sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
listlengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
listlengths 0
201
| languages
listlengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
listlengths 0
722
| processed_texts
listlengths 1
723
| tokens_length
listlengths 1
723
| input_texts
listlengths 1
61
| embeddings
listlengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
transformers
|
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1293318707469410304/OfdJ5rPz_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">henry 🤖 AI Bot </div>
<div style="font-size: 15px">@confusionm8trix bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@confusionm8trix's tweets](https://twitter.com/confusionm8trix).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 766 |
| Retweets | 52 |
| Short tweets | 108 |
| Tweets kept | 606 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2otdqnlb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @confusionm8trix's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tgtfwi1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tgtfwi1/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/confusionm8trix')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/confusionm8trix/1616684874152/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/confusionm8trix
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
henry AI Bot
@confusionm8trix bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @confusionm8trix's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @confusionm8trix's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">conrad 🤖 AI Bot </div>
<div style="font-size: 15px">@conrad_hotdish bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@conrad_hotdish's tweets](https://twitter.com/conrad_hotdish).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3211 |
| Retweets | 85 |
| Short tweets | 1024 |
| Tweets kept | 2102 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1unihbge/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conrad_hotdish's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7jgc9067) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7jgc9067/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/conrad_hotdish')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/conrad_hotdish/1614106927714/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/conrad_hotdish
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
conrad AI Bot
@conrad\_hotdish bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @conrad\_hotdish's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @conrad\_hotdish's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1381333613585727489/KjV-Te29_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">occultbot & conspiracybot</div>
<div style="text-align: center; font-size: 14px;">@conspiracyb0t-occultb0t</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from occultbot & conspiracybot.
| Data | occultbot | conspiracybot |
| --- | --- | --- |
| Tweets downloaded | 3250 | 3250 |
| Retweets | 0 | 0 |
| Short tweets | 1659 | 1651 |
| Tweets kept | 1591 | 1599 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fou3nfp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conspiracyb0t-occultb0t's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3kx38spd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3kx38spd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/conspiracyb0t-occultb0t')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/conspiracyb0t-occultb0t
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
AI CYBORG
occultbot & conspiracybot
@conspiracyb0t-occultb0t
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from occultbot & conspiracybot.
Data: Tweets downloaded, occultbot: 3250, conspiracybot: 3250
Data: Retweets, occultbot: 0, conspiracybot: 0
Data: Short tweets, occultbot: 1659, conspiracybot: 1651
Data: Tweets kept, occultbot: 1591, conspiracybot: 1599
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @conspiracyb0t-occultb0t's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">conspiracybot 🤖 AI Bot </div>
<div style="font-size: 15px">@conspiracyb0t bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@conspiracyb0t's tweets](https://twitter.com/conspiracyb0t).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 0 |
| Short tweets | 1603 |
| Tweets kept | 1647 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nfdu4jd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conspiracyb0t's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25ymtdbi) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25ymtdbi/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/conspiracyb0t')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/conspiracyb0t/1618535079312/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/conspiracyb0t
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
conspiracybot AI Bot
@conspiracyb0t bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @conspiracyb0t's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @conspiracyb0t's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Natalie Wynn 🤖 AI Bot </div>
<div style="font-size: 15px">@contrapoints bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@contrapoints's tweets](https://twitter.com/contrapoints).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 658 |
| Retweets | 73 |
| Short tweets | 132 |
| Tweets kept | 453 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tehrpnk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @contrapoints's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i7tqmbhr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i7tqmbhr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/contrapoints')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/contrapoints/1616752707998/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/contrapoints
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Natalie Wynn AI Bot
@contrapoints bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @contrapoints's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @contrapoints's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">🐱Sophie/Cookie🍪🏳️⚧️</div>
<div style="text-align: center; font-size: 14px;">@cookie__sophie</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 🐱Sophie/Cookie🍪🏳️⚧️.
| Data | 🐱Sophie/Cookie🍪🏳️⚧️ |
| --- | --- |
| Tweets downloaded | 3232 |
| Retweets | 463 |
| Short tweets | 375 |
| Tweets kept | 2394 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15ifdxlx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cookie__sophie's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/390kytab) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/390kytab/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cookie__sophie')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cookie__sophie/1624473491534/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cookie__sophie
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Sophie/Cookie️️
@cookie\_\_sophie
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Sophie/Cookie️️.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cookie\_\_sophie's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">shinji icarly 🤖 AI Bot </div>
<div style="font-size: 15px">@coolnerdfacts bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@coolnerdfacts's tweets](https://twitter.com/coolnerdfacts).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1711 |
| Retweets | 513 |
| Short tweets | 128 |
| Tweets kept | 1070 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l96gdy8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coolnerdfacts's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o5cywwmo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o5cywwmo/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/coolnerdfacts')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/coolnerdfacts/1614213636356/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/coolnerdfacts
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
shinji icarly AI Bot
@coolnerdfacts bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @coolnerdfacts's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @coolnerdfacts's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1080867330522001408/44pEKx_C_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cooperativa 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@cooperativa bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cooperativa's tweets](https://twitter.com/cooperativa).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3234</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>417</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>2</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2815</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/114yjete/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cooperativa's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1vwsyebc) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1vwsyebc/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cooperativa'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cooperativa/1604184922075/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cooperativa
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cooperativa AI Bot </div>
<div style="font-size: 15px; color: #657786">@cooperativa bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @cooperativa's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3234</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>417</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>2</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2815</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @cooperativa's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cooperativa'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cooper Quinn 🤖 AI Bot </div>
<div style="font-size: 15px">@cooperquinn_wy bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cooperquinn_wy's tweets](https://twitter.com/cooperquinn_wy).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3242 |
| Retweets | 452 |
| Short tweets | 564 |
| Tweets kept | 2226 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4kx01uhm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cooperquinn_wy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vg5bxn2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vg5bxn2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cooperquinn_wy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cooperquinn_wy/1617467984667/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cooperquinn_wy
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Cooper Quinn AI Bot
@cooperquinn\_wy bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cooperquinn\_wy's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cooperquinn\_wy's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1232060545626497024/ltc63x4__400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Coronavirus 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@coronavid19 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@coronavid19's tweets](https://twitter.com/coronavid19).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1618</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>12</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>96</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1510</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lgjd18p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coronavid19's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ki9s94y) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ki9s94y/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/coronavid19'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/coronavid19/1608807621950/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/coronavid19
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Coronavirus AI Bot </div>
<div style="font-size: 15px; color: #657786">@coronavid19 bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @coronavid19's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>1618</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>12</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>96</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1510</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @coronavid19's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/coronavid19'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Corpse Husband 🤖 AI Bot </div>
<div style="font-size: 15px">@corpse_husband bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@corpse_husband's tweets](https://twitter.com/corpse_husband).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1533 |
| Retweets | 35 |
| Short tweets | 534 |
| Tweets kept | 964 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/183lret6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @corpse_husband's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ctkgzjp) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ctkgzjp/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/corpse_husband')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/corpse_husband/1617737581104/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/corpse_husband
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Corpse Husband AI Bot
@corpse\_husband bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @corpse\_husband's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @corpse\_husband's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Corpse Crusader 🫀🇫🇮 gamedev hours🧱🍐💨💪</div>
<div style="text-align: center; font-size: 14px;">@corpsecrusader</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Corpse Crusader 🫀🇫🇮 gamedev hours🧱🍐💨💪.
| Data | Corpse Crusader 🫀🇫🇮 gamedev hours🧱🍐💨💪 |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 405 |
| Short tweets | 658 |
| Tweets kept | 2181 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ogdqtie2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @corpsecrusader's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ecpg08j) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ecpg08j/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/corpsecrusader')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/corpsecrusader/1651240626010/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/corpsecrusader
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Corpse Crusader 🇫🇮 gamedev hours
@corpsecrusader
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Corpse Crusader 🇫🇮 gamedev hours.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @corpsecrusader's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1394712172010393608/tkWea9AS_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1406255548228640781/wzOACSA8_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">SA | Glitchre & glitchre & cosmic gangster</div>
<div style="text-align: center; font-size: 14px;">@cosm1cgrandma-glitchre-glitchre8</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from SA | Glitchre & glitchre & cosmic gangster.
| Data | SA | Glitchre | glitchre | cosmic gangster |
| --- | --- | --- | --- |
| Tweets downloaded | 2920 | 2891 | 2960 |
| Retweets | 347 | 808 | 1410 |
| Short tweets | 872 | 600 | 359 |
| Tweets kept | 1701 | 1483 | 1191 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15s2bdg3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cosm1cgrandma-glitchre-glitchre8's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jv76342) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jv76342/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cosm1cgrandma-glitchre-glitchre8')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cosm1cgrandma-glitchre-glitchre8/1631658643977/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cosm1cgrandma-glitchre-glitchre8
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI CYBORG </div>
<div style="text-align: center; font-size: 16px; font-weight: 800">SA | Glitchre & glitchre & cosmic gangster</div>
<div style="text-align: center; font-size: 14px;">@cosm1cgrandma-glitchre-glitchre8</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on tweets from SA | Glitchre & glitchre & cosmic gangster.
| Data | SA | Glitchre | glitchre | cosmic gangster |
| --- | --- | --- | --- |
| Tweets downloaded | 2920 | 2891 | 2960 |
| Retweets | 347 | 808 | 1410 |
| Short tweets | 872 | 600 | 359 |
| Tweets kept | 1701 | 1483 | 1191 |
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @cosm1cgrandma-glitchre-glitchre8's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
## Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Nolan Koblischke</div>
<div style="text-align: center; font-size: 14px;">@cosmonolan</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Nolan Koblischke.
