628821924328804, -0.07932484894990921, -0.015191988088190556, -0.04418684542179108, -0.010609544813632965, 0.07406945526599884, 0.02659476362168789, -0.1898070126771927, 0.057732194662094116, 0.01676458679139614, 0.08202648907899857, 0.14376190304756165, 0.01440940797328949, -0.09308712184429169, -0.06877507269382477, -0.03834575042128563, -0.0017893736949190497, 0.04958966746926308, 0.0028148095589131117, -0.00958471279591322, 0.030862802639603615, 0.053215090185403824, 0.05035936459898949, -0.11956754326820374, 0.010784221813082695, 0.048697467893362045, -0.025930901989340782, 0.0011135570239275694, 0.0019540085922926664, -0.022049225866794586, 0.10638686269521713, 0.0744362473487854, 0.09759514033794403, -0.0410446971654892, -0.0409112386405468, -0.15763670206069946, 0.17608048021793365, -0.09460607916116714, -0.17730502784252167, -0.12326300144195557, -0.026540741324424744, 0.043022919446229935, 0.013708378188312054, 0.0323004312813282, -0.09534255415201187, -0.04993179067969322, -0.08762946724891663, 0.08795133233070374, -0.017344284802675247, -0.019908027723431587, -0.03249999135732651, 0.0049857404083013535, 0.0021886914037168026, -0.1239621490240097, -0.03419078513979912, 0.016253991052508354, -0.13074183464050293, 0.0166489090770483, 0.024891993030905724, 0.0037670673336833715, 0.15937218070030212, 0.024374889209866524, 0.038850244134664536, -0.022957295179367065, 0.27138376235961914, -0.12845030426979065, 0.08711659908294678, 0.14284345507621765, 0.007658270187675953, 0.04367019981145859, 0.08509489893913269, 0.024242166429758072, -0.08465850353240967, 0.06994297355413437, 0.057812292128801346, -0.07484917342662811, -0.2169908583164215, -0.022231662645936012, -0.010418321937322617, -0.01260622963309288, 0.11389046907424927, 0.0817033052444458, 0.049505069851875305, 0.035183317959308624, -0.08160272985696793, -0.012795355170965195, 0.0637819841504097, 0.0829600915312767, -0.05824607238173485, 0.00007689636549912393, 0.057961832731962204, -0.04957561194896698, 0.011217106133699417, 0.12486767023801804, -0.0017940400866791606, 0.18018296360969543, -0.034211814403533936, 0.07165255397558212, 0.07110030949115753, 0.08627916127443314, 0.0018404793227091432, 0.027180837467312813, 0.01154741458594799, 0.02092750370502472, 0.006671474780887365, -0.08445151895284653, -0.005122588016092777, 0.04206622764468193, -0.0011237107682973146, -0.05205034092068672, -0.026332061737775803, -0.019519764930009842, 0.07155527174472809, 0.23313073813915253, 0.04521643742918968, -0.21168597042560577, -0.08281590789556503, 0.027379043400287628, -0.0520751029253006, -0.045870836824178696, 0.004856844898313284, 0.032813623547554016, -0.19764265418052673, 0.02244114689528942, -0.029426589608192444, 0.10280397534370422, -0.08007790893316269, -0.01274371799081564, 0.11309748888015747, 0.07572124153375626, -0.05245327949523926, 0.0932968407869339, -0.19768619537353516, 0.11584466695785522, -0.017795320600271225, 0.08866661041975021, -0.059712089598178864, 0.01773843728005886, 0.03250507265329361, 0.00010606246360111982, 0.12558461725711823, 0.02707616053521633, 0.03903062641620636, -0.0678786039352417, -0.08186115324497223, 0.0024051072541624308, 0.08251810073852539, -0.1569235920906067, 0.10620034486055374, -0.032800499349832535, 0.017287345603108406, -0.022996753454208374, -0.06908736377954483, -0.09924372285604477, -0.10503292828798294, 0.06767295300960541, -0.1384030282497406, 0.026571618393063545, -0.06171663478016853, -0.023600855842232704, -0.004157422576099634, 0.21218222379684448, -0.07313124090433121, -0.10123538225889206, -0.15592226386070251, 0.057829901576042175, 0.10749795287847519, -0.0764145478606224, 0.007504108361899853, 0.008767936378717422, 0.10136211663484573, 0.02433834783732891, -0.13170287013053894, 0.06019257754087448, -0.07424493879079819, -0.20817838609218597, -0.0029393599834293127, 0.16624602675437927, 0.13614147901535034, 0.02434876747429371, 0.00028266009758226573, 0.03669005632400513, -0.04813271388411522, -0.16686047613620758, 0.012196454219520092, 0.08263307064771652, 0.007912945002317429, -0.00045534648234024644, 0.04208388179540634, 0.02049912139773369, -0.13389360904693604, 0.028158992528915405, 0.06107952445745468, 0.16512411832809448, -0.07912132143974304, 0.11923524737358093, 0.08583172410726547, -0.0814124196767807, -0.20372943580150604, -0.0015674676978960633, 0.043047718703746796, 0.0054235272109508514, -0.012342074885964394, -0.21134747564792633, 0.09374166280031204, 0.06720434874296188, -0.004266529809683561, 0.03657454252243042, -0.33281049132347107, -0.14492934942245483, 0.06828293949365616, 0.045254260301589966, -0.07461585849523544, -0.10750941187143326, -0.036178044974803925, -0.021183431148529053, -0.17095458507537842, 0.09357216954231262, -0.10856840759515762, 0.07252150774002075, 0.026602543890476227, 0.04948288947343826, 0.022628096863627434, -0.051519181579351425, 0.12518639862537384, 0.01619575545191765, 0.05624882131814957, -0.10344002395868301, -0.04269971325993538, 0.08623325079679489, -0.052269045263528824, 0.07094252109527588, 0.05076119676232338, 0.07600948214530945, -0.13503630459308624, -0.060618944466114044, -0.07008413970470428, 0.023479733616113663, -0.07183472067117691, -0.08492200076580048, -0.049865853041410446, 0.10384630411863327, 0.08181122690439224, -0.059629347175359726, -0.0645660012960434, -0.060379695147275925, 0.023751400411128998, 0.10150443762540817, 0.08176683634519577, 0.08689982444047928, -0.06973491609096527, 0.006812109611928463, -0.0063749048858881, 0.03303985297679901, -0.13361406326293945, 0.031582821160554886, 0.10229532420635223, 0.026979591697454453, 0.12987995147705078, 0.00985701847821474, -0.15089009702205658, -0.007650294341146946, 0.06075205281376839, -0.14739513397216797, -0.1325514316558838, -0.03262076899409294, -0.012727435678243637, -0.08521782606840134, -0.02200389839708805, 0.11147694289684296, -0.04377245530486107, -0.04422107711434364, 0.006227390840649605, 0.07032530754804611, -0.08268360793590546, 0.1513773500919342, 0.03714132308959961, 0.04228551685810089, -0.08182381093502045, 0.11667590588331223, 0.08131136000156403, -0.018168393522500992, 0.027683619409799576, 0.1427338421344757, -0.12168853729963303, -0.04110860079526901, -0.03472847118973732, -0.004526315722614527, -0.017269164323806763, -0.012020869180560112, 0.01612684689462185, -0.07455519586801529, 0.04521942138671875, 0.07635457068681717, 0.011079739779233932, 0.08408788591623306, -0.023909978568553925, 0.03297374024987221, -0.08691442757844925, 0.07260160893201828, 0.07247770577669144, 0.0022720845881849527, -0.07920478284358978, 0.19929784536361694, 0.02817404456436634, 0.06380545347929001, -0.048843320459127426, -0.04722299799323082, -0.09749124199151993, -0.014216736890375614, -0.09349135309457779, -0.027578681707382202, -0.09234872460365295, -0.02530526928603649, -0.006654216442257166, -0.059754036366939545, -0.012056826613843441, 0.029534773901104927, -0.053772423416376114, -0.060161300003528595, -0.06467023491859436, 0.047948576509952545, -0.13893327116966248, 0.016501177102327347, 0.07229067385196686, -0.06466643512248993, 0.13580182194709778, 0.09038356691598892, -0.016799386590719223, 0.006258981302380562, -0.09150688350200653, 0.05746091902256012, -0.03641601279377937, -0.013285689055919647, 0.013207647949457169, -0.15913879871368408, 0.024701662361621857, -0.07291564345359802, -0.060048606246709824, 0.008046090602874756, 0.047936923801898956, -0.13271549344062805, 0.060681018978357315, 0.004251123871654272, -0.009392833337187767, -0.09131589531898499, 0.03899190574884415, 0.02384718880057335, 0.04697367921471596, 0.06996164470911026, -0.058456383645534515, 0.0844331607222557, -0.18504689633846283, -0.05098377540707588, 0.01381859090179205, 0.03803645074367523, 0.0013187103904783726, -0.048915572464466095, 0.05711643770337105, -0.026469945907592773, 0.154860720038414, 0.005748149938881397, -0.02720988355576992, 0.047689564526081085, -0.003431430086493492, 0.0181605014950037, 0.05147252604365349, 0.053281594067811966, -0.03091522864997387, -0.023257916793227196, -0.03838297352194786, 0.012141839601099491, -0.04770614206790924, -0.09035257995128632, 0.1499629020690918, 0.08711124956607819, 0.12049666792154312, -0.02857874147593975, 0.03925733640789986, -0.04557489976286888, -0.09805332869291306, -0.009678423404693604, -0.051462043076753616, 0.005300087388604879, -0.1052597239613533, 0.05514528229832649, 0.18268585205078125, -0.15906016528606415, 0.0760631337761879, -0.0046170116402208805, -0.056249622255563736, -0.09765172004699707, -0.20871488749980927, -0.02820718288421631, -0.06137643754482269, 0.014479833655059338, -0.10518834739923477, 0.05820019915699959, 0.032971929758787155, 0.07808573544025421, -0.03821220248937607, 0.16086900234222412, -0.09247817099094391, -0.09535138309001923, 0.02726651169359684, 0.02907663956284523, 0.03330256789922714, 0.034854866564273834, 0.04926629364490509, 0.003775726305320859, 0.025038190186023712, 0.07525297999382019, 0.03108140081167221, 0.0025255822110921144, 0.02588610164821148, -0.04683178290724754, -0.05638992786407471, 0.007223434746265411, 0.003659612964838743, 0.00583393732085824, 0.09205854684114456, 0.0517159104347229, -0.038718510419130325, -0.019199691712856293, 0.2840751111507416, -0.0636533871293068, -0.06605392694473267, -0.17897996306419373, 0.23202456533908844, 0.0037847422063350677, -0.004003677982836962, 0.011852002702653408, -0.12376036494970322, 0.015179353766143322, 0.17558462917804718, 0.2202843576669693, -0.023826535791158676, 0.013042844831943512, 0.007096943445503712, 0.015300542116165161, 0.05144001543521881, 0.1059650108218193, 0.06304029375314713, 0.16215573251247406, -0.058516182005405426, 0.05106940120458603, -0.018086718395352364, -0.04596564546227455, -0.03117912821471691, 0.09506291151046753, 0.004912007134407759, 0.014746246859431267, -0.053042128682136536, 0.1221909448504448, -0.08063163608312607, -0.2837240993976593, 0.014591122977435589, -0.05058418959379196, -0.09946659207344055, 0.030323510989546776, -0.050266604870557785, 0.0191871989518404, 0.08656660467386246, 0.04241908714175224, -0.021395644173026085, 0.12421471625566483, 0.05490313097834587, -0.03862256556749344, -0.02745136246085167, 0.10770510882139206, -0.059099871665239334, 0.18679678440093994, -0.0209150742739439, 0.018259229138493538, 0.10167358070611954, 0.001581630203872919, -0.12417338043451309, 0.04967987537384033, 0.037775833159685135, -0.05710269510746002, -0.014177098870277405, 0.12626363337039948, 0.014464962296187878, -0.01390768587589264, 0.053575299680233, -0.08792632818222046, 0.014203882776200771, -0.09633593261241913, 0.03698195517063141, -0.1339196264743805, 0.0682135596871376, -0.0687299445271492, 0.15820986032485962, 0.18888796865940094, -0.08571331202983856, 0.030848445370793343, -0.06937643140554428, -0.005793532356619835, 0.0005675889551639557, 0.07398726046085358, -0.007405376061797142, -0.1588132530450821, 0.009046141989529133, -0.024982813745737076, 0.04130029305815697, -0.16121642291545868, -0.0448252409696579, 0.009381557814776897, -0.032235950231552124, -0.00750646973028779, 0.19079330563545227, 0.031805407255887985, 0.055900927633047104, -0.027369044721126556, -0.011763139627873898, -0.004691280424594879, 0.14955393970012665, -0.1715441793203354, -0.05235801264643669 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1353325420779868163/7pFnkQ0u_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🌸Daria🌸 🤖 AI Bot </div> <div style="font-size: 15px">@dariasuzu bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dariasuzu's tweets](https://twitter.com/dariasuzu). | Data | Quantity | | --- | --- | | Tweets downloaded | 3183 | | Retweets | 1813 | | Short tweets | 417 | | Tweets kept | 953 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13f2yzvk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dariasuzu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/m73s18m3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/m73s18m3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dariasuzu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dariasuzu/1614219545681/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dariasuzu