| Data | Nolan Koblischke |
| --- | --- |
| Tweets downloaded | 154 |
| Retweets | 5 |
| Short tweets | 6 |
| Tweets kept | 143 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13msto5g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cosmonolan's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25mhxfie) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25mhxfie/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cosmonolan')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cosmonolan/1643752768713/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cosmonolan
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Nolan Koblischke
@cosmonolan
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Nolan Koblischke.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cosmonolan's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jack Costello 🤖 AI Bot </div>
<div style="font-size: 15px">@costello_jack99 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@costello_jack99's tweets](https://twitter.com/costello_jack99).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2347 |
| Retweets | 635 |
| Short tweets | 231 |
| Tweets kept | 1481 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rov8a35/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @costello_jack99's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1s8xi6cx) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1s8xi6cx/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/costello_jack99')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/costello_jack99/1617764113397/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/costello_jack99
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Jack Costello AI Bot
@costello\_jack99 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @costello\_jack99's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @costello\_jack99's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">J0eCool 🤖 AI Bot </div>
<div style="font-size: 15px">@countj0ecool bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@countj0ecool's tweets](https://twitter.com/countj0ecool).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 4 |
| Short tweets | 262 |
| Tweets kept | 2984 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/190fgqpe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @countj0ecool's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ecnl4cfv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ecnl4cfv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/countj0ecool')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/countj0ecool/1617753960045/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/countj0ecool
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
J0eCool AI Bot
@countj0ecool bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @countj0ecool's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @countj0ecool's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Coyote Steel 🤖 AI Bot </div>
<div style="font-size: 15px">@coyote_steel bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@coyote_steel's tweets](https://twitter.com/coyote_steel).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3187 |
| Retweets | 1521 |
| Short tweets | 82 |
| Tweets kept | 1584 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jdp64ya/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coyote_steel's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gm5qc03) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gm5qc03/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/coyote_steel')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/coyote_steel/1617984150750/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/coyote_steel
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Coyote Steel AI Bot
@coyote\_steel bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @coyote\_steel's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @coyote\_steel's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">cordelia 🤖 AI Bot </div>
<div style="font-size: 15px">@cozyunoist bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cozyunoist's tweets](https://twitter.com/cozyunoist).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 98 |
| Short tweets | 328 |
| Tweets kept | 2817 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21zrvp84/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cozyunoist's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/iqrbjxnw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/iqrbjxnw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cozyunoist')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cozyunoist/1616670777235/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cozyunoist
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
cordelia AI Bot
@cozyunoist bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cozyunoist's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cozyunoist's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">C Philip Zarina</div>
<div style="text-align: center; font-size: 14px;">@cphilipzarina</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from C Philip Zarina.
| Data | C Philip Zarina |
| --- | --- |
| Tweets downloaded | 71 |
| Retweets | 5 |
| Short tweets | 6 |
| Tweets kept | 60 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2500hnbe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cphilipzarina's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11qav433) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11qav433/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cphilipzarina')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cphilipzarina/1627063725221/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cphilipzarina
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
C Philip Zarina
@cphilipzarina
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from C Philip Zarina.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cphilipzarina's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2757772202/4cc42af7c05cb9738c1794978c54999a_400x400.jpeg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Pete Whelan & Pete Whelan</div>
<div style="text-align: center; font-size: 14px;">@cptpete-tweetwhelan</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Pete Whelan & Pete Whelan.
| Data | Pete Whelan | Pete Whelan |
| --- | --- | --- |
| Tweets downloaded | 62 | 128 |
| Retweets | 10 | 8 |
| Short tweets | 3 | 11 |
| Tweets kept | 49 | 109 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/314r1lav/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cptpete-tweetwhelan's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2llpl54p) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2llpl54p/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cptpete-tweetwhelan')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cptpete-tweetwhelan/1632721354188/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cptpete-tweetwhelan
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Pete Whelan & Pete Whelan
@cptpete-tweetwhelan
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Pete Whelan & Pete Whelan.
Data: Tweets downloaded, Pete Whelan: 62, Pete Whelan: 128
Data: Retweets, Pete Whelan: 10, Pete Whelan: 8
Data: Short tweets, Pete Whelan: 3, Pete Whelan: 11
Data: Tweets kept, Pete Whelan: 49, Pete Whelan: 109
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cptpete-tweetwhelan's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chris Chan Sonichu/CPU Blue Heart⚡️💙⚡️ 🤖 AI Bot </div>
<div style="font-size: 15px">@cpu_cwcsonichu bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cpu_cwcsonichu's tweets](https://twitter.com/cpu_cwcsonichu).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3215 |
| Retweets | 217 |
| Short tweets | 156 |
| Tweets kept | 2842 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8rv6drpy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cpu_cwcsonichu's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34ahaa25) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34ahaa25/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cpu_cwcsonichu')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cpu_cwcsonichu/1619652828596/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cpu_cwcsonichu
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Chris Chan Sonichu/CPU Blue Heart️️ AI Bot
@cpu\_cwcsonichu bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cpu\_cwcsonichu's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cpu\_cwcsonichu's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mexican Space Laser 🌐🇺🇲🇲🇽🇮🇱🇹🇼</div>
<div style="text-align: center; font-size: 14px;">@crazynormie</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Mexican Space Laser 🌐🇺🇲🇲🇽🇮🇱🇹🇼.
| Data | Mexican Space Laser 🌐🇺🇲🇲🇽🇮🇱🇹🇼 |
| --- | --- |
| Tweets downloaded | 3169 |
| Retweets | 1181 |
| Short tweets | 214 |
| Tweets kept | 1774 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oetk38p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crazynormie's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29bpyif0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29bpyif0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/crazynormie')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/crazynormie/1628837302892/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/crazynormie
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Mexican Space Laser 🇺🇲🇲🇽🇮🇱🇹🇼
@crazynormie
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Mexican Space Laser 🇺🇲🇲🇽🇮🇱🇹🇼.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @crazynormie's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Heartbeat 🤖 AI Bot </div>
<div style="font-size: 15px">@crisprchild bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@crisprchild's tweets](https://twitter.com/crisprchild).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3227 |
| Retweets | 130 |
| Short tweets | 419 |
| Tweets kept | 2678 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pxtxtm8s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crisprchild's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8dczuuse) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8dczuuse/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/crisprchild')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/crisprchild/1617755013837/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/crisprchild
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Heartbeat AI Bot
@crisprchild bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @crisprchild's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @crisprchild's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Cristiano Ronaldo</div>
<div style="text-align: center; font-size: 14px;">@cristiano</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Cristiano Ronaldo.
| Data | Cristiano Ronaldo |
| --- | --- |
| Tweets downloaded | 3190 |
| Retweets | 203 |
| Short tweets | 425 |
| Tweets kept | 2562 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1izkof9f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cristiano's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qhhscef) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qhhscef/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cristiano')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cristiano/1656957050575/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cristiano
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Cristiano Ronaldo
@cristiano
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Cristiano Ronaldo.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cristiano's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1425591153689309194/HZgAzjVl_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">CritFacts the Genuine Baked Potato & Spangles & Friends</div>
<div style="text-align: center; font-size: 14px;">@critfacts-critlite</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from CritFacts the Genuine Baked Potato & Spangles & Friends.
| Data | CritFacts the Genuine Baked Potato | Spangles & Friends |
| --- | --- | --- |
| Tweets downloaded | 3243 | 1150 |
| Retweets | 892 | 443 |
| Short tweets | 329 | 112 |
| Tweets kept | 2022 | 595 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mcmhnn7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @critfacts-critlite's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/iqxcx826) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/iqxcx826/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/critfacts-critlite')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/critfacts-critlite/1632085147990/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/critfacts-critlite
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
CritFacts the Genuine Baked Potato & Spangles & Friends
@critfacts-critlite
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from CritFacts the Genuine Baked Potato & Spangles & Friends.
Data: Tweets downloaded, CritFacts the Genuine Baked Potato: 3243, Spangles & Friends: 1150
Data: Retweets, CritFacts the Genuine Baked Potato: 892, Spangles & Friends: 443
Data: Short tweets, CritFacts the Genuine Baked Potato: 329, Spangles & Friends: 112
Data: Tweets kept, CritFacts the Genuine Baked Potato: 2022, Spangles & Friends: 595
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @critfacts-critlite's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">hayley! | semi-ia 🤖 AI Bot </div>
<div style="font-size: 15px">@croftsdiaries bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@croftsdiaries's tweets](https://twitter.com/croftsdiaries).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 629 |
| Retweets | 59 |
| Short tweets | 92 |
| Tweets kept | 478 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nzwx6y8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @croftsdiaries's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/yyn29o4p) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/yyn29o4p/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/croftsdiaries')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/croftsdiaries/1617110814179/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/croftsdiaries
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
hayley! | semi-ia AI Bot
@croftsdiaries bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @croftsdiaries's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @croftsdiaries's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/660175557414391808/NrzKk--P_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">CrowdHaiku 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@crowdhaiku bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@crowdhaiku's tweets](https://twitter.com/crowdhaiku).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3225</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>0</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>2</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>3223</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/eba44yh9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crowdhaiku's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/12y0mddu) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/12y0mddu/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/crowdhaiku'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/crowdhaiku
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">CrowdHaiku AI Bot </div>
<div style="font-size: 15px; color: #657786">@crowdhaiku bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @crowdhaiku's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3225</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>0</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>2</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>3223</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @crowdhaiku's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/crowdhaiku'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Tolga Esat 🤖 AI Bot </div>
<div style="font-size: 15px">@crowonthewire1 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@crowonthewire1's tweets](https://twitter.com/crowonthewire1).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 187 |
| Retweets | 10 |
| Short tweets | 10 |
| Tweets kept | 167 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2iu7215s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crowonthewire1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8zo7rrc0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8zo7rrc0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/crowonthewire1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/crowonthewire1/1616665645467/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/crowonthewire1
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Tolga Esat AI Bot
@crowonthewire1 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @crowonthewire1's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @crowonthewire1's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">✨Non-Euclidian Claire✨ 🤖 AI Bot </div>
<div style="font-size: 15px">@crstingray bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@crstingray's tweets](https://twitter.com/crstingray).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3223 |
| Retweets | 1355 |
| Short tweets | 730 |
| Tweets kept | 1138 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8qgqhk4f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crstingray's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14tjxjpn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14tjxjpn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/crstingray')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/crstingray/1617897987874/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/crstingray
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Non-Euclidian Claire AI Bot
@crstingray bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @crstingray's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @crstingray's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1185482861639589889/VEfoJcDk_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Crusader Kings III 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@crusaderkings bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@crusaderkings's tweets](https://twitter.com/crusaderkings).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3234</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>506</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>174</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2554</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3qnalhzx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crusaderkings's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/34525ldv) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/34525ldv/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/crusaderkings'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/crusaderkings
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Crusader Kings III AI Bot </div>
<div style="font-size: 15px; color: #657786">@crusaderkings bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @crusaderkings's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3234</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>506</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>174</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2554</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @crusaderkings's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/crusaderkings'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1419244584367005696/F5fnPoI1_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🔲🔳 & wintbot_neo</div>
<div style="text-align: center; font-size: 14px;">@cryptolith_-drilbot_neo-rusticgendarme</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from merz & 🔲🔳 & wintbot_neo.
| Data | merz | 🔲🔳 | wintbot_neo |
| --- | --- | --- | --- |
| Tweets downloaded | 2483 | 3223 | 3244 |
| Retweets | 427 | 449 | 215 |
| Short tweets | 419 | 1022 | 274 |
| Tweets kept | 1637 | 1752 | 2755 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3i10strm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-drilbot_neo-rusticgendarme's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ehu86wd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cryptolith_-drilbot_neo-rusticgendarme')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cryptolith_-drilbot_neo-rusticgendarme/1627250043753/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cryptolith_-drilbot_neo-rusticgendarme
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
merz & & wintbot\_neo
@cryptolith\_-drilbot\_neo-rusticgendarme
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from merz & & wintbot\_neo.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cryptolith\_-drilbot\_neo-rusticgendarme's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1404892466810085378/yKYGklGP_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370191602241654785/zbbSFsyw_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🏁🗼 & severian</div>
<div style="text-align: center; font-size: 14px;">@cryptolith_-poaststructural-rusticgendarme</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from merz & 🏁🗼 & severian.
| Data | merz | 🏁🗼 | severian |
| --- | --- | --- | --- |
| Tweets downloaded | 2456 | 3223 | 3226 |
| Retweets | 424 | 450 | 358 |
| Short tweets | 416 | 1017 | 577 |
| Tweets kept | 1616 | 1756 | 2291 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2t7za49v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-poaststructural-rusticgendarme's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/txcxy9qk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/txcxy9qk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cryptolith_-poaststructural-rusticgendarme')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cryptolith_-poaststructural-rusticgendarme/1627059554644/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cryptolith_-poaststructural-rusticgendarme
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
merz & & severian
@cryptolith\_-poaststructural-rusticgendarme
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from merz & & severian.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cryptolith\_-poaststructural-rusticgendarme's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1404892466810085378/yKYGklGP_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">merz & 🏁🗼</div>
<div style="text-align: center; font-size: 14px;">@cryptolith_-rusticgendarme</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from merz & 🏁🗼.
| Data | merz | 🏁🗼 |
| --- | --- | --- |
| Tweets downloaded | 2452 | 3220 |
| Retweets | 423 | 449 |
| Short tweets | 416 | 1016 |
| Tweets kept | 1613 | 1755 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1czbbc9w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptolith_-rusticgendarme's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1f2ee97y) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1f2ee97y/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cryptolith_-rusticgendarme')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cryptolith_-rusticgendarme/1627050935243/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cryptolith_-rusticgendarme
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
merz &
@cryptolith\_-rusticgendarme
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from merz & .
Data: Tweets downloaded, merz: 2452
Data: Retweets, merz: 423
Data: Short tweets, merz: 416
Data: Tweets kept, merz: 1613
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cryptolith\_-rusticgendarme's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">infineot</div>
<div style="text-align: center; font-size: 14px;">@ctrlcreep</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from infineot.
| Data | infineot |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 171 |
| Short tweets | 51 |
| Tweets kept | 3019 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26459hr9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ctrlcreep's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1prcdcpn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1prcdcpn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ctrlcreep')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/ctrlcreep/1637573720314/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/ctrlcreep
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
infineot
@ctrlcreep
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from infineot.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @ctrlcreep's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Manu’</div>
<div style="text-align: center; font-size: 14px;">@cu_coquin</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Manu’.
| Data | Manu’ |
| --- | --- |
| Tweets downloaded | 1982 |
| Retweets | 63 |
| Short tweets | 291 |
| Tweets kept | 1628 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jyazmuh8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cu_coquin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29a5jk2r) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29a5jk2r/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cu_coquin')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cu_coquin/1644250567283/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cu_coquin
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Manu’
@cu\_coquin
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Manu’.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cu\_coquin's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">|i!i|</div>
<div style="text-align: center; font-size: 14px;">@cubytes</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from |i!i|.
| Data | |i!i| |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 1 |
| Short tweets | 112 |
| Tweets kept | 3136 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xojbovmo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cubytes's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1x1wffyb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1x1wffyb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cubytes')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cubytes/1656815845890/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cubytes
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI BOT </div>
<div style="text-align: center; font-size: 16px; font-weight: 800">|i!i|</div>
<div style="text-align: center; font-size: 14px;">@cubytes</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on tweets from |i!i|.
| Data | |i!i| |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 1 |
| Short tweets | 112 |
| Tweets kept | 3136 |
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @cubytes's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
## Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1231086579336257536/cwkV33rb_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342468924496031745/GQXNyPSq_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">♠️ Jenny Snowbunny ♠️ & 🇹🇭👸🏽♠️ Thai Queen of Spades ♠️👸🏽🇹🇭 7.25K & Cuckold DNA</div>
<div style="text-align: center; font-size: 14px;">@cuckolddna-jennyyoyo92-thaiqos</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ♠️ Jenny Snowbunny ♠️ & 🇹🇭👸🏽♠️ Thai Queen of Spades ♠️👸🏽🇹🇭 7.25K & Cuckold DNA.
| Data | ♠️ Jenny Snowbunny ♠️ | 🇹🇭👸🏽♠️ Thai Queen of Spades ♠️👸🏽🇹🇭 7.25K | Cuckold DNA |
| --- | --- | --- | --- |
| Tweets downloaded | 222 | 639 | 2928 |
| Retweets | 33 | 247 | 1607 |
| Short tweets | 64 | 37 | 108 |
| Tweets kept | 125 | 355 | 1213 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21bck17h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuckolddna-jennyyoyo92-thaiqos's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jf6bm27t) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jf6bm27t/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cuckolddna-jennyyoyo92-thaiqos')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cuckolddna-jennyyoyo92-thaiqos/1627818315619/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cuckolddna-jennyyoyo92-thaiqos
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
️ Jenny Snowbunny ️ & 🇹🇭️ Thai Queen of Spades ️🇹🇭 7.25K & Cuckold DNA
@cuckolddna-jennyyoyo92-thaiqos
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from ️ Jenny Snowbunny ️ & 🇹🇭️ Thai Queen of Spades ️🇹🇭 7.25K & Cuckold DNA.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cuckolddna-jennyyoyo92-thaiqos's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Cuckold DNA</div>
<div style="text-align: center; font-size: 14px;">@cuckolddna</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Cuckold DNA.
| Data | Cuckold DNA |
| --- | --- |
| Tweets downloaded | 2868 |
| Retweets | 1537 |
| Short tweets | 107 |
| Tweets kept | 1224 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39n7komh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuckolddna's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tnket83) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tnket83/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cuckolddna')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cuckolddna/1629199173022/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cuckolddna
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Cuckold DNA
@cuckolddna
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Cuckold DNA.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cuckolddna's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/755753205028577280/nwtLbTwy_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1254593296455872513/Qdyli1JK_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet</div>
<div style="text-align: center; font-size: 14px;">@cuckoldresss-qobetty-ragamuffin197</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet.
| Data | BettyBoopQoS | Ragamuffin1970 | Cuckoldress Scarlet |
| --- | --- | --- | --- |
| Tweets downloaded | 129 | 3247 | 1005 |
| Retweets | 2 | 11 | 252 |
| Short tweets | 10 | 584 | 70 |
| Tweets kept | 117 | 2652 | 683 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zfpi2vmm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuckoldresss-qobetty-ragamuffin197's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/172rz2sh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/172rz2sh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cuckoldresss-qobetty-ragamuffin197')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cuckoldresss-qobetty-ragamuffin197
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
AI CYBORG
BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet
@cuckoldresss-qobetty-ragamuffin197
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from BettyBoopQoS & Ragamuffin1970 & Cuckoldress Scarlet.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cuckoldresss-qobetty-ragamuffin197's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374721840472526851/kzKWx1OS_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1448723012514041865/ydq1VOBm_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">jumb & isaac & jay z</div>
<div style="text-align: center; font-size: 14px;">@cummilkshake-miraiwillsaveus-technobaphomet</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from jumb & isaac & jay z.
| Data | jumb | isaac | jay z |
| --- | --- | --- | --- |
| Tweets downloaded | 3232 | 3153 | 3061 |
| Retweets | 736 | 362 | 83 |
| Short tweets | 594 | 977 | 1230 |
| Tweets kept | 1902 | 1814 | 1748 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3tmpkkja/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cummilkshake-miraiwillsaveus-technobaphomet's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39yato7e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39yato7e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cummilkshake-miraiwillsaveus-technobaphomet')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cummilkshake-miraiwillsaveus-technobaphomet/1635820776478/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cummilkshake-miraiwillsaveus-technobaphomet
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
jumb & isaac & jay z
@cummilkshake-miraiwillsaveus-technobaphomet
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from jumb & isaac & jay z.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cummilkshake-miraiwillsaveus-technobaphomet's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cane / he|him / Enby-femboi / Cute doggo 🔞🌽 🤖 AI Bot </div>
<div style="font-size: 15px">@cunfamiliaris bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cunfamiliaris's tweets](https://twitter.com/cunfamiliaris).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 135 |
| Short tweets | 287 |
| Tweets kept | 2822 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ndgivht/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cunfamiliaris's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b0a9baoe) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b0a9baoe/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cunfamiliaris')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cunfamiliaris/1616770251594/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cunfamiliaris
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Cane / he|him / Enby-femboi / Cute doggo AI Bot
@cunfamiliaris bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cunfamiliaris's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cunfamiliaris's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">cupcakKe lyrics</div>
<div style="text-align: center; font-size: 14px;">@cupcakkesays</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from cupcakKe lyrics.
| Data | cupcakKe lyrics |
| --- | --- |
| Tweets downloaded | 3200 |
| Retweets | 0 |
| Short tweets | 44 |
| Tweets kept | 3156 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3beoi9ei/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cupcakkesays's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kye6z0e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kye6z0e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cupcakkesays')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cupcakkesays/1637758613095/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cupcakkesays
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
cupcakKe lyrics
@cupcakkesays
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from cupcakKe lyrics.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cupcakkesays's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/866006337255227393/jLbqeyn3_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Jacob Glanville 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@curlyjunglejake bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@curlyjunglejake's tweets](https://twitter.com/curlyjunglejake).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2193</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>94</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>194</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1905</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wpg429u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @curlyjunglejake's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u5lcs29) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u5lcs29/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/curlyjunglejake'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/curlyjunglejake/1611588649017/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/curlyjunglejake
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Jacob Glanville AI Bot </div>
<div style="font-size: 15px; color: #657786">@curlyjunglejake bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @curlyjunglejake's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2193</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>94</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>194</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1905</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @curlyjunglejake's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/curlyjunglejake'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Curt Krone 🤖 AI Bot </div>
<div style="font-size: 15px">@curtkrone bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@curtkrone's tweets](https://twitter.com/curtkrone).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3203 |
| Retweets | 1135 |
| Short tweets | 250 |
| Tweets kept | 1818 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3o9jhw98/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @curtkrone's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gge3iwo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gge3iwo/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/curtkrone')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/curtkrone/1614127926380/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/curtkrone
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Curt Krone AI Bot
@curtkrone bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @curtkrone's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @curtkrone's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">matt christman</div>
<div style="text-align: center; font-size: 14px;">@cushbomb</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from matt christman.