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Daria AI Bot @dariasuzu bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @dariasuzu's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @dariasuzu's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361059617971851274/wo891uB-_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">xX_g3ndr_havr_Xx 🤖 AI Bot </div> <div style="font-size: 15px">@darknessisdark bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@darknessisdark's tweets](https://twitter.com/darknessisdark). | Data | Quantity | | --- | --- | | Tweets downloaded | 2801 | | Retweets | 583 | | Short tweets | 306 | | Tweets kept | 1912 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dwe171y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @darknessisdark's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/d0xrvuif) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/d0xrvuif/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/darknessisdark') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/darknessisdark/1614100288472/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/darknessisdark
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
xX\_g3ndr\_havr\_Xx AI Bot @darknessisdark bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @darknessisdark's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @darknessisdark's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1459410046169731073/gRiEO9Yd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">darth™</div> <div style="text-align: center; font-size: 14px;">@darth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from darth™. | Data | darth™ | | --- | --- | | Tweets downloaded | 3189 | | Retweets | 1278 | | Short tweets | 677 | | Tweets kept | 1234 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3t5g6hcx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @darth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c56rnej9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c56rnej9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/darth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/darth/1641324110436/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/darth
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT darth™ @darth I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from darth™. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @darth's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425505571503886339/1ikaFh5K_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">vvn</div> <div style="text-align: center; font-size: 14px;">@darthvivien</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from vvn. | Data | vvn | | --- | --- | | Tweets downloaded | 3175 | | Retweets | 460 | | Short tweets | 114 | | Tweets kept | 2601 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ple9op7w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @darthvivien's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pt4wq49) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pt4wq49/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/darthvivien') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/darthvivien/1634849358388/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/darthvivien
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT vvn @darthvivien I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from vvn. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @darthvivien's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 54 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.0001764487533364445, -0.01891571842133999, -0.0068881697952747345, 0.01242890115827322, 0.16224369406700134, 0.04406825825572014, 0.08452208340167999, 0.14250440895557404, -0.026455026119947433, -0.016114573925733566, 0.17334569990634918, 0.17106501758098602, -0.014037161134183407, 0.08718273043632507, -0.05552244931459427, -0.2646014094352722, 0.044212065637111664, 0.058431971818208694, -0.020032864063978195, 0.14111687242984772, 0.0714879110455513, -0.01828647032380104, 0.10845158249139786, -0.02953636273741722, -0.18877948820590973, 0.03499612212181091, 0.05605728179216385, -0.09992336481809616, 0.11936124414205551, 0.04713086411356926, 0.08659981191158295, 0.015409729443490505, -0.07482189685106277, -0.12249794602394104, 0.03866785019636154, 0.041891295462846756, -0.0629689022898674, 0.05911329388618469, 0.08818957209587097, -0.11120674759149551, 0.1456013321876526, 0.07799911499023438, -0.01863223686814308, 0.07941857725381851, -0.17164963483810425, -0.019008882343769073, -0.036983806639909744, 0.005464354529976845, 0.057414017617702484, 0.07476010918617249, -0.01932354085147381, 0.1732589453458786, -0.0767555758357048, 0.09587065875530243, 0.16117197275161743, -0.2913956344127655, -0.005072304047644138, 0.0498935841023922, 0.06722559779882431, 0.03902119770646095, -0.015738610178232193, 0.08706029504537582, 0.06277379393577576, 0.02536560781300068, -0.0014978112885728478, -0.06339331716299057, -0.0928240567445755, 0.04014677554368973, -0.0745372325181961, -0.06578013300895691, 0.20811960101127625, -0.039430033415555954, 0.050536420196294785, -0.03807967156171799, -0.10491003096103668, -0.02197154052555561, -0.015753688290715218, 0.00720712635666132, -0.06031509116292, 0.08949250727891922, -0.014659170061349869, -0.07363511621952057, -0.15025688707828522, -0.016003666445612907, -0.18369624018669128, 0.1574522852897644, 0.003967532888054848, 0.04864242300391197, -0.2093716263771057, 0.11408322304487228, 0.020872395485639572, -0.08021171391010284, 0.047296058386564255, -0.09546594321727753, 0.07179957628250122, 0.002116252202540636, -0.05267130210995674, -0.02264278009533882, 0.08682441711425781, 0.15258505940437317, -0.026140356436371803, 0.0017382961232215166, -0.027155736461281776, 0.07059825956821442, 0.05281682312488556, 0.040018972009420395, -0.017763059586286545, -0.04289618879556656, 0.045782025903463364, -0.15945611894130707, -0.007582054473459721, -0.06918198615312576, -0.1068587526679039, -0.05112413689494133, 0.022331949323415756, 0.06442617624998093, 0.031878020614385605, 0.11345649510622025, -0.04609488695859909, -0.014168480411171913, 0.06350603699684143, -0.042460083961486816, -0.0172110628336668, -0.016047241166234016, 0.015319211408495903, 0.14095398783683777, -0.018181998282670975, 0.030711950734257698, -0.11251416057348251, 0.0645761713385582, -0.09946728497743607, -0.01914660818874836, -0.0071241967380046844, -0.04078202322125435, 0.029947424307465553, -0.13505136966705322, 0.010975461453199387, -0.1711256355047226, -0.14874492585659027, 0.009897243231534958, -0.02876151353120804, -0.018498392775654793, -0.059200938791036606, -0.03973992541432381, -0.01719699800014496, 0.06084148958325386, -0.04528016224503517, 0.0009662628290243447, -0.05951235070824623, 0.11524756252765656, -0.05245914310216904, 0.06888316571712494, -0.13250301778316498, 0.05976588651537895, -0.15375985205173492, -0.00870948750525713, -0.04503806680440903, 0.08287355303764343, 0.017666861414909363, 0.16653785109519958, -0.006960130762308836, -0.012972959317266941, -0.09847598522901535, 0.06441020965576172, -0.023426895961165428, 0.24133971333503723, -0.06349262595176697, -0.143473818898201, 0.22233937680721283, -0.06944137066602707, -0.1420930027961731, 0.12657590210437775, 0.020838137716054916, 0.07354387640953064, 0.10204131156206131, 0.19502143561840057, 0.014321080408990383, 0.006638950202614069, 0.054760824888944626, 0.0820525735616684, -0.17468082904815674, -0.03090454451739788, -0.00916894432157278, -0.01691337674856186, -0.1358218789100647, 0.043003637343645096, 0.11889315396547318, 0.10293904691934586, -0.07099705934524536, -0.013554582372307777, -0.03317642584443092, -0.004439891315996647, 0.06940841674804688, -0.007896981202065945, 0.09806080162525177, -0.09929461032152176, -0.040301576256752014, -0.058301206678152084, -0.006890235934406519, 0.0024084753822535276, 0.04120192304253578, -0.040066637098789215, 0.10096675902605057, -0.0006905568297952414, 0.05225489288568497, -0.14046427607536316, -0.07798092812299728, -0.020940499380230904, 0.1575685739517212, 0.04120592027902603, 0.04776391014456749, 0.057414863258600235, -0.0481991246342659, -0.0158701092004776, -0.009968787431716919, 0.16312187910079956, -0.0394844189286232, -0.06968989968299866, -0.056453973054885864, 0.10656707733869553, -0.058365050703287125, 0.03222460299730301, -0.04202231392264366, 0.022449776530265808, 0.060929615050554276, 0.12114907056093216, -0.0026538248639553785, 0.029062092304229736, -0.01023187953978777, -0.0038288652431219816, -0.07459788024425507, -0.020947640761733055, 0.10031349956989288, -0.004600553773343563, -0.08327498286962509, 0.23685328662395477, -0.17454755306243896, 0.19663569331169128, 0.2115958034992218, -0.2628093659877777, -0.024321777746081352, -0.06840608268976212, -0.05017746612429619, 0.003011465771123767, 0.05876095965504646, -0.04692309722304344, 0.09809201210737228, -0.02521132305264473, 0.16497591137886047, -0.04652651026844978, -0.07362692058086395, 0.016456644982099533, -0.05898859724402428, -0.0463954322040081, 0.0659271627664566, 0.08106416463851929, -0.15480613708496094, 0.18694530427455902, 0.20838376879692078, 0.07612863928079605, 0.19334357976913452, 0.004058185499161482, -0.014812501147389412, 0.08005014806985855, -0.03805047646164894, -0.04202093929052353, -0.07553261518478394, -0.16944189369678497, -0.01902174763381481, 0.07485251128673553, 0.03750864416360855, 0.11274250596761703, -0.10172852873802185, -0.07372885197401047, -0.016179129481315613, -0.005032413639128208, 0.005167648661881685, 0.1174640879034996, 0.045775800943374634, 0.14043675363063812, -0.019972821697592735, 0.03493902459740639, 0.08747350424528122, 0.02448674477636814, -0.10759711265563965, 0.16407065093517303, -0.14081640541553497, -0.38538745045661926, -0.16212545335292816, -0.13394121825695038, -0.029274288564920425, 0.04825805127620697, 0.11038947850465775, -0.13598975539207458, 0.0011978530092164874, -0.003706524148583412, 0.12342415004968643, -0.0806080624461174, 0.03755999356508255, -0.07838296890258789, 0.026997538283467293, -0.06349453330039978, -0.07917723804712296, -0.036463622003793716, -0.03232228383421898, -0.10000553727149963, 0.1757805496454239, -0.11054177582263947, 0.057571277022361755, 0.1741490364074707, 0.022440658882260323, 0.034390855580568314, -0.0513761006295681, 0.17275545001029968, -0.11779367178678513, 0.02093288116157055, 0.16278521716594696, -0.01799617148935795, 0.08678310364484787, 0.08059167861938477, -0.015366556122899055, -0.10777527838945389, 0.05196633189916611, 0.0019955262541770935, -0.1096891239285469, -0.20052047073841095, -0.12150565534830093, -0.0784008651971817, 0.14483654499053955, 0.05303339660167694, 0.05915789678692818, 0.17167222499847412, 0.08591149002313614, -0.04288473725318909, -0.004711467772722244, -0.012867298908531666, 0.07781979441642761, 0.1684085726737976, -0.017248503863811493, 0.11789125204086304, -0.05446818470954895, -0.11601924896240234, 0.13826869428157806, 0.02504623495042324, 0.050291191786527634, 0.04182872176170349, 0.008374262601137161, -0.009610554203391075, 0.09969738125801086, 0.12988939881324768, 0.118865467607975, -0.008107239380478859, -0.0232877004891634, -0.03601100295782089, -0.00860752072185278, -0.03570752218365669, 0.034572016447782516, 0.011757065542042255, -0.16013272106647491, -0.05726486071944237, -0.12173470109701157, 0.0964120477437973, 0.09787409752607346, 0.08039643615484238, -0.2033146470785141, -0.004589703865349293, 0.07378163933753967, -0.03603411093354225, -0.11624246090650558, 0.086527980864048, 0.033109065145254135, -0.1271866261959076, 0.0817195475101471, -0.03352120518684387, 0.115711510181427, -0.017423994839191437, 0.09427224844694138, -0.04346824064850807, -0.0329415462911129, -0.012381686829030514, 0.10430185496807098, -0.30799204111099243, 0.17485815286636353, -0.019660785794258118, -0.07034741342067719, -0.07672256976366043, -0.025566134601831436, 0.017929747700691223, 0.07530300319194794, 0.09619415551424026, 0.024311896413564682, 0.04642496258020401, -0.09243860840797424, -0.03940937668085098, 0.034113768488168716, 0.13641610741615295, -0.0638844221830368, -0.015862328931689262, -0.04075292870402336, 0.01116214320063591, -0.019626103341579437, -0.027355113998055458, 0.018256209790706635, -0.1504947543144226, 0.05358212813735008, 0.017237937077879906, 0.0753018707036972, 0.03889141231775284, -0.007973386906087399, -0.10224062204360962, 0.18268363177776337, -0.03004412353038788, -0.08521177619695663, -0.127006396651268, -0.04812724515795708, 0.04587927460670471, -0.051474425941705704, 0.034381575882434845, -0.06691597402095795, -0.011345877312123775, -0.06886660307645798, -0.21483656764030457, 0.12495172768831253, -0.0775398537516594, -0.07874035835266113, -0.03474915772676468, 0.20981398224830627, -0.05076101794838905, -0.00018431349599268287, 0.01172169204801321, 0.014822970144450665, -0.1086968258023262, -0.10466268658638, 0.06874550879001617, -0.034708425402641296, 0.02743770368397236, 0.02760813757777214, -0.03700246661901474, 0.02073092758655548, -0.06074898689985275, -0.01314478274434805, 0.2849438786506653, 0.22848764061927795, -0.035804633051157, 0.1875685602426529, 0.10711772739887238, -0.07248730212450027, -0.30828598141670227, -0.0999293103814125, -0.13133330643177032, -0.033457282930612564, -0.02052777260541916, -0.17081500589847565, 0.07089676707983017, 0.04558560997247696, 0.00998434517532587, 0.14900504052639008, -0.21140912175178528, -0.08518896996974945, 0.1092359870672226, -0.03466132655739784, 0.42140644788742065, -0.1164151057600975, -0.09652433544397354, -0.05340435355901718, -0.15239587426185608, 0.20086675882339478, -0.01557826716452837, 0.08761543780565262, -0.031178412958979607, 0.14360429346561432, 0.04995222017168999, -0.01680157333612442, 0.08329997956752777, 0.0014065488940104842, 0.004026432521641254, -0.12653036415576935, -0.022627411410212517, 0.0504734143614769, 0.021120509132742882, 0.0054380460642278194, -0.07736434042453766, 0.028706049546599388, -0.14863882958889008, -0.024921666830778122, -0.10909338295459747, 0.08278775960206985, 0.03857516124844551, -0.07422378659248352, -0.010892878286540508, -0.05615931376814842, -0.023589344695210457, -0.012528443709015846, 0.13453009724617004, -0.050522636622190475, 0.1720355898141861, 0.036824267357587814, 0.11522943526506424, -0.13816054165363312, 0.06146138161420822, -0.07406572997570038, -0.07532623410224915, 0.06773588061332703, -0.13577620685100555, 0.05240122601389885, 0.10075365751981735, -0.03372569754719734, 0.04758675396442413, 0.08927652984857559, 0.000919255951885134, 0.009403540752828121, 0.15953567624092102, -0.2761637568473816, 0.01791755110025406, -0.07046908140182495, -0.07692829519510269, 0.112159863114357, 0.07484955340623856, 0.181244894862175, 0.02791808731853962, -0.0472177192568779, 0.012221097014844418, 0.019269011914730072, -0.05120278522372246, 0.0548672117292881, 0.006578541360795498, -0.011816216632723808, -0.14148055016994476, 0.08790901303291321, -0.0015104453777894378, -0.1429632604122162, 0.02210722118616104, 0.19665491580963135, -0.13288317620754242, -0.10024755448102951, -0.05081937462091446, 0.057288672775030136, -0.13861924409866333, 0.008680099621415138, -0.01990172080695629, -0.09562872350215912, 0.0756591260433197, 0.1573420912027359, 0.05079081282019615, 0.12963363528251648, -0.02916029281914234, -0.008411908522248268, -0.04279141128063202, -0.051675889641046524, 0.02788730151951313, 0.019720058888196945, -0.07752392441034317, 0.08735781908035278, -0.024015765637159348, 0.14329436421394348, -0.10051412135362625, -0.06987810134887695, -0.1344141960144043, -0.005019306670874357, -0.09607285261154175, -0.0959741547703743, -0.08079583197832108, -0.061935000121593475, 0.004180733114480972, -0.039079975336790085, -0.0417400486767292, -0.08063078671693802, -0.10278100520372391, 0.016344387084245682, -0.02737213484942913, 0.028547246009111404, -0.07021904736757278, 0.008450011722743511, 0.12212047725915909, -0.029432062059640884, 0.17478644847869873, 0.15045183897018433, -0.10443241149187088, 0.10585668683052063, -0.17528948187828064, -0.10057486593723297, 0.10386897623538971, -0.01424362976104021, 0.02509693056344986, 0.12928596138954163, 0.018586233258247375, 0.04242280498147011, 0.03278495371341705, 0.06450606882572174, 0.04438134282827377, -0.11879310011863708, 0.08265755325555801, -0.002198860514909029, -0.15595629811286926, -0.061124756932258606, -0.09235648810863495, 0.02707000821828842, 0.02035105973482132, 0.11072126775979996, -0.04177020862698555, 0.08901136368513107, -0.06589431315660477, 0.023006385192275047, 0.025188656523823738, -0.17641755938529968, -0.03692740947008133, -0.05073147267103195, 0.03235582634806633, 0.028527792543172836, 0.22216679155826569, 0.015049049630761147, -0.030550595372915268, 0.0387740358710289, 0.12439186871051788, 0.015807392075657845, -0.0005460345419123769, 0.1709187924861908, 0.10334094613790512, -0.07364179939031601, -0.14011329412460327, 0.0676020160317421, 0.012262817472219467, -0.05599943920969963, 0.11458845436573029, -0.01812131516635418, -0.006866521667689085, 0.0670672059059143, -0.019556820392608643, 0.03449620306491852, -0.06607513129711151, -0.12762659788131714, -0.02478908933699131, 0.04269528388977051, 0.0029638311825692654, 0.12794137001037598, 0.15664103627204895, -0.005168106406927109, 0.026651626452803612, -0.015845872461795807, -0.023246217519044876, -0.13421551883220673, -0.15646639466285706, -0.06222613900899887, -0.14998294413089752, 0.022462334483861923, -0.08663632720708847, 0.047867026180028915, 0.05302877724170685, 0.07266844809055328, -0.06541765481233597, 0.06867647916078568, 0.049353908747434616, -0.11939282715320587, 0.08969518542289734, -0.024748487398028374, 0.04455447196960449, -0.0018985075876116753, -0.03077637031674385, -0.10359742492437363, 0.042003192007541656, -0.01649407483637333, 0.045346152037382126, -0.04421991854906082, 0.022579338401556015, -0.1750071942806244, -0.10995419323444366, -0.04818427562713623, 0.06838665902614594, -0.06683412194252014, 0.04056481271982193, 0.01606888137757778, 0.011690732091665268, 0.030521972104907036, 0.22083373367786407, -0.041100796312093735, -0.04384056478738785, -0.041319385170936584, 0.1635150909423828, -0.014866671524941921, 0.08733032643795013, -0.027159888297319412, -0.008534550666809082, -0.09159335494041443, 0.3551705777645111, 0.29626867175102234, -0.08988689631223679, 0.018322573974728584, -0.023403000086545944, 0.04054094851016998, 0.13749836385250092, 0.13930056989192963, 0.09693139791488647, 0.23870247602462769, -0.069560706615448, -0.05235563591122627, -0.01810343936085701, -0.013992605730891228, -0.06698887050151825, 0.09740167111158371, 0.02308662235736847, -0.05992421507835388, -0.0399320125579834, 0.09157036244869232, -0.2363831102848053, 0.1119081899523735, -0.1049022525548935, -0.15424089133739471, -0.03413557633757591, 0.011207441799342632, 0.07758733630180359, 0.01318280678242445, 0.11218693852424622, 0.013466300442814827, -0.0844072625041008, 0.014990749768912792, 0.034041877835989, -0.25270384550094604, 0.004782035481184721, 0.053680628538131714, -0.12391778826713562, -0.004765757359564304, -0.025234686210751534, 0.013625700026750565, 0.05700398609042168, 0.04094824194908142, -0.03069460764527321, 0.016096249222755432, -0.006652043666690588, -0.020144162699580193, -0.008288858458399773, 0.05953062325716019, 0.04713095352053642, -0.1559005230665207, 0.06380777060985565, -0.13577982783317566, 0.04075455665588379, -0.023885579779744148, -0.012463473714888096, -0.0012933483812958002, 0.01776987873017788, -0.0522073432803154, 0.06581555306911469, 0.07255802303552628, -0.0144086554646492, 0.008549283258616924, -0.08346639573574066, -0.034440234303474426, -0.023841137066483498, -0.10951124131679535, -0.08404874801635742, -0.13158579170703888, -0.12121031433343887, 0.10822955518960953, -0.02819518744945526, -0.18475614488124847, 0.03248962014913559, -0.12301548570394516, 0.05860345810651779, -0.17328192293643951, 0.11332228779792786, 0.07014153152704239, 0.018578365445137024, 0.01264720968902111, -0.007008096668869257, 0.08073210716247559, 0.11507359892129898, -0.0813264548778534, -0.08199906349182129 ]
null
null
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1262569291527753733/Jyh5XLEA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mara Averick 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@dataandme bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@dataandme's tweets](https://twitter.com/dataandme). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3209</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>603</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>129</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2477</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/13sm7zyv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dataandme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2iyzpllw) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2iyzpllw/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/dataandme'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dataandme/1602747308355/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dataandme