| Data | matt christman |
| --- | --- |
| Tweets downloaded | 3230 |
| Retweets | 241 |
| Short tweets | 685 |
| Tweets kept | 2304 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39bxpmve/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cushbomb's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gd8zqob) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gd8zqob/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cushbomb')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/cushbomb/1663936814713/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cushbomb
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
matt christman
@cushbomb
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from matt christman.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cushbomb's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sayako Hoshimiya 🤖 AI Bot </div>
<div style="font-size: 15px">@cute_sayako bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cute_sayako's tweets](https://twitter.com/cute_sayako).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3228 |
| Retweets | 324 |
| Short tweets | 1887 |
| Tweets kept | 1017 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cfs9mn2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cute_sayako's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1esq77ko) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1esq77ko/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cute_sayako')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cute_sayako/1617765258616/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cute_sayako
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Sayako Hoshimiya AI Bot
@cute\_sayako bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cute\_sayako's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cute\_sayako's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bunny ✊🏽✊🏾✊🏿 🏳️🌈</div>
<div style="text-align: center; font-size: 14px;">@cutebunnys50</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Bunny ✊🏽✊🏾✊🏿 🏳️🌈.
| Data | Bunny ✊🏽✊🏾✊🏿 🏳️🌈 |
| --- | --- |
| Tweets downloaded | 3208 |
| Retweets | 2575 |
| Short tweets | 16 |
| Tweets kept | 617 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2t0h4kcz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cutebunnys50's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ymfrlb8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ymfrlb8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cutebunnys50')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cutebunnys50/1631663231129/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cutebunnys50
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Bunny ️
@cutebunnys50
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Bunny ️.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cutebunnys50's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">maddie</div>
<div style="text-align: center; font-size: 14px;">@cuteteengiri</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from maddie.
| Data | maddie |
| --- | --- |
| Tweets downloaded | 755 |
| Retweets | 80 |
| Short tweets | 318 |
| Tweets kept | 357 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23raikto/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cuteteengiri's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rjelltc1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rjelltc1/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cuteteengiri')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cuteteengiri/1621385805180/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cuteteengiri
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
maddie
@cuteteengiri
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from maddie.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cuteteengiri's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">GOD HATES A COWARD 🤖 AI Bot </div>
<div style="font-size: 15px">@cutiebomber bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cutiebomber's tweets](https://twitter.com/cutiebomber).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3071 |
| Retweets | 2858 |
| Short tweets | 52 |
| Tweets kept | 161 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fdz5t1k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cutiebomber's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cge5lb9i) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cge5lb9i/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cutiebomber')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cutiebomber/1617765125988/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cutiebomber
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
GOD HATES A COWARD AI Bot
@cutiebomber bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cutiebomber's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cutiebomber's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/812058964544389120/5wxoV2wt_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cami Williams #BlackLivesMatter 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@cwillycs bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cwillycs's tweets](https://twitter.com/cwillycs).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2137</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>648</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>290</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1199</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2faie74y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cwillycs's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2efpeorz) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2efpeorz/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cwillycs'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cwillycs/1602269588028/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cwillycs
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cami Williams #BlackLivesMatter AI Bot </div>
<div style="font-size: 15px; color: #657786">@cwillycs bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @cwillycs's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2137</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>648</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>290</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1199</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @cwillycs's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/cwillycs'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">evil succubus 🤖 AI Bot </div>
<div style="font-size: 15px">@cyberbully66 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cyberbully66's tweets](https://twitter.com/cyberbully66).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3195 |
| Retweets | 397 |
| Short tweets | 570 |
| Tweets kept | 2228 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2c5t9ev6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cyberbully66's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/e4ld23gl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/e4ld23gl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cyberbully66')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cyberbully66/1616851006786/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cyberbully66
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
evil succubus AI Bot
@cyberbully66 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cyberbully66's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cyberbully66's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">CyberGoreAlice 🤖 AI Bot </div>
<div style="font-size: 15px">@cybercyberpop bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cybercyberpop's tweets](https://twitter.com/cybercyberpop).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3223 |
| Retweets | 870 |
| Short tweets | 925 |
| Tweets kept | 1428 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/j1gdjged/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cybercyberpop's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kkuuwcd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kkuuwcd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cybercyberpop')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cybercyberpop/1617791525487/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cybercyberpop
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
CyberGoreAlice AI Bot
@cybercyberpop bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cybercyberpop's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cybercyberpop's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">cyberglyphic 🤖 AI Bot </div>
<div style="font-size: 15px">@cyberglyphic bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cyberglyphic's tweets](https://twitter.com/cyberglyphic).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3174 |
| Retweets | 498 |
| Short tweets | 340 |
| Tweets kept | 2336 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/243v14nf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cyberglyphic's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qa0qgs8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qa0qgs8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cyberglyphic')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cyberglyphic/1616616677471/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cyberglyphic
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
cyberglyphic AI Bot
@cyberglyphic bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cyberglyphic's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cyberglyphic's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cylinder 🤖 AI Bot </div>
<div style="font-size: 15px">@cylinderlife bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@cylinderlife's tweets](https://twitter.com/cylinderlife).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 130 |
| Retweets | 14 |
| Short tweets | 21 |
| Tweets kept | 95 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qend5z7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cylinderlife's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hhpr6qt) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hhpr6qt/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cylinderlife')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cylinderlife/1614176138788/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cylinderlife
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Cylinder AI Bot
@cylinderlife bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @cylinderlife's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cylinderlife's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1241620963768201216/sG68m_iE_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1308419103510626304/gUgr1gMo_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">fastfwd & Cyrus & Lily Ray 😏</div>
<div style="text-align: center; font-size: 14px;">@cyrusshepard-fastfwdco-lilyraynyc</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from fastfwd & Cyrus & Lily Ray 😏.
| Data | fastfwd | Cyrus | Lily Ray 😏 |
| --- | --- | --- | --- |
| Tweets downloaded | 945 | 3248 | 3250 |
| Retweets | 60 | 343 | 89 |
| Short tweets | 5 | 729 | 310 |
| Tweets kept | 880 | 2176 | 2851 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k89f9gx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cyrusshepard-fastfwdco-lilyraynyc's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3eq4v17k) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3eq4v17k/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/cyrusshepard-fastfwdco-lilyraynyc')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/cyrusshepard-fastfwdco-lilyraynyc/1632903540115/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/cyrusshepard-fastfwdco-lilyraynyc
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
fastfwd & Cyrus & Lily Ray
@cyrusshepard-fastfwdco-lilyraynyc
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from fastfwd & Cyrus & Lily Ray .
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @cyrusshepard-fastfwdco-lilyraynyc's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Greetest</div>
<div style="text-align: center; font-size: 14px;">@d_greetest</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Greetest.
| Data | Greetest |
| --- | --- |
| Tweets downloaded | 629 |
| Retweets | 265 |
| Short tweets | 34 |
| Tweets kept | 330 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kz7im60/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @d_greetest's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1h67ju9y) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1h67ju9y/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/d_greetest')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/d_greetest/1639533869820/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/d_greetest
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Greetest
@d\_greetest
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Greetest.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @d\_greetest's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1021749789598212096/eo8-km4g_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dat Quoc Nguyen 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@d_q_nguyen bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@d_q_nguyen's tweets](https://twitter.com/d_q_nguyen).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>477</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>365</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>5</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>107</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/30izyjvz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @d_q_nguyen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2zyuag4u) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2zyuag4u/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/d_q_nguyen'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://res.cloudinary.com/huggingtweets/image/upload/v1599893349/d_q_nguyen.jpg", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/d_q_nguyen
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dat Quoc Nguyen AI Bot </div>
<div style="font-size: 15px; color: #657786">@d_q_nguyen bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @d_q_nguyen's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>477</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>365</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>5</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>107</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @d_q_nguyen's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/d_q_nguyen'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">DaBaby 🤖 AI Bot </div>
<div style="font-size: 15px">@dababydababy bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dababydababy's tweets](https://twitter.com/dababydababy).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2970 |
| Retweets | 2078 |
| Short tweets | 300 |
| Tweets kept | 592 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pxo4nhg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dababydababy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3byz0p03) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3byz0p03/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dababydababy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dababydababy
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
DaBaby AI Bot
@dababydababy bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dababydababy's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dababydababy's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1268352530423205889/V6Nz7mIt_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nader Dabit 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@dabit3 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dabit3's tweets](https://twitter.com/dabit3).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3205</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>822</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>449</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1934</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19qlkkql/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dabit3's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ai4t9ptt) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ai4t9ptt/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dabit3'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dabit3/1607128642974/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dabit3
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nader Dabit AI Bot </div>
<div style="font-size: 15px; color: #657786">@dabit3 bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @dabit3's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3205</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>822</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>449</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1934</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @dabit3's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dabit3'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">👀 backwards 🤖 AI Bot </div>
<div style="font-size: 15px">@daddyblackbone bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@daddyblackbone's tweets](https://twitter.com/daddyblackbone).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3025 |
| Retweets | 325 |
| Short tweets | 349 |
| Tweets kept | 2351 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30bwu48z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daddyblackbone's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1co409eo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1co409eo/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/daddyblackbone')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daddyblackbone/1616857292827/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/daddyblackbone
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
backwards AI Bot
@daddyblackbone bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @daddyblackbone's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @daddyblackbone's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Tweets by Kratos🪓</div>
<div style="text-align: center; font-size: 14px;">@daddykratos1</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Tweets by Kratos🪓.
| Data | Tweets by Kratos🪓 |
| --- | --- |
| Tweets downloaded | 626 |
| Retweets | 14 |
| Short tweets | 52 |
| Tweets kept | 560 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12nz41n2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daddykratos1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33zt2owy) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33zt2owy/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/daddykratos1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daddykratos1/1629576272636/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/daddykratos1
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Tweets by Kratos
@daddykratos1
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Tweets by Kratos.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @daddykratos1's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Big Daddy's Cum Cock</div>
<div style="text-align: center; font-size: 14px;">@daddyscumcock</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Big Daddy's Cum Cock.