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mara Averick AI Bot </div> <div style="font-size: 15px; color: #657786">@dataandme bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @dataandme's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3209</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>603</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>129</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2477</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @dataandme's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/dataandme'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @dataandme's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3209</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>603</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>129</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2477</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dataandme's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/dataandme'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @dataandme's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3209</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>603</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>129</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2477</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dataandme's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/dataandme'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ 57, 34, 430, 75, 9, 167, 48, 58 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report." ]
[ -0.04084593802690506, 0.035596683621406555, -0.0024457171093672514, 0.04662978649139404, 0.10991521924734116, 0.022836215794086456, 0.12812861800193787, 0.0424627922475338, -0.03746044635772705, -0.03597303107380867, 0.22758877277374268, 0.1009177565574646, 0.03089720755815506, 0.17962171137332916, 0.010350672528147697, -0.2703946828842163, 0.015237200073897839, 0.0647135004401207, -0.07720091193914413, 0.15752871334552765, 0.05562684312462807, -0.049801189452409744, 0.08214939385652542, 0.032038331031799316, -0.165513277053833, -0.004831716418266296, -0.02072383277118206, -0.04504403471946716, 0.09232694655656815, 0.06956911832094193, 0.07011176645755768, 0.034282486885786057, 0.017851393669843674, -0.0714372918009758, 0.06354191154241562, 0.014452377334237099, -0.02349161170423031, 0.13615116477012634, 0.028668763116002083, -0.0002947957837022841, 0.1798527091741562, 0.11815319955348969, 0.016722125932574272, 0.016196802258491516, -0.1166125237941742, -0.0606788769364357, 0.012365915812551975, 0.04470464214682579, 0.10005760192871094, 0.058856748044490814, 0.01943058706820011, 0.13215520977973938, -0.1164829432964325, 0.08512931317090988, 0.1828341782093048, -0.24191047251224518, -0.006823094096034765, 0.061043880879879, 0.08518847078084946, 0.02852868288755417, -0.0027500083670020103, 0.050437480211257935, 0.06484624743461609, 0.021347152069211006, 0.03636380657553673, -0.0638979896903038, 0.05009674280881882, 0.011186900548636913, -0.10215270519256592, -0.07660897821187973, 0.2294245809316635, -0.0602995827794075, 0.004886541981250048, -0.028186868876218796, -0.08490151911973953, -0.06026294082403183, -0.012795685790479183, -0.05738116800785065, -0.01700775697827339, 0.034475523978471756, 0.0214629378169775, -0.10922146588563919, -0.07046429812908173, -0.1146778091788292, -0.09578189998865128, 0.17879855632781982, -0.02900231070816517, 0.08940442651510239, -0.2603394091129303, 0.2254239320755005, 0.07019765675067902, -0.11909467726945877, 0.04757627099752426, -0.11814092099666595, 0.08530338853597641, 0.02207805961370468, 0.041434839367866516, 0.07761925458908081, 0.04161522537469864, 0.11940909177064896, 0.03257475048303604, -0.00314142694696784, 0.05456724017858505, 0.07224375009536743, 0.0941813513636589, 0.1230122447013855, -0.07287998497486115, -0.07873915135860443, 0.08034131675958633, -0.04709449037909508, -0.11787727475166321, -0.06861002743244171, -0.1452382206916809, -0.004202034790068865, -0.0335184708237648, 0.07922724634408951, 0.05637102574110031, 0.09526676684617996, -0.01433930266648531, -0.05777551606297493, 0.04157217592000961, -0.06985066086053848, 0.019995175302028656, -0.011708668433129787, -0.060763102024793625, 0.13121068477630615, 0.04688004031777382, -0.014275136403739452, -0.08673419058322906, 0.07951672375202179, -0.1204570084810257, -0.07978847622871399, -0.08239417523145676, -0.05098734796047211, -0.007686138618737459, -0.11281027644872665, 0.049203939735889435, -0.11458899080753326, -0.22705501317977905, -0.01313747651875019, 0.04550096020102501, -0.016462473198771477, -0.03707117214798927, -0.040630146861076355, -0.009473399259150028, 0.04880702868103981, -0.042894408106803894, 0.039052072912454605, -0.05325083062052727, 0.050018906593322754, -0.09618895500898361, 0.051321301609277725, -0.10470817238092422, 0.041251372545957565, -0.09671807289123535, 0.07595963031053543, 0.0017866486450657248, 0.0454767569899559, 0.010063555091619492, 0.08985432982444763, -0.03214199095964432, -0.044836416840553284, -0.07869677990674973, 0.026561295613646507, 0.02284199558198452, 0.20134314894676208, -0.10196486860513687, -0.0819794163107872, 0.12614667415618896, -0.07252102345228195, -0.1288122832775116, 0.0409054271876812, -0.02831157296895981, 0.17958028614521027, 0.07370224595069885, 0.16096454858779907, 0.12039237469434738, -0.03798284754157066, 0.1263856589794159, 0.14821170270442963, -0.1269366294145584, -0.004153167363256216, 0.039416827261447906, 0.014042570255696774, -0.20559121668338776, 0.04052022844552994, -0.01946125738322735, 0.06584736704826355, -0.10201486945152283, -0.00946728140115738, 0.0031527038663625717, -0.02320384420454502, 0.0023026331327855587, -0.0472555048763752, 0.061078161001205444, 0.038737643510103226, -0.022763127461075783, 0.029682613909244537, 0.06635552644729614, -0.026160234585404396, -0.00823320634663105, -0.04484035447239876, 0.10009831935167313, -0.07260703295469284, 0.06797321885824203, -0.13160665333271027, -0.003086181590333581, -0.012450510635972023, 0.0972909927368164, 0.03811546042561531, 0.10621625185012817, 0.05470104143023491, 0.03126294165849686, 0.07701993733644485, -0.02846951223909855, 0.0746634304523468, 0.01002051867544651, -0.0850096121430397, -0.1272277683019638, 0.015217535197734833, -0.10649837553501129, -0.004191380459815264, -0.08523700386285782, -0.0015737697249278426, -0.12802091240882874, 0.05826076865196228, -0.016465239226818085, 0.0539434514939785, -0.055182818323373795, -0.04337453469634056, -0.044662054628133774, -0.022007398307323456, 0.0482511967420578, -0.033139705657958984, -0.06687536835670471, 0.16832175850868225, -0.15395553410053253, 0.2592274248600006, 0.1313537061214447, -0.0889907032251358, 0.002020547864958644, -0.07812081277370453, -0.04194976016879082, -0.012868959456682205, 0.07527336478233337, -0.03700125962495804, 0.15495356917381287, -0.03386903926730156, 0.17382068932056427, -0.099679134786129, -0.0334031768143177, 0.02144831046462059, -0.10981054604053497, 0.057656705379486084, 0.08051177859306335, 0.04427298903465271, -0.159133642911911, 0.08837400376796722, 0.19756358861923218, 0.05472150072455406, 0.20321963727474213, -0.006869805511087179, -0.06112205237150192, -0.05358194187283516, -0.0808696523308754, -0.052568696439266205, 0.056259434670209885, -0.09903126955032349, -0.004000484477728605, 0.06423190236091614, 0.08783505111932755, 0.11237549781799316, -0.10904275625944138, -0.046180129051208496, 0.05125856027007103, -0.004819708876311779, -0.051060013473033905, 0.07006146013736725, -0.0659489631652832, 0.13217470049858093, 0.014598124660551548, -0.07049204409122467, 0.0036125897895544767, -0.004913401324301958, -0.11891388893127441, 0.20653130114078522, -0.08047540485858917, -0.27306002378463745, -0.16792123019695282, -0.16288253664970398, 0.07165426760911942, 0.038431257009506226, 0.033738572150468826, -0.08776884526014328, -0.020982403308153152, 0.004409478977322578, 0.11553267389535904, -0.09698133170604706, 0.013121976517140865, 0.008159824647009373, -0.018650712445378304, -0.07579360157251358, -0.09033482521772385, -0.0241270512342453, -0.02461584471166134, 0.020020704716444016, 0.03998296707868576, -0.11154978722333908, 0.06758414953947067, 0.2167699933052063, -0.015538511797785759, 0.06870997697114944, 0.00025148785789497197, 0.26176807284355164, -0.08426473289728165, 0.040830448269844055, 0.11926601082086563, -0.08760137856006622, 0.05199241638183594, 0.07132956385612488, 0.03210015222430229, -0.014074578881263733, 0.016441889107227325, -0.11233895272016525, -0.12864868342876434, -0.1923626959323883, -0.06961654871702194, -0.028241310268640518, 0.13464264571666718, 0.031150488182902336, 0.04321796074509621, 0.10346641391515732, 0.07471037656068802, 0.06701335310935974, 0.03259968012571335, -0.0005120337591506541, 0.0647427961230278, 0.024594781920313835, -0.05812343955039978, 0.054217349737882614, -0.04845457896590233, -0.0797470211982727, 0.08279551565647125, -0.011098933406174183, 0.0927528515458107, 0.06928195804357529, 0.02340286411345005, 0.018686039373278618, 0.04218229651451111, 0.15593960881233215, 0.22442668676376343, -0.012412761338055134, -0.041085485368967056, -0.05078154057264328, -0.040494389832019806, -0.01600850187242031, 0.015044075436890125, -0.05785144492983818, -0.033252447843551636, -0.0728597640991211, -0.015066487714648247, 0.011195010505616665, 0.015441779047250748, 0.07578693330287933, -0.22024130821228027, -0.038240667432546616, 0.042616840451955795, -0.013794191181659698, -0.10639895498752594, 0.05872863903641701, 0.016779562458395958, -0.17391349375247955, -0.07854076474905014, -0.016605399549007416, 0.1603294163942337, -0.030760308727622032, 0.0619782954454422, 0.005449770484119654, 0.02271227352321148, -0.013140208087861538, 0.11191333085298538, -0.27346712350845337, 0.1954270750284195, 0.001131516881287098, -0.04876048117876053, -0.016439033672213554, -0.04243995249271393, 0.0009058643481694162, 0.14556926488876343, 0.09718295931816101, 0.0028763783629983664, 0.0669604167342186, -0.07678256928920746, -0.11943262070417404, 0.05284353718161583, 0.08068333566188812, -0.07738065719604492, 0.029960619285702705, -0.029798466712236404, 0.027152907103300095, -0.007555682212114334, -0.030231619253754616, 0.002119861776009202, -0.11661309748888016, 0.02936525270342827, -0.08075195550918579, 0.06012337654829025, 0.02433968149125576, -0.02529163844883442, -0.012048180215060711, 0.1316436529159546, -0.013300766237080097, -0.08264251798391342, -0.08976204693317413, -0.02328740619122982, 0.09523095935583115, -0.05599937587976456, 0.03358715400099754, -0.08175740391016006, -0.04073614999651909, 0.005860272329300642, -0.16970814764499664, 0.06983034312725067, -0.10846570879220963, -0.09971687942743301, -0.050264790654182434, 0.15346404910087585, 0.013677009381353855, 0.025709833949804306, 0.03220117464661598, -0.04211581498384476, -0.18150363862514496, -0.15989434719085693, -0.007562890648841858, 0.0717545747756958, -0.04433317109942436, 0.03638565540313721, 0.007171243894845247, 0.10013602674007416, 0.004198792390525341, 0.07230839878320694, 0.2026015669107437, 0.16423118114471436, -0.08760133385658264, 0.17723721265792847, 0.16266676783561707, -0.12243213504552841, -0.2722402811050415, -0.09522651135921478, -0.05925937369465828, 0.03468820080161095, 0.02297091670334339, -0.13072867691516876, 0.06184706464409828, -0.011241482570767403, -0.004976592492312193, 0.13391432166099548, -0.2790721356868744, -0.07025358080863953, 0.13864430785179138, -0.012145180255174637, 0.2560276985168457, -0.042459286749362946, -0.08155408501625061, -0.060940731316804886, -0.2339130938053131, 0.1595010906457901, -0.12908293306827545, 0.030256805941462517, -0.06380902975797653, 0.1317017376422882, 0.04475972056388855, -0.051817599684000015, 