| Data | Big Daddy's Cum Cock |
| --- | --- |
| Tweets downloaded | 449 |
| Retweets | 85 |
| Short tweets | 41 |
| Tweets kept | 323 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oidmwvy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daddyscumcock's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31o8y1r6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31o8y1r6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/daddyscumcock')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daddyscumcock/1632087154595/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/daddyscumcock
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Big Daddy's Cum Cock
@daddyscumcock
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Big Daddy's Cum Cock.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @daddyscumcock's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/923451113239703552/62jMMnTQ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dad Jokes 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@dadsaysjokes bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dadsaysjokes's tweets](https://twitter.com/dadsaysjokes).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3205</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>47</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>8</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>3150</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3tibg7vt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dadsaysjokes's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pxb4a3v) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pxb4a3v/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dadsaysjokes'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dadsaysjokes
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dad Jokes AI Bot </div>
<div style="font-size: 15px; color: #657786">@dadsaysjokes bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @dadsaysjokes's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3205</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>47</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>8</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>3150</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @dadsaysjokes's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dadsaysjokes'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">K | Krimson Devils System🚩🏴 🤖 AI Bot </div>
<div style="font-size: 15px">@daengerousk bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@daengerousk's tweets](https://twitter.com/daengerousk).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1980 |
| Retweets | 1179 |
| Short tweets | 320 |
| Tweets kept | 481 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bo3ebco/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daengerousk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/26a437ue) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/26a437ue/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/daengerousk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daengerousk/1616855326690/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/daengerousk
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
K | Krimson Devils System AI Bot
@daengerousk bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @daengerousk's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @daengerousk's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daequon G. (the g is for gaymer) 🤖 AI Bot </div>
<div style="font-size: 15px">@daequaen bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@daequaen's tweets](https://twitter.com/daequaen).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1919 |
| Retweets | 883 |
| Short tweets | 231 |
| Tweets kept | 805 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/bafm2u4u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daequaen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2d9nm2rg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2d9nm2rg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/daequaen')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daequaen/1617765314697/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/daequaen
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Daequon G. (the g is for gaymer) AI Bot
@daequaen bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @daequaen's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @daequaen's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Art Prompts</div>
<div style="text-align: center; font-size: 14px;">@dailyartprompts</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Art Prompts.
| Data | Art Prompts |
| --- | --- |
| Tweets downloaded | 726 |
| Retweets | 16 |
| Short tweets | 1 |
| Tweets kept | 709 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1z29i666/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dailyartprompts's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3rrp1b3e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3rrp1b3e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dailyartprompts')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dailyartprompts/1632000660527/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dailyartprompts
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Art Prompts
@dailyartprompts
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Art Prompts.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dailyartprompts's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daily Micro Fiction 🤖 AI Bot </div>
<div style="font-size: 15px">@dailymicrofic bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dailymicrofic's tweets](https://twitter.com/dailymicrofic).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 296 |
| Retweets | 5 |
| Short tweets | 47 |
| Tweets kept | 244 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yj0d4a8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dailymicrofic's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38yvub5b) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38yvub5b/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dailymicrofic')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dailymicrofic
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Daily Micro Fiction AI Bot
@dailymicrofic bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dailymicrofic's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dailymicrofic's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dan Kaminsky 🤖 AI Bot </div>
<div style="font-size: 15px">@dakami bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dakami's tweets](https://twitter.com/dakami).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 133 |
| Short tweets | 395 |
| Tweets kept | 2722 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lgryhzp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dakami's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tgfiubli) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tgfiubli/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dakami')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dakami/1617343658924/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dakami
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Dan Kaminsky AI Bot
@dakami bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dakami's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dakami's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dalai Lama 🤖 AI Bot </div>
<div style="font-size: 15px">@dalailama bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dalailama's tweets](https://twitter.com/dalailama).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1664 |
| Retweets | 0 |
| Short tweets | 1 |
| Tweets kept | 1663 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/p9scy18q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dalailama's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1acshcvu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1acshcvu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dalailama')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dalailama/1615997106867/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dalailama
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
Dalai Lama AI Bot
@dalailama bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dalailama's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dalailama's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1133122333290291200/xV9gO-D6_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1202410649403428864/ARbH2iRC_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Jack Grieve & Scott Hanselman & Marc Miller</div>
<div style="text-align: center; font-size: 14px;">@dallaswentdown-jwgrieve-shanselman</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Jack Grieve & Scott Hanselman & Marc Miller.
| Data | Jack Grieve | Scott Hanselman | Marc Miller |
| --- | --- | --- | --- |
| Tweets downloaded | 3241 | 3248 | 204 |
| Retweets | 408 | 649 | 11 |
| Short tweets | 325 | 953 | 16 |
| Tweets kept | 2508 | 1646 | 177 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1szwn06m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dallaswentdown-jwgrieve-shanselman's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/umdhmmbr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/umdhmmbr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dallaswentdown-jwgrieve-shanselman')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dallaswentdown-jwgrieve-shanselman/1622469689056/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dallaswentdown-jwgrieve-shanselman
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Jack Grieve & Scott Hanselman & Marc Miller
@dallaswentdown-jwgrieve-shanselman
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Jack Grieve & Scott Hanselman & Marc Miller.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dallaswentdown-jwgrieve-shanselman's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hugh Jazz 🤖 AI Bot </div>
<div style="font-size: 15px">@daltonegreene bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@daltonegreene's tweets](https://twitter.com/daltonegreene).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3237 |
| Retweets | 183 |
| Short tweets | 354 |
| Tweets kept | 2700 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25ywih65/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daltonegreene's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yizvyce) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yizvyce/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/daltonegreene')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/daltonegreene/1616643742816/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/daltonegreene
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Hugh Jazz AI Bot
@daltonegreene bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @daltonegreene's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @daltonegreene's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dalton AR Sakthivadivel</div>
<div style="text-align: center; font-size: 14px;">@daltonsakthi</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Dalton AR Sakthivadivel.
| Data | Dalton AR Sakthivadivel |
| --- | --- |
| Tweets downloaded | 3220 |
| Retweets | 1653 |
| Short tweets | 71 |
| Tweets kept | 1496 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/aqk1rdls/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daltonsakthi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qr2itgh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qr2itgh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/daltonsakthi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/daltonsakthi/1641169872533/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/daltonsakthi
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Dalton AR Sakthivadivel
@daltonsakthi
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Dalton AR Sakthivadivel.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @daltonsakthi's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Bas Wisselink 🤖 AI Bot </div>
<div style="font-size: 15px">@damelonbcws bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@damelonbcws's tweets](https://twitter.com/damelonbcws).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3242 |
| Retweets | 890 |
| Short tweets | 186 |
| Tweets kept | 2166 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17sw2i75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @damelonbcws's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8x4kzglp) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8x4kzglp/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/damelonbcws')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/damelonbcws
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Bas Wisselink AI Bot
@damelonbcws bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @damelonbcws's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @damelonbcws's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Himbo Slice 🤖 AI Bot </div>
<div style="font-size: 15px">@damydothedishes bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@damydothedishes's tweets](https://twitter.com/damydothedishes).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3150 |
| Retweets | 510 |
| Short tweets | 341 |
| Tweets kept | 2299 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jntufpd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @damydothedishes's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2awoazq2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2awoazq2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/damydothedishes')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/damydothedishes/1614113189615/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/damydothedishes
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Himbo Slice AI Bot
@damydothedishes bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @damydothedishes's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @damydothedishes's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dan</div>
<div style="text-align: center; font-size: 14px;">@dan_abramov</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Dan.
| Data | Dan |
| --- | --- |
| Tweets downloaded | 3246 |
| Retweets | 605 |
| Short tweets | 225 |
| Tweets kept | 2416 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1o5h8795/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dan_abramov's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11780jlj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11780jlj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dan_abramov')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dan_abramov/1633280738580/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dan_abramov
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Dan
@dan\_abramov
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Dan.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dan\_abramov's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1046498722815782912/JkZIybb-_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dana Ludwig 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@danaludwig bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@danaludwig's tweets](https://twitter.com/danaludwig).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>637</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>59</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>6</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>572</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2pqe574m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danaludwig's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/j3gaz7tt) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/j3gaz7tt/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/danaludwig'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danaludwig/1603674265747/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/danaludwig
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dana Ludwig AI Bot </div>
<div style="font-size: 15px; color: #657786">@danaludwig bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @danaludwig's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>637</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>59</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>6</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>572</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @danaludwig's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/danaludwig'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">danawhite</div>
<div style="text-align: center; font-size: 14px;">@danawhite</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from danawhite.
| Data | danawhite |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 102 |
| Short tweets | 264 |
| Tweets kept | 2884 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2noyr0xi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danawhite's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1avci7w8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1avci7w8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/danawhite')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danawhite/1620951207984/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/danawhite
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
danawhite
@danawhite
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from danawhite.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @danawhite's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1167076226646851584/ZKQBCF5o_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nicole Perry, CLMA 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@dancendrama1 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dancendrama1's tweets](https://twitter.com/dancendrama1).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3200</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>680</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>230</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2290</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2pv57oh1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dancendrama1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2gd7kare) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2gd7kare/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dancendrama1'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dancendrama1/1600740364323/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dancendrama1
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Nicole Perry, CLMA AI Bot </div>
<div style="font-size: 15px; color: #657786">@dancendrama1 bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @dancendrama1's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3200</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>680</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>230</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2290</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @dancendrama1's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dancendrama1'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">dandy 🤖 AI Bot </div>
<div style="font-size: 15px">@dandiestguylol bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dandiestguylol's tweets](https://twitter.com/dandiestguylol).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 227 |
| Retweets | 47 |
| Short tweets | 41 |
| Tweets kept | 139 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hgpscsj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dandiestguylol's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zoqskppv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zoqskppv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dandiestguylol')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dandiestguylol/1617757371542/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dandiestguylol
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
dandy AI Bot
@dandiestguylol bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dandiestguylol's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dandiestguylol's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1188087980721950721/98ji2Wwq_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Ellis 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@danellisscience bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@danellisscience's tweets](https://twitter.com/danellisscience).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>532</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>107</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>30</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>395</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3pv1wmct/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danellisscience's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1whytzxk) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1whytzxk/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/danellisscience'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danellisscience/1602254637048/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/danellisscience
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Ellis AI Bot </div>
<div style="font-size: 15px; color: #657786">@danellisscience bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @danellisscience's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>532</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>107</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>30</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>395</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @danellisscience's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/danellisscience'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dani 🤖 AI Bot </div>
<div style="font-size: 15px">@dani_remade bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dani_remade's tweets](https://twitter.com/dani_remade).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2270 |
| Retweets | 1509 |
| Short tweets | 108 |
| Tweets kept | 653 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c0gm6a77/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dani_remade's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18pilez8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18pilez8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dani_remade')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dani_remade/1614192638303/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dani_remade
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Dani AI Bot
@dani\_remade bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dani\_remade's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dani\_remade's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1267943406304743424/QS6bXLq-_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Gedda Nuño 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@danielgedda bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@danielgedda's tweets](https://twitter.com/danielgedda).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3124</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>2715</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>36</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>373</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/xk4kfjse/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danielgedda's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3lyvifcb) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3lyvifcb/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/danielgedda'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/danielgedda
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Gedda Nuño AI Bot </div>
<div style="font-size: 15px; color: #657786">@danielgedda bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @danielgedda's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3124</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>2715</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>36</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>373</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @danielgedda's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/danielgedda'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1110842842254139392/ZOE_oJVk_400x400.png')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343387459229540354/axWFzawA_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">The Tactical Times & Jack Grieve & Daniel Griffin MD PhD</div>
<div style="text-align: center; font-size: 14px;">@danielgriffinmd-jwgrieve-tactical_times</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from The Tactical Times & Jack Grieve & Daniel Griffin MD PhD.
| Data | The Tactical Times | Jack Grieve | Daniel Griffin MD PhD |
| --- | --- | --- | --- |
| Tweets downloaded | 3248 | 3241 | 1832 |
| Retweets | 154 | 408 | 416 |
| Short tweets | 102 | 325 | 181 |
| Tweets kept | 2992 | 2508 | 1235 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/f0tjsov8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danielgriffinmd-jwgrieve-tactical_times's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lmqr46i) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lmqr46i/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/danielgriffinmd-jwgrieve-tactical_times')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danielgriffinmd-jwgrieve-tactical_times/1622467683418/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/danielgriffinmd-jwgrieve-tactical_times
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
The Tactical Times & Jack Grieve & Daniel Griffin MD PhD
@danielgriffinmd-jwgrieve-tactical\_times
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from The Tactical Times & Jack Grieve & Daniel Griffin MD PhD.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @danielgriffinmd-jwgrieve-tactical\_times's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/3138755755/d5a784ba09507ecf86785b7bad5d87a9_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Gross 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@danielgross bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://bit.ly/2TGXMZf).