0.13714583218097687, -0.0770399421453476, 0.03692200407385826, -0.1231972947716713, -0.01437266543507576, 0.05212629213929176, -0.014681367203593254, 0.10554680228233337, -0.053141020238399506, 0.10400939732789993, -0.12106935679912567, -0.052672889083623886, -0.054288461804389954, 0.017598338425159454, -0.023758167400956154, -0.05668776109814644, -0.039483629167079926, -0.05230721831321716, 0.00942184031009674, -0.024894973263144493, -0.008981208316981792, -0.02189256064593792, 0.08200293034315109, 0.10853444039821625, 0.1416669338941574, -0.04508063197135925, -0.02666328102350235, -0.029412275180220604, -0.043095141649246216, 0.07755832374095917, -0.1675589680671692, -0.020979177206754684, 0.15767353773117065, 0.008264025673270226, 0.08081416040658951, 0.07994852215051651, -0.043529048562049866, -0.04116993397474289, 0.09435915946960449, -0.23738352954387665, -0.032961416989564896, -0.07289689034223557, -0.032304681837558746, 0.05143286660313606, 0.06389017403125763, 0.11233682930469513, -0.055076416581869125, -0.015500548295676708, 0.038369257003068924, -0.013473432511091232, -0.10457789897918701, 0.12659704685211182, 0.07594829052686691, 0.04931824654340744, -0.13000807166099548, 0.03979043290019035, -0.02080575004220009, -0.024042857810854912, -0.009190280921757221, 0.09610513597726822, -0.13868926465511322, -0.061987441033124924, 0.01100219041109085, 0.1624082624912262, -0.08940329402685165, -0.054934311658144, -0.00678250240162015, -0.07782098650932312, 0.06215988099575043, 0.06269455701112747, 0.039047662168741226, 0.10006190836429596, -0.08492296934127808, -0.004345493856817484, -0.04427671059966087, 0.02742549031972885, 0.04004936292767525, -0.01839151792228222, -0.11644710600376129, 0.050648268312215805, 0.01261399406939745, 0.21786263585090637, -0.12195943295955658, -0.07748695462942123, -0.13975368440151215, 0.03579137846827507, -0.1441981941461563, -0.02782432734966278, -0.09455464035272598, -0.0542730838060379, -0.024786408990621567, -0.02354593575000763, -0.05044161155819893, -0.03595460206270218, -0.06568260490894318, 0.04963921010494232, -0.01889806240797043, -0.04201965406537056, -0.018809955567121506, 0.04780932888388634, 0.10624072700738907, -0.0022816911805421114, 0.11582330614328384, 0.10476028919219971, -0.06149300932884216, 0.06964143365621567, -0.08975338935852051, 0.049342647194862366, 0.010800108313560486, -0.03639211133122444, 0.07890737056732178, 0.033158838748931885, 0.011678727343678474, -0.02014644630253315, -0.05248590186238289, 0.015699470415711403, 0.019494805485010147, -0.09001129865646362, 0.04338252544403076, 0.03427375108003616, -0.07128193974494934, -0.06945458799600601, -0.02831537090241909, -0.04915383830666542, 0.10966338962316513, 0.09227382391691208, 0.01580313965678215, 0.11524862796068192, -0.09982031583786011, -0.0043287696316838264, 0.0288130734115839, -0.08074736595153809, -0.01706261746585369, -0.10044533759355545, -0.01304725930094719, -0.02274717018008232, 0.2554529011249542, 0.12089171260595322, -0.025309232994914055, -0.03230812028050423, 0.07114472985267639, 0.08105676621198654, -0.0211230106651783, 0.14824873208999634, 0.03444083034992218, -0.0007331980159506202, -0.1400776505470276, 0.10673409700393677, -0.060156434774398804, -0.010151425376534462, 0.09550673514604568, -0.08319920301437378, 0.048856139183044434, 0.07468824833631516, -0.01950058713555336, 0.05372466519474983, -0.11716536432504654, -0.2690386474132538, 0.023945249617099762, 0.027653370052576065, -0.0441947840154171, 0.07253700494766235, 0.145015150308609, 0.00042942073196172714, 0.05244648456573486, 0.061493102461099625, -0.05709811672568321, -0.17804701626300812, -0.19115881621837616, -0.0384756401181221, -0.11082857847213745, -0.023826930671930313, -0.10639674216508865, 0.04148538038134575, -0.02072913944721222, 0.05925795063376427, -0.09639845043420792, 0.12447383254766464, 0.06843417137861252, -0.11577396094799042, 0.05810433253645897, -0.008805959485471249, 0.048459235578775406, -0.07387776672840118, 0.08210063725709915, -0.10721065104007721, -0.026499031111598015, -0.016933415085077286, 0.03711435943841934, -0.05858420953154564, 0.0011270071845501661, -0.10357651859521866, -0.06808403134346008, -0.056935109198093414, 0.09072309732437134, -0.024477418512105942, 0.03998230770230293, -0.014557241462171078, -0.061277762055397034, -0.025446701794862747, 0.2273169606924057, -0.018587565049529076, -0.043939489871263504, -0.0661960318684578, 0.2851298749446869, -0.06544138491153717, 0.07253559678792953, -0.032977886497974396, -0.001274158013984561, -0.07127615064382553, 0.2931469976902008, 0.36314713954925537, -0.14264726638793945, 0.011796033009886742, -0.018389053642749786, 0.03556118905544281, 0.07535336911678314, 0.18024654686450958, 0.07291083037853241, 0.3107033371925354, -0.04080776497721672, -0.01225926261395216, -0.10546047985553741, -0.03835856914520264, 0.014304363168776035, 0.02947218343615532, 0.08378855139017105, -0.05586446449160576, -0.06808875501155853, 0.1039084792137146, -0.26703301072120667, -0.02056516334414482, -0.16380304098129272, -0.061613935977220535, -0.04166705906391144, 0.0007227687747217715, 0.07237391918897629, 0.028740311041474342, 0.05115301162004471, -0.039005450904369354, -0.047156207263469696, 0.057444483041763306, -0.02154913917183876, -0.12674635648727417, 0.0002557095722295344, 0.143532857298851, -0.07906237244606018, -0.0018181405030190945, 0.0032308290246874094, 0.060348983854055405, 0.044118594378232956, 0.04119637981057167, -0.10164451599121094, 0.02608482725918293, 0.01246592216193676, -0.03363148868083954, -0.028164468705654144, 0.008156497962772846, 0.07835527509450912, -0.21697945892810822, 0.0020338469184935093, -0.14078554511070251, 0.011757226660847664, -0.07641053944826126, -0.006896127946674824, -0.08222074061632156, 0.03242125362157822, 0.004625517874956131, 0.1118803396821022, 0.11125602573156357, -0.03202005848288536, -0.0006144302315078676, -0.06265610456466675, 0.06727221608161926, -0.06884542852640152, -0.02960195019841194, -0.025150567293167114, -0.09257599711418152, -0.09335606545209885, 0.09815482050180435, -0.022339481860399246, -0.1427105814218521, 0.007601875811815262, -0.09401176869869232, -0.04369132220745087, -0.021486658602952957, 0.09382037818431854, 0.11086808145046234, 0.09180203825235367, -0.007599277421832085, 0.047748953104019165, 0.03120456263422966, 0.07436691224575043, -0.12886843085289001, -0.10148585587739944 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1353915711958220800/Aa3vk0kx_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kumar 🤖 AI Bot </div> <div style="font-size: 15px">@datarade bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@datarade's tweets](https://twitter.com/datarade). | Data | Quantity | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 558 | | Short tweets | 454 | | Tweets kept | 2237 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/369qtfug/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @datarade's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bytl8ofw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bytl8ofw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/datarade') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/datarade/1617718202497/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/datarade
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Kumar AI Bot @datarade bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @datarade's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @datarade's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]
null
null
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1391177469256867842/1UgWpBgb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dathiks the idiot || 18+</div> <div style="text-align: center; font-size: 14px;">@dathiks</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dathiks the idiot || 18+. | Data | Dathiks the idiot || 18+ | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 160 | | Short tweets | 391 | | Tweets kept | 2696 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3na3z4pf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dathiks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3k9x299g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3k9x299g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dathiks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dathiks/1621914499049/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/dathiks
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;URL </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI BOT </div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dathiks the idiot || 18+</div> <div style="text-align: center; font-size: 14px;">@dathiks</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on tweets from Dathiks the idiot || 18+. | Data | Dathiks the idiot || 18+ | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 160 | | Short tweets | 391 | | Tweets kept | 2696 | Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @dathiks's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ## Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from Dathiks the idiot || 18+.\n\n| Data | Dathiks the idiot || 18+ |\n| --- | --- |\n| Tweets downloaded | 3247 |\n| Retweets | 160 |\n| Short tweets | 391 |\n| Tweets kept | 2696 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dathiks's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on tweets from Dathiks the idiot || 18+.\n\n| Data | Dathiks the idiot || 18+ |\n| --- | --- |\n| Tweets downloaded | 3247 |\n| Retweets | 160 |\n| Short tweets | 391 |\n| Tweets kept | 2696 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dathiks's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## How to use\n\nYou can use this model directly with a pipeline for text generation:", "## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ 54, 34, 114, 75, 18, 47, 38 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.## Training data\n\nThe model was trained on tweets from Dathiks the idiot || 18+.\n\n| Data | Dathiks the idiot || 18+ |\n| --- | --- |\n| Tweets downloaded | 3247 |\n| Retweets | 160 |\n| Short tweets | 391 |\n| Tweets kept | 2696 |\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @dathiks's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.## How to use\n\nYou can use this model directly with a pipeline for text generation:## Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.## About\n\n*Built by Boris Dayma*\n\n![Follow](URL\n\nFor more details, visit the project repository.\n\n![GitHub stars](URL" ]
[ -0.03905104473233223, 0.015166593715548515, -0.004091103561222553, 0.06734965741634369, 0.09607798606157303, 0.03140375018119812, 0.11753684282302856, 0.1191459596157074, 0.025558341294527054, 0.10259905457496643, 0.10801975429058075, 0.014386703260242939, 0.05747562274336815, 0.18503928184509277, 0.08878801017999649, -0.29000553488731384, 0.009892630390822887, -0.10906099528074265, -0.05280181020498276, 0.12992970645427704, 0.12165374308824539, -0.05918460711836815, 0.07109721750020981, -0.024851037189364433, -0.08104624599218369, 0.02519078738987446, 0.01788483001291752, -0.040079958736896515, 0.08208387345075607, 0.04283366724848747, 0.058054368942976, 0.007446915376931429, 0.0794299766421318, -0.15594951808452606, 0.036578964442014694, 0.11460156738758087, 0.01530243270099163, 0.08996523171663284, 0.05130172148346901, -0.03650395944714546, 0.13901832699775696, -0.07353879511356354, 0.08484115451574326, 0.07166007906198502, -0.16199085116386414, -0.14897984266281128, -0.1124141663312912, 0.1266293078660965, 0.14326642453670502, 0.07533099502325058, -0.06291162222623825, 0.0953412875533104, -0.00450588995590806, 0.03844451531767845, 0.18548138439655304, -0.24588796496391296, -0.04909505695104599, 0.08369073271751404, 0.020032590255141258, 0.07632315158843994, -0.05187135189771652, 0.01631474867463112, 0.030002780258655548, 0.03634742647409439, 0.03756912797689438, -0.02936210297048092, 0.17923897504806519, -0.007103404030203819, -0.15468469262123108, -0.03487127646803856, 0.06172908842563629, 0.009871567599475384, -0.06293827295303345, -0.1436198204755783, -0.0708162859082222, -0.08838586509227753, -0.0052022081799805164, -0.0646488144993782, -0.005533706396818161, 0.0264153853058815, -0.008038376457989216, -0.10329170525074005, -0.08675718307495117, -0.04777795448899269, -0.008852477185428143, 0.08272167295217514, 0.030263148248195648, 0.029762165620923042, -0.07782544940710068, 0.18974235653877258, -0.019722994416952133, -0.11497519165277481, -0.021439461037516594, -0.07071875780820847, -0.08190669119358063, -0.046296823769807816, 0.021284544840455055, 0.0037321369163691998, 0.021623503416776657, 0.2299579530954361, 0.008746210485696793, 0.05577284097671509, 0.019341368228197098, 0.006790614686906338, 0.09272542595863342, 0.12079312652349472, -0.12444830685853958, -0.011605500243604183, 0.06294868141412735, 0.009428250603377819, -0.03000342845916748, -0.06762360036373138, -0.023746417835354805, 0.03638773411512375, 0.04057623818516731, 0.09631595760583878, 0.05961896851658821, 0.05048522725701332, -0.0291264858096838, -0.037115179002285004, 0.09345192462205887, -0.14640338718891144, 0.04033432900905609, 0.017483146861195564, -0.034973837435245514, 0.0024668804835528135, 0.020225122570991516, 0.021825436502695084, -0.10460222512483597, 0.09234145283699036, -0.06738780438899994, -0.04580835625529289, -0.052319105714559555, -0.07878217101097107, -0.018689002841711044, 0.017079079523682594, -0.0650147795677185, -0.0922783836722374, -0.14185109734535217, -0.056480132043361664, 0.040939219295978546, -0.07388783991336823, -0.015382727608084679, 0.014200489036738873, -0.041147638112306595, 0.016918206587433815, 0.030516313388943672, 0.02531741000711918, -0.026449104771018028, 0.04226494953036308, -0.03501409292221069, 0.006477277725934982, 0.05913553386926651, 0.014034345746040344, -0.0857410654425621, 0.06832945346832275, -0.14173798263072968, 0.14900211989879608, -0.05620838701725006, 0.016390763223171234, -0.14973659813404083, -0.10037108510732651, -0.02482738345861435, -0.02053532749414444, 0.04368913546204567, 0.13075533509254456, -0.1717904657125473, -0.026697514578700066, 0.18888112902641296, -0.07449992001056671, -0.05937496945261955, 0.12678027153015137, -0.061924658715724945, 0.07603652775287628, 0.10773322731256485, 0.10081825405359268, 0.10319323092699051, -0.1054268479347229, 0.04483284428715706, -0.04405531287193298, -0.03359314054250717, 0.22921505570411682, 0.055051133036613464, -0.02940985932946205, -0.020377935841679573, -0.02008182555437088, -0.08566907048225403, -0.025689154863357544, -0.06264811754226685, -0.05505575239658356, 0.010675402358174324, 0.011075698770582676, -0.0007125308038666844, -0.035128772258758545, -0.03611944243311882, -0.05753818154335022, -0.14936628937721252, -0.03200651705265045, 0.09284365922212601, -0.021985750645399094, -0.0014312203275039792, -0.11459596455097198, 0.023913035169243813, -0.002024017507210374, 0.021507136523723602, -0.1408151239156723, -0.09158248454332352, 0.020971685647964478, -0.018376553431153297, 0.10902693122625351, -0.004780482035130262, 0.042201556265354156, 0.054118216037750244, -0.014554457738995552, -0.009293770417571068, -0.0720062255859375, 0.004647989757359028, -0.06553579866886139, -0.15513432025909424, -0.0376846119761467, -0.04586099833250046, 0.0945591926574707, -0.15417182445526123, 0.016164742410182953, 0.08983060717582703, 0.0883447676897049, 0.020227424800395966, -0.0479687936604023, -0.0015307131689041853, -0.040864624083042145, 0.00759613374248147, -0.10998097062110901, -0.013606451451778412, -0.016214150935411453, -0.04523326829075813, 0.07397156208753586, -0.16492046415805817, -0.08239283412694931, 0.09657175838947296, 0.07185224443674088, -0.1659802496433258, 0.07073719799518585, -0.0754890963435173, -0.027312232181429863, -0.0652855858206749, -0.04968332499265671, 0.2185238003730774, 0.021886145696043968, 0.058832645416259766, -0.05486777052283287, -0.05600562319159508, -0.0006856645341031253, -0.05939575657248497, -0.01851765066385269, 0.07662469893693924, 0.010368475690484047, -0.2070275992155075, 0.04717688634991646, 0.03850198909640312, 0.08194725960493088, 0.14305736124515533, 0.01013123244047165, -0.0802968293428421, -0.08082608133554459, -0.03161606565117836, 0.008840839378535748, 0.053507473319768906, 0.016672927886247635, 0.006020123604685068, 0.029352791607379913, 0.06757799535989761, 0.02631962299346924, -0.10515139251947403, 0.007413860410451889, 0.0578002892434597, -0.04520420730113983, 0.0065027084201574326, 0.015680627897381783, -0.02952839434146881, 0.12737895548343658, 0.07595203071832657, 0.09959471225738525, -0.036531489342451096, -0.03659430146217346, -0.15568356215953827, 0.15107962489128113, -0.0984763503074646, -0.17426729202270508, -0.09796607494354248, -0.03211129456758499, 0.02784612774848938, 0.010180380195379257, 0.0370224192738533, -0.08474321663379669, -0.0522884763777256, -0.0885627269744873, 0.11561726033687592, -0.0015676846960559487, -0.001219429075717926, 0.004489222541451454, -0.03068133257329464, 0.007631904911249876, -0.11519801616668701, -0.033677827566862106, 0.03489004820585251, -0.11289671808481216, 0.026348287239670753, 0.033648308366537094, 0.024122655391693115, 0.15634597837924957, 0.009261739440262318, 0.020798522979021072, -0.019351821392774582, 0.30073586106300354, -0.12505033612251282, 0.1280687302350998, 0.14074228703975677, -0.010021219961345196, 0.06484571844339371, 0.09070664644241333, 0.034483883529901505, -0.10174510627985, 0.07014663517475128, 0.05469721928238869, -0.07363210618495941, -0.20829008519649506, -0.044464122503995895, -0.0054169753566384315, 0.03305140882730484, 0.10464642941951752, 0.08718816190958023, -0.0016556227346882224, 0.006981089245527983, -0.08434050530195236, -0.016250213608145714, 0.048649486154317856, 0.09192933887243271, -0.05946727097034454, 0.012746760621666908, 0.05085691809654236, -0.03930630534887314, 0.003968602977693081, 0.16550897061824799, -0.028021864593029022, 0.14057646691799164, -0.02174459397792816, 0.09566950798034668, 0.06268096715211868, 0.0826476588845253, 0.008995805867016315, 0.007536972872912884, -0.013397064991295338, 0.02548944391310215, -0.0002904005814343691, -0.08403318375349045, 0.02618812955915928, 0.04217392951250076, -0.011274480260908604, -0.035251684486866, -0.013525381684303284, -0.0006107620429247618, 0.0983491912484169, 0.21969443559646606, 0.07495942711830139, -0.17579323053359985, -0.10779572278261185, 0.04072508215904236, -0.051658790558576584, -0.065036840736866, -0.0012659068452194333, 0.023415924981236458, -0.19761289656162262, 0.05018194019794464, -0.03299923613667488, 0.1038593202829361, -0.04380699619650841, 0.00419009942561388, 0.09621014446020126, 0.06340764462947845, -0.05857551097869873, 0.09229721873998642, -0.23851272463798523, 0.09263566881418228, -0.010933966375887394, 0.06488263607025146, -0.05319073051214218, 0.004457987844944, 0.01704764924943447, 0.007235792465507984, 0.1157447025179863, 0.04461311176419258, 0.07639522105455399, -0.03986727073788643, -0.09469204396009445, -0.0028821423184126616, 0.10516417026519775, -0.14524275064468384, 0.08875863999128342, -0.03192457929253578, 0.022796057164669037, -0.005934945773333311, -0.06706000119447708, -0.11060132831335068, -0.08448927849531174, 0.07516678422689438, -0.11351773142814636, -0.0014256327413022518, -0.0567016564309597, -0.019208630546927452, 0.03296443819999695, 0.24108417332172394, -0.0980660617351532, -0.10758523643016815, -0.1472480595111847, 0.07643751055002213, 0.09605631977319717, -0.06808559596538544, 0.01303234975785017, 0.015876900404691696, 0.13615354895591736, 0.01853279024362564, -0.13239805400371552, 0.08789511024951935, -0.0721505731344223, -0.2393435835838318, -0.022955674678087234, 0.18010058999061584, 0.12453683465719223, 0.024791529402136803, -0.01578519679605961, 0.04229044169187546, -0.05467412248253822, -0.17645801603794098, 0.04260702058672905, 0.038898006081581116, -0.05010363459587097, 0.022565191611647606, 0.06639009714126587, 0.0018876364920288324, -0.1431567221879959, 0.00016087492986116558, 0.0682903602719307, 0.24934151768684387, -0.08670969307422638, 0.12103525549173355, 0.05673549324274063, -0.07315503060817719, -0.214073047041893, -0.02406970039010048, 0.049015775322914124, 0.015529000200331211, 0.0069291903637349606, -0.17585130035877228, 0.0707436129450798, 0.05839386209845543, -0.008356796577572823, 0.08487296104431152, -0.3572283089160919, -0.16197450459003448, 0.06327664852142334, 0.024779178202152252, -0.04558468982577324, -0.11581728607416153, -0.0459766648709774, -0.02612341195344925, -0.1529591977596283, 0.11091168224811554, -0.12013456225395203, 0.052201759070158005, 0.03217595815658569, 0.09817805886268616, 0.020503012463450432, -0.027757341042160988, 0.15293973684310913, -0.020410194993019104, 0.04090813174843788, -0.1017119437456131, -0.05294998362660408, 0.1063232421875, -0.059306804090738297, 0.07348744571208954, 0.05271539092063904, 0.09639117121696472, -0.09538234025239944, -0.04734005779027939, -0.06549239158630371, 0.03475665673613548, -0.08130637556314468, -0.1005365401506424, -0.07173065096139908, 0.07626885175704956, 0.06603384763002396, -0.07305783033370972, -0.08597476780414581, -0.03313139081001282, 0.03433515504002571, 0.10381707549095154, 0.05844632163643837, 0.09626561403274536, -0.07712211459875107, 0.009866703301668167, -0.014234649948775768, 0.03465597704052925, -0.12722618877887726, 0.04537369683384895, 0.09403946250677109, 0.0356488935649395, 0.11810138076543808, 0.0035021447110921144, -0.15570656955242157, -0.000058635647292248905, 0.04485767334699631, -0.17491652071475983, -0.17773957550525665, -0.028184324502944946, 0.013922179117798805, -0.07038277387619019, -0.0399511456489563, 0.1258547604084015, -0.05285929515957832, -0.0443870984017849, 0.034005213528871536, 0.0761433094739914, -0.07540013641119003, 0.12125788629055023, 0.05253300815820694, 0.04318952560424805, -0.07094204425811768, 0.0924825519323349, 0.07709347456693649, -0.0075408946722745895, 0.04510834813117981, 0.17418459057807922, -0.12231944501399994, -0.03466416522860527, -0.01819331757724285, 0.01967388391494751, -0.01433861255645752, 0.007767125032842159, 0.02559998631477356, -0.06647555530071259, 0.03829250484704971, 0.043898992240428925, 0.00967602152377367, 0.06768540292978287, -0.019672594964504242, 0.022494429722428322, -0.06991604715585709, 0.07870563119649887, 0.07256435602903366, 0.03356520086526871, -0.09643752127885818, 0.17157331109046936, 0.009788532741367817, 