## Training data
The model was trained on [@danielgross's tweets](https://twitter.com/danielgross).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>557</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>17</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>23</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>517</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3jijhfxi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danielgross's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/25msjov9) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/25msjov9/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/danielgross'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/danielgross
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Daniel Gross AI Bot </div>
<div style="font-size: 15px; color: #657786">@danielgross bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @danielgross's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>557</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>17</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>23</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>517</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @danielgross's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/danielgross'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">danielle</div>
<div style="text-align: center; font-size: 14px;">@danielleboccell</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from danielle.
| Data | danielle |
| --- | --- |
| Tweets downloaded | 3223 |
| Retweets | 656 |
| Short tweets | 113 |
| Tweets kept | 2454 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bm2j3po/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danielleboccell's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3o514z49) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3o514z49/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/danielleboccell')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/danielleboccell/1638891768493/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/danielleboccell
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
danielle
@danielleboccell
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from danielle.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @danielleboccell's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1190142566831984640/o4kO2hp-_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1283621672541536259/WI_8OTJz_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉</div>
<div style="text-align: center; font-size: 14px;">@dankogai-hirox246-syakkin_dama</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉.
| Data | ひろゆき, Hiroyuki Nishimura | Dan Kogai | 借金玉 |
| --- | --- | --- | --- |
| Tweets downloaded | 3249 | 3250 | 3249 |
| Retweets | 283 | 341 | 260 |
| Short tweets | 1819 | 2313 | 2918 |
| Tweets kept | 1147 | 596 | 71 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1meoqt2b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dankogai-hirox246-syakkin_dama's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gc1ic0l) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gc1ic0l/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dankogai-hirox246-syakkin_dama')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dankogai-hirox246-syakkin_dama/1642471272927/predictions.png", "widget": [{"text": "My dream is"}]}
| null |
huggingtweets/dankogai-hirox246-syakkin_dama
|
[
"huggingtweets",
"en",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#huggingtweets #en #region-us
|
AI CYBORG
ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉
@dankogai-hirox246-syakkin\_dama
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai & 借金玉.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dankogai-hirox246-syakkin\_dama's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1190142566831984640/o4kO2hp-_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura & Dan Kogai</div>
<div style="text-align: center; font-size: 14px;">@dankogai-hirox246</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai.
| Data | ひろゆき, Hiroyuki Nishimura | Dan Kogai |
| --- | --- | --- |
| Tweets downloaded | 3249 | 3250 |
| Retweets | 284 | 340 |
| Short tweets | 1988 | 2416 |
| Tweets kept | 977 | 494 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vrtv6xf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dankogai-hirox246's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1yfxplpr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1yfxplpr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dankogai-hirox246')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dankogai-hirox246/1642499700234/predictions.png", "widget": [{"text": "My dream is"}]}
| null |
huggingtweets/dankogai-hirox246
|
[
"huggingtweets",
"en",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#huggingtweets #en #region-us
|
AI CYBORG
ひろゆき, Hiroyuki Nishimura & Dan Kogai
@dankogai-hirox246
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from ひろゆき, Hiroyuki Nishimura & Dan Kogai.
Data: Tweets downloaded, ひろゆき, Hiroyuki Nishimura: 3249, Dan Kogai: 3250
Data: Retweets, ひろゆき, Hiroyuki Nishimura: 284, Dan Kogai: 340
Data: Short tweets, ひろゆき, Hiroyuki Nishimura: 1988, Dan Kogai: 2416
Data: Tweets kept, ひろゆき, Hiroyuki Nishimura: 977, Dan Kogai: 494
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dankogai-hirox246's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Danny Barefoot</div>
<div style="text-align: center; font-size: 14px;">@dannybarefoot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Danny Barefoot.
| Data | Danny Barefoot |
| --- | --- |
| Tweets downloaded | 909 |
| Retweets | 168 |
| Short tweets | 124 |
| Tweets kept | 617 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7awrd5uh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dannybarefoot's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33cmwhib) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33cmwhib/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dannybarefoot')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dannybarefoot/1624927497917/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dannybarefoot
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Danny Barefoot
@dannybarefoot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Danny Barefoot.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dannybarefoot's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Danny BirchAll Power to the Soviets 🤖 AI Bot </div>
<div style="font-size: 15px">@dannybirchall bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dannybirchall's tweets](https://twitter.com/dannybirchall).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3229 |
| Retweets | 749 |
| Short tweets | 371 |
| Tweets kept | 2109 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3e5qooh6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dannybirchall's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1z2jl9pw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1z2jl9pw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dannybirchall')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dannybirchall/1616673826129/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dannybirchall
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Danny BirchAll Power to the Soviets AI Bot
@dannybirchall bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dannybirchall's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dannybirchall's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dan Salvato 🤖 AI Bot </div>
<div style="font-size: 15px">@dansalvato bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dansalvato's tweets](https://twitter.com/dansalvato).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3233 |
| Retweets | 197 |
| Short tweets | 233 |
| Tweets kept | 2803 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jbu3vnq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dansalvato's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1c66e4az) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1c66e4az/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dansalvato')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dansalvato/1612858230042/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dansalvato
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Dan Salvato AI Bot
@dansalvato bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dansalvato's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dansalvato's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dan Wootton 🤖 AI Bot </div>
<div style="font-size: 15px">@danwootton bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@danwootton's tweets](https://twitter.com/danwootton).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 1660 |
| Short tweets | 341 |
| Tweets kept | 1242 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32da4jja/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danwootton's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1esngdn6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1esngdn6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/danwootton')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/danwootton/1618797945976/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/danwootton
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Dan Wootton AI Bot
@danwootton bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @danwootton's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @danwootton's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ho3K | Daramgar 🔜 CROSSxUP</div>
<div style="text-align: center; font-size: 14px;">@daramgaria</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Ho3K | Daramgar 🔜 CROSSxUP.
| Data | Ho3K | Daramgar 🔜 CROSSxUP |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 30 |
| Short tweets | 807 |
| Tweets kept | 2412 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/z2deo4d4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daramgaria's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29cuxcz9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29cuxcz9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/daramgaria')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/daramgaria
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI BOT </div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ho3K | Daramgar CROSSxUP</div>
<div style="text-align: center; font-size: 14px;">@daramgaria</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on tweets from Ho3K | Daramgar CROSSxUP.
| Data | Ho3K | Daramgar CROSSxUP |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 30 |
| Short tweets | 807 |
| Tweets kept | 2412 |
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @daramgaria's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
## Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🌸Daria🌸 🤖 AI Bot </div>
<div style="font-size: 15px">@dariasuzu bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dariasuzu's tweets](https://twitter.com/dariasuzu).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3183 |
| Retweets | 1813 |
| Short tweets | 417 |
| Tweets kept | 953 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13f2yzvk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dariasuzu's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/m73s18m3) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/m73s18m3/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dariasuzu')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dariasuzu/1614219545681/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dariasuzu
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Daria AI Bot
@dariasuzu bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dariasuzu's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dariasuzu's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">xX_g3ndr_havr_Xx 🤖 AI Bot </div>
<div style="font-size: 15px">@darknessisdark bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@darknessisdark's tweets](https://twitter.com/darknessisdark).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2801 |
| Retweets | 583 |
| Short tweets | 306 |
| Tweets kept | 1912 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dwe171y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @darknessisdark's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/d0xrvuif) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/d0xrvuif/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/darknessisdark')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/darknessisdark/1614100288472/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/darknessisdark
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
xX\_g3ndr\_havr\_Xx AI Bot
@darknessisdark bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @darknessisdark's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @darknessisdark's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">darth™</div>
<div style="text-align: center; font-size: 14px;">@darth</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from darth™.
| Data | darth™ |
| --- | --- |
| Tweets downloaded | 3189 |
| Retweets | 1278 |
| Short tweets | 677 |
| Tweets kept | 1234 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3t5g6hcx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @darth's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c56rnej9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c56rnej9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/darth')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/darth/1641324110436/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/darth
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
darth™
@darth
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from darth™.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @darth's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">vvn</div>
<div style="text-align: center; font-size: 14px;">@darthvivien</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from vvn.
| Data | vvn |
| --- | --- |
| Tweets downloaded | 3175 |
| Retweets | 460 |
| Short tweets | 114 |
| Tweets kept | 2601 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ple9op7w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @darthvivien's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pt4wq49) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pt4wq49/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/darthvivien')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/darthvivien/1634849358388/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/darthvivien
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
vvn
@darthvivien
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from vvn.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @darthvivien's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1262569291527753733/Jyh5XLEA_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mara Averick 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@dataandme bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dataandme's tweets](https://twitter.com/dataandme).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3209</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>603</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>129</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2477</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/13sm7zyv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dataandme's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2iyzpllw) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2iyzpllw/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dataandme'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dataandme/1602747308355/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dataandme
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mara Averick AI Bot </div>
<div style="font-size: 15px; color: #657786">@dataandme bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @dataandme's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3209</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>603</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>129</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2477</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @dataandme's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dataandme'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kumar 🤖 AI Bot </div>
<div style="font-size: 15px">@datarade bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@datarade's tweets](https://twitter.com/datarade).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 558 |
| Short tweets | 454 |
| Tweets kept | 2237 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/369qtfug/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @datarade's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bytl8ofw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bytl8ofw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/datarade')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/datarade/1617718202497/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/datarade
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Kumar AI Bot
@datarade bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @datarade's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @datarade's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dathiks the idiot || 18+</div>
<div style="text-align: center; font-size: 14px;">@dathiks</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Dathiks the idiot || 18+.
| Data | Dathiks the idiot || 18+ |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 160 |
| Short tweets | 391 |
| Tweets kept | 2696 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3na3z4pf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dathiks's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3k9x299g) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3k9x299g/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dathiks')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dathiks/1621914499049/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/dathiks
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800"> AI BOT </div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dathiks the idiot || 18+</div>
<div style="text-align: center; font-size: 14px;">@dathiks</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on tweets from Dathiks the idiot || 18+.
| Data | Dathiks the idiot || 18+ |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 160 |
| Short tweets | 391 |
| Tweets kept | 2696 |
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @dathiks's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
## Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">the responsible uncle 🤖 AI Bot </div>
<div style="font-size: 15px">@davemcnamee3000 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@davemcnamee3000's tweets](https://twitter.com/davemcnamee3000).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 416 |
| Short tweets | 515 |
| Tweets kept | 2310 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13u5lzdf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @davemcnamee3000's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rgzuxgk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rgzuxgk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/davemcnamee3000')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/davemcnamee3000/1616698880059/predictions.png", "widget": [{"text": "My dream is"}]}
|
text-generation
|
huggingtweets/davemcnamee3000
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
the responsible uncle AI Bot
@davemcnamee3000 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @davemcnamee3000's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @davemcnamee3000's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
![Follow](URL
For more details, visit the project repository.