0.08642493933439255, -0.05247943103313446, -0.027950914576649666, -0.09744556993246078, -0.015648553147912025, -0.08127237856388092, -0.01600572094321251, -0.04842204228043556, -0.02805580385029316, -0.0015114995185285807, -0.06919475644826889, -0.014746736735105515, 0.02742926776409149, -0.03989916294813156, -0.07055681943893433, -0.06938347965478897, 0.013053717091679573, -0.1556626409292221, 0.004686123691499233, 0.08837898820638657, -0.06106143817305565, 0.14775152504444122, 0.08306168764829636, -0.029720187187194824, 0.013765540905296803, -0.1084374189376831, 0.06940075010061264, -0.026543069630861282, -0.01339595764875412, 0.022958319634199142, -0.15364669263362885, 0.004302270244807005, -0.08208701014518738, -0.05410667508840561, 0.018521910533308983, 0.1000806912779808, -0.1348922699689865, 0.04844781383872032, -0.005074230954051018, -0.01299459207803011, -0.08206040412187576, 0.036483146250247955, -0.0014760090271010995, 0.05389677733182907, 0.08582828938961029, -0.07637657225131989, 0.0951654464006424, -0.1948215663433075, -0.05201149359345436, 0.015168072655797005, 0.040259212255477905, 0.0031057095620781183, -0.013493130914866924, 0.05458362028002739, -0.06548075377941132, 0.15979334712028503, -0.0053184377029538155, -0.03166564181447029, 0.06406036764383316, -0.04397277906537056, -0.03606254979968071, 0.0482756607234478, 0.0529337152838707, -0.03488646820187569, -0.03792886808514595, -0.09334225207567215, -0.01596478559076786, -0.05889749526977539, -0.04897390305995941, 0.14312054216861725, 0.047988664358854294, 0.11761520802974701, -0.04706178233027458, 0.02465473674237728, -0.04894576594233513, -0.13626010715961456, -0.038470394909381866, -0.06699062138795853, 0.02550836279988289, -0.06665308028459549, 0.08581680059432983, 0.18327735364437103, -0.1540842354297638, 0.08188994973897934, -0.02710152417421341, -0.07312621921300888, -0.09976790845394135, -0.20962382853031158, -0.028170617297291756, -0.06674721091985703, 0.004285902250558138, -0.10498787462711334, 0.08194828033447266, 0.019744591787457466, 0.0671544149518013, -0.04216762259602547, 0.18176262080669403, -0.08185575157403946, -0.09638544917106628, 0.05203012749552727, 0.029080849140882492, 0.012020199559628963, 0.08519506454467773, 0.05118419975042343, -0.012600628659129143, 0.04040323942899704, 0.06768115609884262, 0.05444609001278877, -0.01601049304008484, 0.022945931181311607, -0.0625588670372963, -0.08330057561397552, 0.01876457966864109, 0.005176495760679245, -0.026267196983098984, 0.08424212038516998, 0.048379864543676376, -0.031100699678063393, -0.016114408150315285, 0.2838906943798065, -0.059070929884910583, -0.08125656098127365, -0.15930238366127014, 0.24885092675685883, -0.043617088347673416, 0.005993914324790239, -0.006558888591825962, -0.1325022578239441, 0.004191103391349316, 0.11636113375425339, 0.24656285345554352, -0.046023543924093246, 0.024514198303222656, -0.015059351921081543, 0.022049555554986, 0.044146496802568436, 0.10674633085727692, 0.061150018125772476, 0.1497413069009781, -0.05912889540195465, 0.07658981531858444, -0.030651139095425606, -0.04440721496939659, -0.05305544659495354, 0.13524912297725677, 0.0239577479660511, 0.02097904682159424, -0.06935584545135498, 0.12999354302883148, -0.0553668774664402, -0.31457218527793884, -0.009135602042078972, -0.049692630767822266, -0.10744111239910126, 0.04684353619813919, -0.06037583947181702, -0.0011546567548066378, 0.09553959220647812, 0.03229415416717529, -0.006835487205535173, 0.0969710722565651, 0.043537434190511703, -0.01989424042403698, 0.009991978295147419, 0.1063465029001236, -0.05540349707007408, 0.16190966963768005, 0.009252072311937809, 0.033134326338768005, 0.09421096742153168, -0.01593581959605217, -0.12444264441728592, 0.06452703475952148, 0.05555137246847153, -0.0015933009563013911, -0.029031164944171906, 0.15037801861763, 0.011468085460364819, -0.05827612057328224, 0.0846572145819664, -0.10197702795267105, -0.020479796454310417, -0.04732809588313103, 0.010331871919333935, -0.14039376378059387, 0.07956277579069138, -0.0732821375131607, 0.13826073706150055, 0.19303417205810547, -0.09032012522220612, 0.03961120918393135, -0.07738218456506729, -0.012231593020260334, -0.0030922077130526304, 0.12093329429626465, 0.006396991200745106, -0.15039975941181183, 0.016651414334774017, 0.0645345002412796, 0.05450309067964554, -0.19275516271591187, -0.04565723240375519, -0.016789620742201805, -0.008182192221283913, -0.00549925584346056, 0.20624151825904846, 0.025891678407788277, 0.03925003111362457, -0.03293043375015259, 0.008564193733036518, 0.0008523491560481489, 0.14294137060642242, -0.13848759233951569, -0.050033845007419586 ]
null
null
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1344380479852535808/6UHzjMj1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">the responsible uncle 🤖 AI Bot </div> <div style="font-size: 15px">@davemcnamee3000 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@davemcnamee3000's tweets](https://twitter.com/davemcnamee3000). | Data | Quantity | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 416 | | Short tweets | 515 | | Tweets kept | 2310 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13u5lzdf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @davemcnamee3000's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rgzuxgk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rgzuxgk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/davemcnamee3000') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/davemcnamee3000/1616698880059/predictions.png", "widget": [{"text": "My dream is"}]}
text-generation
huggingtweets/davemcnamee3000
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
the responsible uncle AI Bot @davemcnamee3000 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @davemcnamee3000's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @davemcnamee3000's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 57 ]
[ "passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.004547144751995802, -0.006708405911922455, -0.007013476919382811, 0.01947171241044998, 0.15818242728710175, 0.03448796644806862, 0.08709780126810074, 0.15389476716518402, -0.019877297803759575, -0.022431448101997375, 0.18047170341014862, 0.173692986369133, -0.012988686561584473, 0.09047263860702515, -0.05271327868103981, -0.2622397541999817, 0.03682216629385948, 0.05513067543506622, -0.007422737777233124, 0.14252057671546936, 0.07580838352441788, -0.023790201172232628, 0.11380083113908768, -0.02966974675655365, -0.202972412109375, 0.03197307139635086, 0.0615268237888813, -0.09518525749444962, 0.11083168536424637, 0.04628797993063927, 0.08698221296072006, 0.022143812850117683, -0.07331052422523499, -0.120787613093853, 0.04532235115766525, 0.045263588428497314, -0.06358368694782257, 0.06480421870946884, 0.08820623904466629, -0.1065920814871788, 0.1416475921869278, 0.07373794168233871, -0.01588049717247486, 0.07824484258890152, -0.17789237201213837, -0.03725104406476021, -0.036331940442323685, 0.007741300854831934, 0.07058489322662354, 0.0750737413764, -0.019116664305329323, 0.1746976524591446, -0.06598041951656342, 0.09777773916721344, 0.17528840899467468, -0.2887236773967743, -0.018040433526039124, 0.0492081381380558, 0.0887371376156807, 0.04900359362363815, -0.024227341637015343, 0.08339477330446243, 0.06365471333265305, 0.01686069741845131, 0.014271941967308521, -0.06960906833410263, -0.09346919506788254, 0.03645368665456772, -0.06932124495506287, -0.05699722096323967, 0.22001419961452484, -0.0334535576403141, 0.04674676060676575, -0.03953840583562851, -0.09316058456897736, -0.028927378356456757, -0.027232296764850616, -0.00907184462994337, -0.05413005128502846, 0.08754174411296844, -0.015151693485677242, -0.06331931799650192, -0.1435878872871399, -0.012912428006529808, -0.15805892646312714, 0.13816505670547485, 0.004333257209509611, 0.04586424678564072, -0.22094038128852844, 0.1012546569108963, 0.022817784920334816, -0.08995530754327774, 0.04930093511939049, -0.09425957500934601, 0.0717538446187973, 0.0007676240638829768, -0.04885277524590492, -0.02944779396057129, 0.08848895877599716, 0.14690880477428436, -0.02718975953757763, 0.005980455316603184, -0.01338018849492073, 0.0733228251338005, 0.059399042278528214, 0.028748195618391037, -0.006081049330532551, -0.052236080169677734, 0.05618719011545181, -0.1417204737663269, -0.010511515662074089, -0.07227712869644165, -0.10605388879776001, -0.04232237488031387, 0.03443120792508125, 0.060671232640743256, 0.042230576276779175, 0.11220116913318634, -0.04771716892719269, -0.01857093721628189, 0.05281376466155052, -0.03979083523154259, -0.008994937874376774, -0.01990325190126896, 0.018122754991054535, 0.13074275851249695, -0.019943278282880783, 0.03407962992787361, -0.10256942361593246, 0.05431444197893143, -0.10281401127576828, -0.01971535198390484, -0.014149561524391174, -0.04367954283952713, 0.031883664429187775, -0.12165860831737518, 0.016123656183481216, -0.16833168268203735, -0.14714312553405762, 0.002859292319044471, -0.016588665544986725, -0.017911825329065323, -0.07954888790845871, -0.04400517791509628, -0.02466505579650402, 0.06924423575401306, -0.04276731237769127, -0.00935916043817997, -0.05846982076764107, 0.11090090870857239, -0.05349889397621155, 0.07203050702810287, -0.1194647029042244, 0.0557217076420784, -0.14930842816829681, -0.013004516251385212, -0.04842504858970642, 0.07119924575090408, 0.015398351475596428, 0.1813964694738388, -0.006925920024514198, -0.003623353084549308, -0.09382472932338715, 0.06455672532320023, -0.02733452245593071, 0.24096953868865967, -0.0756828561425209, -0.14226967096328735, 0.21630549430847168, -0.06334739923477173, -0.14993034303188324, 0.1314547061920166, 0.01843975856900215, 0.08251222223043442, 0.10434340685606003, 0.19023460149765015, 0.01808990351855755, -0.007808534894138575, 0.054424818605184555, 0.07603957504034042, -0.1683882623910904, -0.033340878784656525, 0.0012923459289595485, -0.00014291972911451012, -0.1366809904575348, 0.04632483050227165, 0.1230006217956543, 0.09730340540409088, -0.07249721139669418, -0.018487868830561638, -0.030607668682932854, 0.0016078021144494414, 0.04144361615180969, -0.0005212334799580276, 0.09951234608888626, -0.1033509373664856, -0.04366454482078552, -0.06751791387796402, -0.002970147645100951, 0.011176802217960358, 0.03924661502242088, -0.04455869272351265, 0.09700342267751694, -0.007412149105221033, 0.0545678474009037, -0.13708296418190002, -0.07981666922569275, -0.016090448945760727, 0.1597585678100586, 0.040224816650152206, 0.04663374274969101, 0.0566885769367218, -0.05624469742178917, -0.015493324026465416, -0.010199432261288166, 0.16243304312229156, -0.04404180869460106, -0.07694169133901596, -0.07860849797725677, 0.10474636405706406, -0.06389671564102173, 0.026263169944286346, -0.051667314022779465, 0.024654213339090347, 0.04686986654996872, 0.1110762283205986, 0.004046999383717775, 0.026442723348736763, -0.012835992500185966, -0.007690808270126581, -0.07657550275325775, -0.01617686077952385, 0.1077079176902771, -0.0017721779877319932, -0.06809886544942856, 0.2437063455581665, -0.16884316504001617, 0.21163912117481232, 0.20976658165454865, -0.2492678016424179, -0.02882898785173893, -0.04848965257406235, -0.04766342043876648, -0.0012878701090812683, 0.06041788309812546, -0.034700244665145874, 