![GitHub stars](URL
|
[] |
[
"TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
57
] |
[
"passage: TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
[
0.004547144751995802,
-0.006708405911922455,
-0.007013476919382811,
0.01947171241044998,
0.15818242728710175,
0.03448796644806862,
0.08709780126810074,
0.15389476716518402,
-0.019877297803759575,
-0.022431448101997375,
0.18047170341014862,
0.173692986369133,
-0.012988686561584473,
0.09047263860702515,
-0.05271327868103981,
-0.2622397541999817,
0.03682216629385948,
0.05513067543506622,
-0.007422737777233124,
0.14252057671546936,
0.07580838352441788,
-0.023790201172232628,
0.11380083113908768,
-0.02966974675655365,
-0.202972412109375,
0.03197307139635086,
0.0615268237888813,
-0.09518525749444962,
0.11083168536424637,
0.04628797993063927,
0.08698221296072006,
0.022143812850117683,
-0.07331052422523499,
-0.120787613093853,
0.04532235115766525,
0.045263588428497314,
-0.06358368694782257,
0.06480421870946884,
0.08820623904466629,
-0.1065920814871788,
0.1416475921869278,
0.07373794168233871,
-0.01588049717247486,
0.07824484258890152,
-0.17789237201213837,
-0.03725104406476021,
-0.036331940442323685,
0.007741300854831934,
0.07058489322662354,
0.0750737413764,
-0.019116664305329323,
0.1746976524591446,
-0.06598041951656342,
0.09777773916721344,
0.17528840899467468,
-0.2887236773967743,
-0.018040433526039124,
0.0492081381380558,
0.0887371376156807,
0.04900359362363815,
-0.024227341637015343,
0.08339477330446243,
0.06365471333265305,
0.01686069741845131,
0.014271941967308521,
-0.06960906833410263,
-0.09346919506788254,
0.03645368665456772,
-0.06932124495506287,
-0.05699722096323967,
0.22001419961452484,
-0.0334535576403141,
0.04674676060676575,
-0.03953840583562851,
-0.09316058456897736,
-0.028927378356456757,
-0.027232296764850616,
-0.00907184462994337,
-0.05413005128502846,
0.08754174411296844,
-0.015151693485677242,
-0.06331931799650192,
-0.1435878872871399,
-0.012912428006529808,
-0.15805892646312714,
0.13816505670547485,
0.004333257209509611,
0.04586424678564072,
-0.22094038128852844,
0.1012546569108963,
0.022817784920334816,
-0.08995530754327774,
0.04930093511939049,
-0.09425957500934601,
0.0717538446187973,
0.0007676240638829768,
-0.04885277524590492,
-0.02944779396057129,
0.08848895877599716,
0.14690880477428436,
-0.02718975953757763,
0.005980455316603184,
-0.01338018849492073,
0.0733228251338005,
0.059399042278528214,
0.028748195618391037,
-0.006081049330532551,
-0.052236080169677734,
0.05618719011545181,
-0.1417204737663269,
-0.010511515662074089,
-0.07227712869644165,
-0.10605388879776001,
-0.04232237488031387,
0.03443120792508125,
0.060671232640743256,
0.042230576276779175,
0.11220116913318634,
-0.04771716892719269,
-0.01857093721628189,
0.05281376466155052,
-0.03979083523154259,
-0.008994937874376774,
-0.01990325190126896,
0.018122754991054535,
0.13074275851249695,
-0.019943278282880783,
0.03407962992787361,
-0.10256942361593246,
0.05431444197893143,
-0.10281401127576828,
-0.01971535198390484,
-0.014149561524391174,
-0.04367954283952713,
0.031883664429187775,
-0.12165860831737518,
0.016123656183481216,
-0.16833168268203735,
-0.14714312553405762,
0.002859292319044471,
-0.016588665544986725,
-0.017911825329065323,
-0.07954888790845871,
-0.04400517791509628,
-0.02466505579650402,
0.06924423575401306,
-0.04276731237769127,
-0.00935916043817997,
-0.05846982076764107,
0.11090090870857239,
-0.05349889397621155,
0.07203050702810287,
-0.1194647029042244,
0.0557217076420784,
-0.14930842816829681,
-0.013004516251385212,
-0.04842504858970642,
0.07119924575090408,
0.015398351475596428,
0.1813964694738388,
-0.006925920024514198,
-0.003623353084549308,
-0.09382472932338715,
0.06455672532320023,
-0.02733452245593071,
0.24096953868865967,
-0.0756828561425209,
-0.14226967096328735,
0.21630549430847168,
-0.06334739923477173,
-0.14993034303188324,
0.1314547061920166,
0.01843975856900215,
0.08251222223043442,
0.10434340685606003,
0.19023460149765015,
0.01808990351855755,
-0.007808534894138575,
0.054424818605184555,
0.07603957504034042,
-0.1683882623910904,
-0.033340878784656525,
0.0012923459289595485,
-0.00014291972911451012,
-0.1366809904575348,
0.04632483050227165,
0.1230006217956543,
0.09730340540409088,
-0.07249721139669418,
-0.018487868830561638,
-0.030607668682932854,
0.0016078021144494414,
0.04144361615180969,
-0.0005212334799580276,
0.09951234608888626,
-0.1033509373664856,
-0.04366454482078552,
-0.06751791387796402,
-0.002970147645100951,
0.011176802217960358,
0.03924661502242088,
-0.04455869272351265,
0.09700342267751694,
-0.007412149105221033,
0.0545678474009037,
-0.13708296418190002,
-0.07981666922569275,
-0.016090448945760727,
0.1597585678100586,
0.040224816650152206,
0.04663374274969101,
0.0566885769367218,
-0.05624469742178917,
-0.015493324026465416,
-0.010199432261288166,
0.16243304312229156,
-0.04404180869460106,
-0.07694169133901596,
-0.07860849797725677,
0.10474636405706406,
-0.06389671564102173,
0.026263169944286346,
-0.051667314022779465,
0.024654213339090347,
0.04686986654996872,
0.1110762283205986,
0.004046999383717775,
0.026442723348736763,
-0.012835992500185966,
-0.007690808270126581,
-0.07657550275325775,
-0.01617686077952385,
0.1077079176902771,
-0.0017721779877319932,
-0.06809886544942856,
0.2437063455581665,
-0.16884316504001617,
0.21163912117481232,
0.20976658165454865,
-0.2492678016424179,
-0.02882898785173893,
-0.04848965257406235,
-0.04766342043876648,
-0.0012878701090812683,
0.06041788309812546,
-0.034700244665145874,
0.09027024358510971,
-0.03288675472140312,
0.16564396023750305,
-0.051203593611717224,
-0.07646744698286057,
0.019007064402103424,
-0.05823178589344025,
-0.05114857107400894,
0.07018019258975983,
0.08213616907596588,
-0.1630844622850418,
0.18756183981895447,
0.21879082918167114,
0.06839460134506226,
0.2044064849615097,
0.00858453568071127,
-0.010656360536813736,
0.07200875878334045,
-0.04608747735619545,
-0.03843220695853233,
-0.06601633131504059,
-0.15238076448440552,
-0.03009703755378723,
0.06625645607709885,
0.030863380059599876,
0.09900964051485062,
-0.09019728004932404,
-0.08104760944843292,
-0.017665131017565727,
0.004776675254106522,
0.00156646769028157,
0.11991100758314133,
0.03676433861255646,
0.13820022344589233,
-0.01955524832010269,
0.022415857762098312,
0.08040772378444672,
0.016582515090703964,
-0.10843544453382492,
0.16101348400115967,
-0.13329310715198517,
-0.3788211941719055,
-0.14546175301074982,
-0.13134250044822693,
-0.020925991237163544,
0.03777816519141197,
0.1120775043964386,
-0.1329103261232376,
0.005511005409061909,
-0.007893978618085384,
0.10391844809055328,
-0.08707519620656967,
0.039245378226041794,
-0.07586963474750519,
0.0314689576625824,
-0.060405436903238297,
-0.07552991807460785,
-0.03722400963306427,
-0.028465405106544495,
-0.09132689982652664,
0.16675986349582672,
-0.11130212247371674,
0.06035055220127106,
0.16001324355602264,
0.021197395399212837,
0.03523072600364685,
-0.05174810439348221,
0.18330632150173187,
-0.112345851957798,
0.020098978653550148,
0.15624848008155823,
-0.013005592860281467,
0.08254575729370117,
0.08188403397798538,
-0.013132697902619839,
-0.10316278785467148,
0.05240294709801674,
0.001463406952098012,
-0.10209372639656067,
-0.1950312703847885,
-0.10119245946407318,
-0.08230090886354446,
0.15922248363494873,
0.06361804902553558,
0.058937788009643555,
0.17968137562274933,
0.07578518986701965,
-0.038606274873018265,
-0.00038743947516195476,
-0.00239798822440207,
0.08808282762765884,
0.13635766506195068,
-0.01442645862698555,
0.1225903332233429,
-0.04975935071706772,
-0.10913994163274765,
0.12899059057235718,
0.01750512234866619,
0.03937286511063576,
0.051435839384794235,
0.021011192351579666,
-0.011281835846602917,
0.11866551637649536,
0.13484057784080505,
0.10447502881288528,
-0.015693627297878265,
-0.0293489471077919,
-0.04774824157357216,
-0.01359935849905014,
-0.033305928111076355,
0.03640862926840782,
0.008061517030000687,
-0.14140670001506805,
-0.06158366799354553,
-0.11537835001945496,
0.08758961409330368,
0.10668005049228668,
0.07567808032035828,
-0.21108253300189972,
-0.003950516227632761,
0.07933880388736725,
-0.03630997985601425,
-0.11126025766134262,
0.08416172116994858,
0.03095286712050438,
-0.1277567446231842,
0.07218055427074432,
-0.03519461303949356,
0.12458370625972748,
-0.0032897875644266605,
0.09583556652069092,
-0.03598680719733238,
-0.027483470737934113,
-0.013308011926710606,
0.09818253666162491,
-0.3191508650779724,
0.1621316522359848,
-0.017933005467057228,
-0.0618131123483181,
-0.06667962670326233,
-0.02528184838593006,
0.015994107350707054,
0.07729468494653702,
0.10861869156360626,
0.021759910508990288,
0.01640525460243225,
-0.07345785945653915,
-0.042352862656116486,
0.038021303713321686,
0.12403716146945953,
-0.06827268749475479,
-0.012903391383588314,
-0.04523605480790138,
0.00796645786613226,
-0.017124788835644722,
-0.008793274872004986,
0.006911922711879015,
-0.14962191879749298,
0.05182485654950142,
0.014736213721334934,
0.07058768719434738,
0.0436982735991478,
-0.014969068579375744,
-0.09180716425180435,
0.18274778127670288,
-0.015714606270194054,
-0.07271543145179749,
-0.12616917490959167,
-0.05262751132249832,
0.030376195907592773,
-0.05518756061792374,
0.021047864109277725,
-0.06501689553260803,
-0.0035362408962100744,
-0.06755607575178146,
-0.22007296979427338,
0.1278373897075653,
-0.08437205106019974,
-0.07192739844322205,
-0.04912353679537773,
0.2010866105556488,
-0.051223888993263245,
0.003238252131268382,
0.010222852230072021,
0.021994104608893394,
-0.11474784463644028,
-0.09469719231128693,
0.07112357765436172,
-0.03247172012925148,
0.03123478777706623,
0.0022505864035338163,
-0.04091062396764755,
0.016593176871538162,
-0.06314414739608765,
-0.011381587944924831,
0.27866554260253906,
0.23951324820518494,
-0.040407944470644,
0.1904350072145462,
0.11012271791696548,
-0.08163551241159439,
-0.3069863021373749,
-0.10166139155626297,
-0.12140648066997528,
-0.02996143139898777,
-0.017288926988840103,
-0.16865339875221252,
0.06477722525596619,
0.038930367678403854,
0.009261871688067913,
0.13778774440288544,
-0.20730599761009216,
-0.08823523670434952,
0.09138026833534241,
-0.02557477355003357,
0.43079736828804016,
-0.1257614940404892,
-0.08959750831127167,
-0.051866497844457626,
-0.16516901552677155,
0.2173919379711151,
-0.021592965349555016,
0.07857322692871094,
-0.029561417177319527,
0.11770006269216537,
0.04697660356760025,
-0.010707763023674488,
0.08040876686573029,
-0.00884756539016962,
0.008373050950467587,
-0.12410011142492294,
-0.02768467366695404,
0.04874192550778389,
0.012378438375890255,
0.0013600040692836046,
-0.09389680624008179,
0.020313434302806854,
-0.15990203619003296,
-0.018549781292676926,
-0.11233476549386978,
0.07682323455810547,
0.025788001716136932,
-0.06466120481491089,
-0.003637736663222313,
-0.04986237734556198,
-0.015892893075942993,
-0.01400828268378973,
0.1717434972524643,
-0.04862768203020096,
0.19366511702537537,
0.03501616790890694,
0.11570870876312256,
-0.1362973153591156,
0.06143493950366974,
-0.06429426372051239,
-0.07528600096702576,
0.07427702099084854,
-0.1537967324256897,
0.05111055448651314,
0.09430045634508133,
-0.030276626348495483,
0.05380253866314888,
0.08795086294412613,
-0.003969982732087374,
0.004800081253051758,
0.15867236256599426,
-0.2786487936973572,
0.01320126373320818,
-0.07396841049194336,
-0.06665283441543579,
0.10506758838891983,
0.06261139363050461,
0.17162823677062988,
0.011681869626045227,
-0.056615445762872696,
0.01595049723982811,
0.02499506063759327,
-0.04915530979633331,
0.04529924690723419,
0.008104361593723297,
-0.010991688817739487,
-0.13640300929546356,
0.08699746429920197,
0.0042801909148693085,
-0.1531187742948532,
0.024680746719241142,
0.2155698835849762,
-0.1260155886411667,
-0.10237220674753189,
-0.03444112092256546,
0.08444061875343323,
-0.11519137024879456,
0.01753072999417782,
-0.030764780938625336,
-0.09109894186258316,
0.07448896765708923,
0.15248911082744598,
0.049206193536520004,
0.11775100976228714,
-0.015379221178591251,
-0.011753370985388756,
-0.05147303268313408,
-0.0317845419049263,
0.025745956227183342,
0.017857374623417854,
-0.08257177472114563,
0.06648801267147064,
-0.022109810262918472,
0.14559012651443481,
-0.09791336953639984,
-0.06602771580219269,
-0.1468091756105423,
-0.009785634465515614,
-0.0695481076836586,
-0.09207163751125336,
-0.08133620768785477,
-0.062133077532052994,
0.0010387726360931993,
-0.03962359577417374,
-0.04795864596962929,
-0.0791037380695343,
-0.10289866477251053,
0.009435068815946579,
-0.02305566892027855,
0.03256045654416084,
-0.06115729361772537,
0.007872066460549831,
0.12092912197113037,
-0.028174830600619316,
0.16686207056045532,
0.1458095908164978,
-0.09536580741405487,
0.10568815469741821,
-0.16346460580825806,
-0.08964221179485321,
0.0939340740442276,
-0.01729099079966545,
0.027899714186787605,
0.11666940152645111,
0.014932696707546711,
0.04195788502693176,
0.035977672785520554,
0.06045130267739296,
0.03587699308991432,
-0.11899011582136154,
0.07665140181779861,
0.009481414221227169,
-0.1612047255039215,
-0.06303887814283371,
-0.08555969595909119,
0.030386725440621376,
0.021575886756181717,
0.12225193530321121,
-0.045776769518852234,
0.0887017622590065,
-0.07972796261310577,
0.027257539331912994,
0.02293219044804573,
-0.181223064661026,
-0.047844018787145615,
-0.053065262734889984,
0.032686229795217514,
0.018960151821374893,
0.1893557906150818,
0.027213018387556076,
-0.03697650134563446,
0.04549255222082138,
0.1042066365480423,
0.005313898902386427,
0.004829791374504566,
0.16259528696537018,
0.09423433989286423,
-0.07654286175966263,
-0.12226779758930206,
0.07556461542844772,
0.019673259928822517,
-0.044067107141017914,
0.10607215762138367,
-0.002448870101943612,
0.020163848996162415,
0.06910120695829391,
-0.014892932027578354,
0.034322552382946014,
-0.044286008924245834,
-0.10698256641626358,
-0.023580113425850868,
0.046367425471544266,
0.00669879000633955,
0.12847968935966492,
0.177873894572258,
-0.002574790036305785,
0.025011489167809486,
-0.0363602340221405,
-0.024931130930781364,
-0.13864666223526,
-0.1558164656162262,
-0.06855984032154083,
-0.14875617623329163,
0.012976853176951408,
-0.0915176048874855,
0.04695429280400276,
0.028682325035333633,
0.06887643784284592,
-0.07052405923604965,
0.04384735971689224,
0.06974220275878906,
-0.12065785378217697,
0.09397104382514954,
-0.028081456199288368,
0.03704333305358887,
-0.006730496883392334,
-0.012833851389586926,
-0.10013298690319061,
0.035936567932367325,
-0.01747855544090271,
0.045271266251802444,
-0.04546798765659332,
0.030429324135184288,
-0.1703072488307953,
-0.124412901699543,
-0.04034453630447388,
0.06420420855283737,
-0.06510858237743378,
0.03512151539325714,
0.019115818664431572,
0.013339218683540821,
0.03305599465966225,
0.23020225763320923,
-0.03704051673412323,
-0.02329315058887005,
-0.042310282588005066,
0.16692522168159485,
-0.014016710221767426,
0.08088304847478867,
-0.03037172369658947,
0.0002500463742762804,
-0.08417443931102753,
0.3385351300239563,
0.3027777075767517,
-0.09020252525806427,
0.019915465265512466,
-0.030905582010746002,
0.03936264291405678,
0.11892254650592804,
0.13376617431640625,
0.09784641861915588,
0.2282467782497406,
-0.07217609137296677,
-0.03032243251800537,
-0.020507147535681725,
-0.011079044081270695,
-0.06650827825069427,
0.0879674032330513,
0.02507801540195942,
-0.05553486570715904,
-0.031693898141384125,
0.0812700018286705,
-0.2327648252248764,
0.10665327310562134,
-0.11289316415786743,
-0.1636168211698532,
-0.039189815521240234,
0.0042042857967317104,
0.08908319473266602,
0.015396242961287498,
0.11228121817111969,
0.009163780137896538,
-0.07585213333368301,
0.017798418179154396,
0.028085503727197647,
-0.24201616644859314,
-0.008133855648338795,
0.060310713946819305,
-0.12939085066318512,
-0.004324504639953375,
-0.027167800813913345,
0.007199867628514767,
0.059822265058755875,
0.029368450865149498,
-0.04319324716925621,
-0.001257759635336697,
-0.010450302623212337,
-0.008644461631774902,
-0.011618612334132195,
0.07065588980913162,
0.046958792954683304,
-0.13329142332077026,
0.06869500875473022,
-0.11774353682994843,
0.033477768301963806,
-0.05866728723049164,
-0.015255378559231758,
0.000037100471672602,
0.03460683673620224,
-0.04829782620072365,
0.07058211416006088,
0.07688362896442413,
-0.015606098808348179,
0.000610517687164247,
-0.0802936851978302,
-0.036274004727602005,
-0.019796574488282204,
-0.09252054989337921,
-0.08371094614267349,
-0.13031646609306335,
-0.11573562026023865,
0.1029667928814888,
-0.02224794402718544,
-0.19213621318340302,
0.03111329674720764,
-0.12165344506502151,
0.045619383454322815,
-0.1751558482646942,
0.11076030135154724,
0.08046020567417145,
0.01831907220184803,
0.011516088619828224,
-0.02576824277639389,
0.08821021765470505,
0.11728470027446747,
-0.07783648371696472,
-0.08528783172369003
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.