0.09027024358510971, -0.03288675472140312, 0.16564396023750305, -0.051203593611717224, -0.07646744698286057, 0.019007064402103424, -0.05823178589344025, -0.05114857107400894, 0.07018019258975983, 0.08213616907596588, -0.1630844622850418, 0.18756183981895447, 0.21879082918167114, 0.06839460134506226, 0.2044064849615097, 0.00858453568071127, -0.010656360536813736, 0.07200875878334045, -0.04608747735619545, -0.03843220695853233, -0.06601633131504059, -0.15238076448440552, -0.03009703755378723, 0.06625645607709885, 0.030863380059599876, 0.09900964051485062, -0.09019728004932404, -0.08104760944843292, -0.017665131017565727, 0.004776675254106522, 0.00156646769028157, 0.11991100758314133, 0.03676433861255646, 0.13820022344589233, -0.01955524832010269, 0.022415857762098312, 0.08040772378444672, 0.016582515090703964, -0.10843544453382492, 0.16101348400115967, -0.13329310715198517, -0.3788211941719055, -0.14546175301074982, -0.13134250044822693, -0.020925991237163544, 0.03777816519141197, 0.1120775043964386, -0.1329103261232376, 0.005511005409061909, -0.007893978618085384, 0.10391844809055328, -0.08707519620656967, 0.039245378226041794, -0.07586963474750519, 0.0314689576625824, -0.060405436903238297, -0.07552991807460785, -0.03722400963306427, -0.028465405106544495, -0.09132689982652664, 0.16675986349582672, -0.11130212247371674, 0.06035055220127106, 0.16001324355602264, 0.021197395399212837, 0.03523072600364685, -0.05174810439348221, 0.18330632150173187, -0.112345851957798, 0.020098978653550148, 0.15624848008155823, -0.013005592860281467, 0.08254575729370117, 0.08188403397798538, -0.013132697902619839, -0.10316278785467148, 0.05240294709801674, 0.001463406952098012, -0.10209372639656067, -0.1950312703847885, -0.10119245946407318, -0.08230090886354446, 0.15922248363494873, 0.06361804902553558, 0.058937788009643555, 0.17968137562274933, 0.07578518986701965, -0.038606274873018265, -0.00038743947516195476, -0.00239798822440207, 0.08808282762765884, 0.13635766506195068, -0.01442645862698555, 0.1225903332233429, -0.04975935071706772, -0.10913994163274765, 0.12899059057235718, 0.01750512234866619, 0.03937286511063576, 0.051435839384794235, 0.021011192351579666, -0.011281835846602917, 0.11866551637649536, 0.13484057784080505, 0.10447502881288528, -0.015693627297878265, -0.0293489471077919, -0.04774824157357216, -0.01359935849905014, -0.033305928111076355, 0.03640862926840782, 0.008061517030000687, -0.14140670001506805, -0.06158366799354553, -0.11537835001945496, 0.08758961409330368, 0.10668005049228668, 0.07567808032035828, -0.21108253300189972, -0.003950516227632761, 0.07933880388736725, -0.03630997985601425, -0.11126025766134262, 0.08416172116994858, 0.03095286712050438, -0.1277567446231842, 0.07218055427074432, -0.03519461303949356, 0.12458370625972748, -0.0032897875644266605, 0.09583556652069092, -0.03598680719733238, -0.027483470737934113, -0.013308011926710606, 0.09818253666162491, -0.3191508650779724, 0.1621316522359848, -0.017933005467057228, -0.0618131123483181, -0.06667962670326233, -0.02528184838593006, 0.015994107350707054, 0.07729468494653702, 0.10861869156360626, 0.021759910508990288, 0.01640525460243225, -0.07345785945653915, -0.042352862656116486, 0.038021303713321686, 0.12403716146945953, -0.06827268749475479, -0.012903391383588314, -0.04523605480790138, 0.00796645786613226, -0.017124788835644722, -0.008793274872004986, 0.006911922711879015, -0.14962191879749298, 0.05182485654950142, 0.014736213721334934, 0.07058768719434738, 0.0436982735991478, -0.014969068579375744, -0.09180716425180435, 0.18274778127670288, -0.015714606270194054, -0.07271543145179749, -0.12616917490959167, -0.05262751132249832, 0.030376195907592773, -0.05518756061792374, 0.021047864109277725, -0.06501689553260803, -0.0035362408962100744, -0.06755607575178146, -0.22007296979427338, 0.1278373897075653, -0.08437205106019974, -0.07192739844322205, -0.04912353679537773, 0.2010866105556488, -0.051223888993263245, 0.003238252131268382, 0.010222852230072021, 0.021994104608893394, -0.11474784463644028, -0.09469719231128693, 0.07112357765436172, -0.03247172012925148, 0.03123478777706623, 0.0022505864035338163, -0.04091062396764755, 0.016593176871538162, -0.06314414739608765, -0.011381587944924831, 0.27866554260253906, 0.23951324820518494, -0.040407944470644, 0.1904350072145462, 0.11012271791696548, -0.08163551241159439, -0.3069863021373749, -0.10166139155626297, -0.12140648066997528, -0.02996143139898777, -0.017288926988840103, -0.16865339875221252, 0.06477722525596619, 0.038930367678403854, 0.009261871688067913, 0.13778774440288544, -0.20730599761009216, -0.08823523670434952, 0.09138026833534241, -0.02557477355003357, 0.43079736828804016, -0.1257614940404892, -0.08959750831127167, -0.051866497844457626, -0.16516901552677155, 0.2173919379711151, -0.021592965349555016, 0.07857322692871094, -0.029561417177319527, 0.11770006269216537, 0.04697660356760025, -0.010707763023674488, 0.08040876686573029, -0.00884756539016962, 0.008373050950467587, -0.12410011142492294, -0.02768467366695404, 0.04874192550778389, 0.012378438375890255, 0.0013600040692836046, -0.09389680624008179, 0.020313434302806854, -0.15990203619003296, -0.018549781292676926, -0.11233476549386978, 0.07682323455810547, 0.025788001716136932, -0.06466120481491089, -0.003637736663222313, -0.04986237734556198, -0.015892893075942993, -0.01400828268378973, 0.1717434972524643, -0.04862768203020096, 0.19366511702537537, 0.03501616790890694, 0.11570870876312256, -0.1362973153591156, 0.06143493950366974, -0.06429426372051239, -0.07528600096702576, 0.07427702099084854, -0.1537967324256897, 0.05111055448651314, 0.09430045634508133, -0.030276626348495483, 0.05380253866314888, 0.08795086294412613, -0.003969982732087374, 0.004800081253051758, 0.15867236256599426, -0.2786487936973572, 0.01320126373320818, -0.07396841049194336, -0.06665283441543579, 0.10506758838891983, 0.06261139363050461, 0.17162823677062988, 0.011681869626045227, -0.056615445762872696, 0.01595049723982811, 0.02499506063759327, -0.04915530979633331, 0.04529924690723419, 0.008104361593723297, -0.010991688817739487, -0.13640300929546356, 0.08699746429920197, 0.0042801909148693085, -0.1531187742948532, 0.024680746719241142, 0.2155698835849762, -0.1260155886411667, -0.10237220674753189, -0.03444112092256546, 0.08444061875343323, -0.11519137024879456, 0.01753072999417782, -0.030764780938625336, -0.09109894186258316, 0.07448896765708923, 0.15248911082744598, 0.049206193536520004, 0.11775100976228714, -0.015379221178591251, -0.011753370985388756, -0.05147303268313408, -0.0317845419049263, 0.025745956227183342, 0.017857374623417854, -0.08257177472114563, 0.06648801267147064, -0.022109810262918472, 0.14559012651443481, -0.09791336953639984, -0.06602771580219269, -0.1468091756105423, -0.009785634465515614, -0.0695481076836586, -0.09207163751125336, -0.08133620768785477, -0.062133077532052994, 0.0010387726360931993, -0.03962359577417374, -0.04795864596962929, -0.0791037380695343, -0.10289866477251053, 0.009435068815946579, -0.02305566892027855, 0.03256045654416084, -0.06115729361772537, 0.007872066460549831, 0.12092912197113037, -0.028174830600619316, 0.16686207056045532, 0.1458095908164978, -0.09536580741405487, 0.10568815469741821, -0.16346460580825806, -0.08964221179485321, 0.0939340740442276, -0.01729099079966545, 0.027899714186787605, 0.11666940152645111, 0.014932696707546711, 0.04195788502693176, 0.035977672785520554, 0.06045130267739296, 0.03587699308991432, -0.11899011582136154, 0.07665140181779861, 0.009481414221227169, -0.1612047255039215, -0.06303887814283371, -0.08555969595909119, 0.030386725440621376, 0.021575886756181717, 0.12225193530321121, -0.045776769518852234, 0.0887017622590065, -0.07972796261310577, 0.027257539331912994, 0.02293219044804573, -0.181223064661026, -0.047844018787145615, -0.053065262734889984, 0.032686229795217514, 0.018960151821374893, 0.1893557906150818, 0.027213018387556076, -0.03697650134563446, 0.04549255222082138, 0.1042066365480423, 0.005313898902386427, 0.004829791374504566, 0.16259528696537018, 0.09423433989286423, -0.07654286175966263, -0.12226779758930206, 0.07556461542844772, 0.019673259928822517, -0.044067107141017914, 0.10607215762138367, -0.002448870101943612, 0.020163848996162415, 0.06910120695829391, -0.014892932027578354, 0.034322552382946014, -0.044286008924245834, -0.10698256641626358, -0.023580113425850868, 0.046367425471544266, 0.00669879000633955, 0.12847968935966492, 0.177873894572258, -0.002574790036305785, 0.025011489167809486, -0.0363602340221405, -0.024931130930781364, -0.13864666223526, -0.1558164656162262, -0.06855984032154083, -0.14875617623329163, 0.012976853176951408, -0.0915176048874855, 0.04695429280400276, 0.028682325035333633, 0.06887643784284592, -0.07052405923604965, 0.04384735971689224, 0.06974220275878906, -0.12065785378217697, 0.09397104382514954, -0.028081456199288368, 0.03704333305358887, -0.006730496883392334, -0.012833851389586926, -0.10013298690319061, 0.035936567932367325, -0.01747855544090271, 0.045271266251802444, -0.04546798765659332, 0.030429324135184288, -0.1703072488307953, -0.124412901699543, -0.04034453630447388, 0.06420420855283737, -0.06510858237743378, 0.03512151539325714, 0.019115818664431572, 0.013339218683540821, 0.03305599465966225, 0.23020225763320923, -0.03704051673412323, -0.02329315058887005, -0.042310282588005066, 0.16692522168159485, -0.014016710221767426, 0.08088304847478867, -0.03037172369658947, 0.0002500463742762804, -0.08417443931102753, 0.3385351300239563, 0.3027777075767517, -0.09020252525806427, 0.019915465265512466, -0.030905582010746002, 0.03936264291405678, 0.11892254650592804, 0.13376617431640625, 0.09784641861915588, 0.2282467782497406, -0.07217609137296677, -0.03032243251800537, -0.020507147535681725, -0.011079044081270695, -0.06650827825069427, 0.0879674032330513, 0.02507801540195942, -0.05553486570715904, -0.031693898141384125, 0.0812700018286705, -0.2327648252248764, 0.10665327310562134, -0.11289316415786743, -0.1636168211698532, -0.039189815521240234, 0.0042042857967317104, 0.08908319473266602, 0.015396242961287498, 0.11228121817111969, 0.009163780137896538, -0.07585213333368301, 0.017798418179154396, 0.028085503727197647, -0.24201616644859314, -0.008133855648338795, 0.060310713946819305, -0.12939085066318512, -0.004324504639953375, -0.027167800813913345, 0.007199867628514767, 0.059822265058755875, 0.029368450865149498, -0.04319324716925621, -0.001257759635336697, -0.010450302623212337, -0.008644461631774902, -0.011618612334132195, 0.07065588980913162, 0.046958792954683304, -0.13329142332077026, 0.06869500875473022, -0.11774353682994843, 0.033477768301963806, -0.05866728723049164, -0.015255378559231758, 0.000037100471672602, 0.03460683673620224, -0.04829782620072365, 0.07058211416006088, 0.07688362896442413, -0.015606098808348179, 0.000610517687164247, -0.0802936851978302, -0.036274004727602005, -0.019796574488282204, -0.09252054989337921, -0.08371094614267349, -0.13031646609306335, -0.11573562026023865, 0.1029667928814888, -0.02224794402718544, -0.19213621318340302, 0.03111329674720764, -0.12165344506502151, 0.045619383454322815, -0.1751558482646942, 0.11076030135154724, 0.08046020567417145, 0.01831907220184803, 0.011516088619828224, -0.02576824277639389, 0.08821021765470505, 0.11728470027446747, -0.07783648371696472, -0.08528783172369003 ]